List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1680551/publications.pdf Version: 2024-02-01

		19608	20307
131	13,771	61	116
papers	citations	h-index	g-index
135	135	135	15136
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Suppression of Apoptosis by Nitric Oxide via Inhibition of Interleukin-1β–converting Enzyme (ICE)-like and Cysteine Protease Protein (CPP)-32–like Proteases. Journal of Experimental Medicine, 1997, 185, 601-608.	4.2	815
2	SIRT1 controls endothelial angiogenic functions during vascular growth. Genes and Development, 2007, 21, 2644-2658.	2.7	540
3	Fluid Shear Stress Stimulates Phosphorylation of Akt in Human Endothelial Cells. Circulation Research, 1998, 83, 334-341.	2.0	398
4	Nitric Oxide Inhibits Caspase-3 by S-Nitrosationin Vivo. Journal of Biological Chemistry, 1999, 274, 6823-6826.	1.6	381
5	HMG-CoA Reductase Inhibitors Reduce Senescence and Increase Proliferation of Endothelial Progenitor Cells via Regulation of Cell Cycle Regulatory Genes. Circulation Research, 2003, 92, 1049-1055.	2.0	377
6	Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nature Cell Biology, 2002, 4, 743-749.	4.6	371
7	Cyclophilin A Is a Secreted Growth Factor Induced by Oxidative Stress. Circulation Research, 2000, 87, 789-796.	2.0	358
8	Antioxidants Inhibit Nuclear Export of Telomerase Reverse Transcriptase and Delay Replicative Senescence of Endothelial Cells. Circulation Research, 2004, 94, 768-775.	2.0	350
9	Aging Enhances the Sensitivity of Endothelial Cells Toward Apoptotic Stimuli. Circulation Research, 2001, 89, 709-715.	2.0	343
10	Physical Exercise Prevents Cellular Senescence in Circulating Leukocytes and in the Vessel Wall. Circulation, 2009, 120, 2438-2447.	1.6	314
11	Impaired CXCR4 Signaling Contributes to the Reduced Neovascularization Capacity of Endothelial Progenitor Cells From Patients With Coronary Artery Disease. Circulation Research, 2005, 97, 1142-1151.	2.0	307
12	Dephosphorylation Targets Bcl-2 for Ubiquitin-dependent Degradation: A Link between the Apoptosome and the Proteasome Pathway. Journal of Experimental Medicine, 1999, 189, 1815-1822.	4.2	302
13	Posttranslational Modification of Bcl-2 Facilitates Its Proteasome-Dependent Degradation: Molecular Characterization of the Involved Signaling Pathway. Molecular and Cellular Biology, 2000, 20, 1886-1896.	1.1	300
14	Oxidized Low-Density Lipoprotein Induces Apoptosis of Human Endothelial Cells by Activation of CPP32-Like Proteases. Circulation, 1997, 95, 1760-1763.	1.6	298
15	Mitochondrial Telomerase Reverse Transcriptase Binds to and Protects Mitochondrial DNA and Function From Damage. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 929-935.	1.1	294
16	Shear stress inhibits apoptosis of human endothelial cells. FEBS Letters, 1996, 399, 71-74.	1.3	293
17	Angiotensin II Induces Apoptosis of Human Endothelial Cells. Circulation Research, 1997, 81, 970-976.	2.0	293
18	Cell-to-Cell Connection of Endothelial Progenitor Cells With Cardiac Myocytes by Nanotubes. Circulation Research, 2005, 96, 1039-1041.	2.0	286

#	Article	IF	CITATIONS
19	Src and Cas Mediate JNK Activation but Not ERK1/2 and p38 Kinases by Reactive Oxygen Species. Journal of Biological Chemistry, 2000, 275, 11706-11712.	1.6	230
20	Hydrogen Peroxide Triggers Nuclear Export of Telomerase Reverse Transcriptase via Src Kinase Family-Dependent Phosphorylation of Tyrosine 707. Molecular and Cellular Biology, 2003, 23, 4598-4610.	1.1	229
21	Statins Enhance Migratory Capacity by Upregulation of the Telomere Repeat-Binding Factor TRF2 in Endothelial Progenitor Cells. Circulation, 2004, 110, 3136-3142.	1.6	226
22	Thioredoxin. Circulation Research, 2003, 93, 1029-1033.	2.0	221
23	Effects of Physical Exercise on Myocardial Telomere-Regulating Proteins, Survival Pathways, and Apoptosis. Journal of the American College of Cardiology, 2008, 52, 470-482.	1.2	203
24	p38 Mitogen-Activated Protein Kinase Downregulates Endothelial Progenitor Cells. Circulation, 2005, 111, 1184-1191.	1.6	202
25	Antioxidant Effects of Statins via S -Nitrosylation and Activation of Thioredoxin in Endothelial Cells. Circulation, 2004, 110, 856-861.	1.6	201
26	The hallmarks of fibroblast ageing. Mechanisms of Ageing and Development, 2014, 138, 26-44.	2.2	179
27	Receptor Heterodimerization: Essential Mechanism for Platelet-Derived Growth Factor-Induced Epidermal Growth Factor Receptor Transactivation. Molecular and Cellular Biology, 2001, 21, 6387-6394.	1.1	166
28	Sphingosine-1-Phosphate Stimulates the Functional Capacity of Progenitor Cells by Activation of the CXCR 4 -Dependent Signaling Pathway via the S1P 3 Receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 275-282.	1.1	159
29	Epoxyeicosatrienoic Acids Regulate Trp Channel–Dependent Ca ²⁺ Signaling and Hyperpolarization in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2612-2618.	1.1	158
30	Cyclosporin A Inhibits Apoptosis of Human Endothelial Cells by Preventing Release of Cytochrome C From Mitochondria. Circulation, 1998, 98, 1153-1157.	1.6	156
31	Angiotensin II Induces Transactivation of Two Different Populations of the Platelet-derived Growth Factor Î ² Receptor. Journal of Biological Chemistry, 2000, 275, 15926-15932.	1.6	151
32	Congestive heart failure induces endothelial cell apoptosis: protective role of carvedilol. Journal of the American College of Cardiology, 2000, 36, 2081-2089.	1.2	133
33	Regulation of telomerase activity and anti-apoptotic function by protein-protein interaction and phosphorylation. FEBS Letters, 2003, 536, 180-186.	1.3	131
34	Vitamin C and E prevent lipopolysaccharide-induced apoptosis in human endothelial cells by modulation of Bcl-2 and Bax. European Journal of Pharmacology, 1996, 317, 407-411.	1.7	126
35	Dephosphorylation of endothelial nitric oxide synthase contributes to the antiâ€angiogenic effects of endostatin. FASEB Journal, 2002, 16, 706-708.	0.2	123
36	Non-canonical Wnt Signaling Enhances Differentiation of Human Circulating Progenitor Cells to Cardiomyogenic Cells. Journal of Biological Chemistry, 2005, 280, 16838-16842.	1.6	122

#	Article	IF	CITATIONS
37	Effects of Granulocyte Colony Stimulating Factor on Functional Activities of Endothelial Progenitor Cells in Patients With Chronic Ischemic Heart Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2238-2243.	1.1	117
38	Gas6 inhibits apoptosis in vascular smooth muscle: role of Axl kinase and Akt. Journal of Molecular and Cellular Cardiology, 2004, 37, 881-887.	0.9	115
39	The role of near infrared radiation in photoaging of the skin. Experimental Gerontology, 2008, 43, 629-632.	1.2	112
40	Nitric Oxide Down-regulates MKP-3 mRNA Levels. Journal of Biological Chemistry, 2000, 275, 25502-25507.	1.6	111
41	MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging, 2016, 8, 484-505.	1.4	108
42	Effects of Redox-Related Congeners of NO on Apoptosis and Caspase-3 Activity. Nitric Oxide - Biology and Chemistry, 1997, 1, 282-293.	1.2	94
43	The vascular NADPH oxidase subunit p47phox is involved in redox-mediated gene expression. Free Radical Biology and Medicine, 2002, 32, 1116-1122.	1.3	90
44	Angiotensin II-induced upregulation of MAP kinase phosphatase-3 mRNA levels mediates endothelial cell apotosis. Basic Research in Cardiology, 2002, 97, 1-8.	2.5	90
45	Redox modification of cell signaling in the cardiovascular system. Journal of Molecular and Cellular Cardiology, 2012, 52, 550-558.	0.9	89
46	GIT1 Functions as a Scaffold for MEK1-Extracellular Signal-Regulated Kinase 1 and 2 Activation by Angiotensin II and Epidermal Growth Factor. Molecular and Cellular Biology, 2004, 24, 875-885.	1.1	86
47	The role of junctional adhesion molecule (JAM) in oxidized LDLâ€mediated leukocyte recruitment. FASEB Journal, 2005, 19, 2078-2080.	0.2	85
48	Low doses of reactive oxygen species protect endothelial cells from apoptosis by increasing thioredoxin-1 expression. FEBS Letters, 2004, 577, 427-433.	1.3	82
49	Changes of MMP-1 and collagen type lα1 by UVA, UVB and IRA are differentially regulated by Trx-1. Experimental Gerontology, 2008, 43, 633-637.	1.2	80
50	GIT1 Mediates Src-dependent Activation of Phospholipase CÎ ³ by Angiotensin II and Epidermal Growth Factor. Journal of Biological Chemistry, 2003, 278, 49936-49944.	1.6	79
51	Nuclear Protein Tyrosine Phosphatase Shp-2 Is One Important Negative Regulator of Nuclear Export of Telomerase Reverse Transcriptase. Journal of Biological Chemistry, 2008, 283, 33155-33161.	1.6	77
52	Regulation of endothelial cell apoptosis in atherothrombosis. Current Opinion in Lipidology, 2002, 13, 531-536.	1.2	76
53	TNFα and oxLDL Reduce Protein S-Nitrosylation in Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 41383-41387.	1.6	75
54	Nuclear Redox Signaling. Antioxidants and Redox Signaling, 2010, 12, 713-742.	2.5	72

#	Article	IF	CITATIONS
55	Fluid Shear Stress Attenuates Hydrogen Peroxide–Induced c-Jun NH2-Terminal Kinase Activation via a Glutathione Reductase–Mediated Mechanism. Circulation Research, 2002, 91, 712-718.	2.0	71
56	Local Peroxynitrite Impairs Endothelial Transient Receptor Potential Vanilloid 4 Channels and Elevates Blood Pressure in Obesity. Circulation, 2020, 141, 1318-1333.	1.6	71
57	Inhibition of endogenous nitric oxide synthase potentiates ischemia–reperfusion-induced myocardial apoptosis via a caspase-3 dependent pathway. Cardiovascular Research, 2000, 45, 671-678.	1.8	70
58	Cathepsin D and H2O2 Stimulate Degradation of Thioredoxin-1. Journal of Biological Chemistry, 2005, 280, 42945-42951.	1.6	69
59	Inhibition of suicidal erythrocyte death by nitric oxide. Pflugers Archiv European Journal of Physiology, 2008, 456, 293-305.	1.3	67
60	The aryl hydrocarbon receptor promotes aging phenotypes across species. Scientific Reports, 2016, 6, 19618.	1.6	67
61	GIT1 Mediates Thrombin Signaling in Endothelial Cells. Circulation Research, 2004, 94, 1041-1049.	2.0	65
62	Inhibition of the p38 MAP kinase in vivo improves number and functional activity of vasculogenic cells and reduces atherosclerotic disease progression. Basic Research in Cardiology, 2010, 105, 389-397.	2.5	64
63	Telomere Gap Between Granulocytes and Lymphocytes Is a Determinant for Hematopoetic Progenitor Cell Impairment in Patients With Previous Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 968-974.	1.1	63
64	Nuclear Redox-Signaling Is Essential for Apoptosis Inhibition in Endothelial Cells—Important Role for Nuclear Thioredoxin-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2325-2331.	1.1	61
65	Pioglitazone activates aortic telomerase and prevents stress-induced endothelial apoptosis. Atherosclerosis, 2011, 216, 23-34.	0.4	61
66	Nuclear Factor (Erythroid-Derived 2)-Like 2 and Thioredoxin-1 in Atherosclerosis and Ischemia/Reperfusion Injury in the Heart. Antioxidants and Redox Signaling, 2017, 26, 630-644.	2.5	59
67	ENDOTOXIC SHOCK LEADS TO APOPTOSIS IN VIVO AND REDUCES Bcl-2. Shock, 1996, 6, 405-409.	1.0	57
68	Shear stress increases the amount of S-nitrosylated molecules in endothelial cells: important role for signal transduction. FEBS Letters, 2003, 551, 153-158.	1.3	56
69	Thioredoxin-1 and Posttranslational Modifications. Antioxidants and Redox Signaling, 2006, 8, 1723-1728.	2.5	53
70	Angiotensin II mediated signal transduction. Regulatory Peptides, 2000, 95, 1-7.	1.9	51
71	Thioredoxin-1 and Endothelial Cell Aging: Role in Cardiovascular Diseases. Antioxidants and Redox Signaling, 2009, 11, 1733-1740.	2.5	51
72	Measurement of Endothelium-Dependent Vasodilation in Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2651-2657.	1.1	50

JUDITH HAENDELER

#	Article	IF	CITATIONS
73	The Aryl Hydrocarbon Receptor (AhR) in the Aging Process: Another Puzzling Role for This Highly Conserved Transcription Factor. Frontiers in Physiology, 2019, 10, 1561.	1.3	50
74	Non-canonical functions of Telomerase Reverse Transcriptase – Impact on redox homeostasis. Redox Biology, 2020, 34, 101543.	3.9	49
75	Caffeine Enhances Endothelial Repair by an AMPK-Dependent Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1967-1974.	1.1	47
76	Protective Effects of Curcumin in Cardiovascular Diseases—Impact on Oxidative Stress and Mitochondria. Cells, 2022, 11, 342.	1.8	47
77	Nitric Oxide and Apoptosis. Vitamins and Hormones, 1997, 57, 49-77.	0.7	46
78	Hypoxic Induction of the Hypoxia-Inducible Factor Is Mediated via the Adaptor Protein Shc in Endothelial Cells. Circulation Research, 2002, 91, 38-45.	2.0	46
79	Mitochondrial Telomerase Reverse Transcriptase Protects From Myocardial Ischemia/Reperfusion Injury by Improving Complex I Composition and Function. Circulation, 2021, 144, 1876-1890.	1.6	46
80	Carbon nanoparticles induce ceramide- and lipid raft-dependent signalling in lung epithelial cells: a target for a preventive strategy against environmentally-induced lung inflammation. Particle and Fibre Toxicology, 2012, 9, 48.	2.8	44
81	Unhealthy diet and ultrafine carbon black particles induce senescence and disease associated phenotypic changes. Experimental Gerontology, 2013, 48, 8-16.	1.2	44
82	The Third Cytoplasmic Loop of the Angiotensin II Type 1 Receptor Exerts Differential Effects on Extracellular Signal–Regulated Kinase (ERK1/ERK2) and Apoptosis via Ras- and Rap1-Dependent Pathways. Circulation Research, 2000, 86, 729-736.	2.0	42
83	Downregulation of mitochondrial telomerase reverse transcriptase induced by H2O2 is Src kinase dependent. Experimental Gerontology, 2010, 45, 558-562.	1.2	42
84	Cellular functions of the dual-targeted catalytic subunit of telomerase, telomerase reverse transcriptase — Potential role in senescence and aging. Experimental Gerontology, 2014, 56, 189-193.	1.2	41
85	Telomerase as a Therapeutic Target in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1047-1061.	1.1	41
86	p21Cip1Levels Differentially Regulate Turnover of Mature Endothelial Cells, Endothelial Progenitor Cells, and In Vivo Neovascularization. Circulation Research, 2004, 94, 686-692.	2.0	38
87	Differentiation of circulating endothelial progenitor cells to a cardiomyogenic phenotype depends on E-cadherin. FEBS Letters, 2005, 579, 6060-6066.	1.3	38
88	Interacting with Thioredoxin-1—Disease or No Disease?. Antioxidants and Redox Signaling, 2013, 18, 1053-1062.	2.5	35
89	Silver ionâ€induced suicidal erythrocyte death. Journal of Applied Toxicology, 2009, 29, 531-536.	1.4	33
90	c-Src-mediated activation of Erk1/2 is a reaction of epithelial cells to carbon nanoparticle treatment and may be a target for a molecular preventive strategy. Biological Chemistry, 2010, 391, 1327-32.	1.2	33

#	Article	IF	CITATIONS
91	Oxidative Stress–Induced Degradation of Thioredoxin-1 and Apoptosis Is Inhibited by Thioredoxin-1–Actin Interaction in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 650-656.	1.1	28
92	Increased Protein Tyrosine Phosphatase 1B (PTP1B) Activity and Cardiac Insulin Resistance Precede Mitochondrial and Contractile Dysfunction in Pressureâ€Overloaded Hearts. Journal of the American Heart Association, 2018, 7, .	1.6	27
93	Role of Telomerase in the Cardiovascular System. Genes, 2016, 7, 29.	1.0	26
94	4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. Nature Metabolism, 2019, 1, 546-559.	5.1	26
95	Wnt5a Increases Cardiac Gene Expressions of Cultured Human Circulating Progenitor Cells via a PKC Delta Activation. PLoS ONE, 2009, 4, e5765.	1.1	24
96	CDKN1B/p27 is localized in mitochondria and improves respiration-dependent processes in the cardiovascular system—New mode of action for caffeine. PLoS Biology, 2018, 16, e2004408.	2.6	23
97	The imbalanced redox status in senescent endothelial cells is due to dysregulated Thioredoxin-1 and NADPH oxidase 4. Experimental Gerontology, 2014, 56, 45-52.	1.2	22
98	Gene trapping identifies a putative tumor suppressor and a new inducer of cell migration. Biochemical and Biophysical Research Communications, 2008, 376, 748-752.	1.0	21
99	Interventions to slow cardiovascular aging: Dietary restriction, drugs and novel molecules. Experimental Gerontology, 2018, 109, 108-118.	1.2	21
100	Do We Age on Sirt1 Expression?. Circulation Research, 2007, 100, 1396-1398.	2.0	20
101	Endothelial Cells in Health and Disease. Antioxidants and Redox Signaling, 2015, 22, 1209-1211.	2.5	20
102	Nitric oxide and endothelial cell aging. European Journal of Clinical Pharmacology, 2006, 62, 137-140.	0.8	19
103	Inseparably Tied. Circulation Research, 2006, 98, 157-158.	2.0	18
104	Downregulation of ETS Rescues Diabetes-Induced Reduction of Endothelial Progenitor Cells. PLoS ONE, 2009, 4, e4529.	1.1	18
105	Molecular mechanisms involved in endothelial cell aging: role of telomerase reverse transcriptase. Zeitschrift Fur Gerontologie Und Geriatrie, 2007, 40, 334-338.	0.8	16
106	The transcription factor Grainyhead like 3 (GRHL3) affects endothelial cell apoptosis and migration in a NO-dependent manner. Biochemical and Biophysical Research Communications, 2011, 412, 648-653.	1.0	16
107	Activation of the aryl hydrocarbon receptor by the widely used Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d]pyrimidine (PP2). Archives of Toxicology, 2015, 89, 1329-1336.	1.9	16
108	Endothelial NADPH oxidase 2: when does it matter in atherosclerosis?. Cardiovascular Research, 2012, 94, 1-2.	1.8	14

#	Article	IF	CITATIONS
109	Two Isoforms of Sister-of-Mammalian Grainyhead Have Opposing Functions in Endothelial Cells and In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1639-1646.	1.1	14
110	Flavanol Consumption in Healthy Men Preserves Integrity of Immunological‣ndothelial Barrier Cell Functions: Nutri(epi)genomic Analysis. Molecular Nutrition and Food Research, 2022, 66, e2100991.	1.5	14
111	A New Kid on the Block. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1689-1690.	1.1	11
112	Redox balance in the aged endothelium. Zeitschrift Fur Gerontologie Und Geriatrie, 2013, 46, 635-638.	0.8	10
113	Mouse cardiac mitochondria do not separate in subsarcolemmal and interfibrillar subpopulations. Mitochondrion, 2018, 38, 1-5.	1.6	10
114	The Anti-Apoptotic Properties of APEX1 in the Endothelium Require the First 20 Amino Acids and Converge on Thioredoxin-1. Antioxidants and Redox Signaling, 2017, 26, 616-629.	2.5	8
115	High Concentration of Low-Density Lipoprotein Results in Disturbances in Mitochondrial Transcription and Functionality in Endothelial Cells. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	1.9	8
116	"Shping 2" different cellular localizations - a potential new player in aging processes. Aging, 2009, 1, 664-668.	1.4	8
117	Role of Mitochondrial Protein Import in Age-Related Neurodegenerative and Cardiovascular Diseases. Cells, 2021, 10, 3528.	1.8	8
118	Induction of a senescent like phenotype and loss of gap junctional intercellular communication by carbon nanoparticle exposure of lung epithelial cells. Experimental Gerontology, 2019, 117, 106-112.	1.2	7
119	Well-Known Signaling Proteins Exert New Functions in the Nucleus and Mitochondria. Antioxidants and Redox Signaling, 2010, 13, 551-558.	2.5	6
120	Critical Regulators of Endothelial Cell Functions: For a Change Being Alternative. Antioxidants and Redox Signaling, 2015, 22, 1212-1229.	2.5	6
121	Intra- and Interorgan Communication in the Cardiovascular System: A Special View on Redox Regulation. Antioxidants and Redox Signaling, 2017, 26, 613-615.	2.5	6
122	Accessing Mitochondrial Protein Import in Living Cells by Protein Microinjection. Frontiers in Cell and Developmental Biology, 2021, 9, 698658.	1.8	5
123	Endothelial hyaluronan synthase 3 aggravates acute colitis in an experimental model of inflammatory bowel disease. Matrix Biology, 2021, 102, 20-36.	1.5	5
124	Highlight: Oxidative Stress and Senescence. Biological Chemistry, 2008, 389, 201-201.	1.2	4
125	Non-Canonical Activation of the Epidermal Growth Factor Receptor by Carbon Nanoparticles. Nanomaterials, 2018, 8, 267.	1.9	4
126	Extra-Nuclear Functions of the Transcription Factor Grainyhead-Like 3 in the Endothelium—Interaction with Endothelial Nitric Oxide Synthase. Antioxidants, 2021, 10, 428.	2.2	4

#	Article	IF	CITATIONS
127	Selenoprotein T Protects Endothelial Cells against Lipopolysaccharide-Induced Activation and Apoptosis. Antioxidants, 2021, 10, 1427.	2.2	4
128	Triiodothyronine improves contractile recovery of human atrial trabeculae after hypoxia/reoxygenation. International Journal of Cardiology, 2022, 363, 159-162.	0.8	4
129	Protective role of thioredoxin-1 in cardiovascular systems. Signal Transduction, 2005, 5, 314-321.	0.7	2
130	Aryl Hydrocarbon Receptor-Dependent and -Independent Pathways Mediate Curcumin Anti-Aging Effects. Antioxidants, 2022, 11, 613.	2.2	2
131	Aging—mechanisms, models, and translation. Zeitschrift Fur Gerontologie Und Geriatrie, 2013, 46, 612-612.	0.8	0