Reto Gieré

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1680429/publications.pdf

Version: 2024-02-01

117571 4,060 114 34 citations h-index papers

60 g-index 120 120 120 4742 docs citations times ranked citing authors all docs

128225

#	Article	IF	Citations
1	Tire Abrasion as a Major Source of Microplastics in the Environment. Aerosol and Air Quality Research, 2018, 18, 2014-2028.	0.9	330
2	THE PYROCHLORE SUPERGROUP OF MINERALS: NOMENCLATURE. Canadian Mineralogist, 2010, 48, 673-698.	0.3	233
3	Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy, 2006, 18, 551-567.	0.4	232
4	Allanite and Other REE-Rich Epidote-Group Minerals. Reviews in Mineralogy and Geochemistry, 2004, 56, 431-493.	2.2	219
5	Cytotoxicity and Genotoxicity of Size-Fractionated Iron Oxide (Magnetite) in A549 Human Lung Epithelial Cells: Role of ROS, JNK, and NF-κB. Chemical Research in Toxicology, 2011, 24, 1460-1475.	1.7	145
6	The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 2003, 18, 1347-1359.	1.4	144
7	U-Th-Pb and 230Th/238U disequilibrium isotope systematics: Precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochimica Et Cosmochimica Acta, 2004, 68, 2543-2560.	1.6	139
8	Zirconolite, allanite and hoegbomite in a marble skarn from the Bergell contact aureole: implications for mobility of Ti, Zr and REE. Contributions To Mineralogy and Petrology, 1986, 93, 459-470.	1.2	110
9	TEM Study of PM2.5Emitted from Coal and Tire Combustion in a Thermal Power Station. Environmental Science & Environmental Scie	4.6	103
10	Solid Particulate Matter in the Atmosphere. Elements, 2010, 6, 215-222.	0.5	101
11	Hydrothermal mobility of Ti, Zr and REE: examples from the Bergell and Adamello contact aureoles (Italy). Terra Nova, 1990, 2, 60-67.	0.9	99
12	Micro- and nanochemistry of fly ash from a coal-fired power plant. American Mineralogist, 2003, 88, 1853-1865.	0.9	89
13	Airborne Particles in the Urban Environment. Elements, 2010, 6, 229-234.	0.5	74
14	How the user can influence particulate emissions from residential wood and pellet stoves: Emission factors for different fuels and burning conditions. Atmospheric Environment, 2017, 158, 216-226.	1.9	74
15	Antimony sinks in the weathering crust of bullets from Swiss shooting ranges. Science of the Total Environment, 2009, 407, 1669-1682.	3.9	68
16	Risk Ranking of Bioaccessible Metals from Fly Ash Dissolved in Simulated Lung and Gut Fluids. Environmental Science & Environm	4.6	65
17	UV-protection characteristics of some clays. Applied Clay Science, 2010, 48, 349-357.	2.6	62
18	Biodegradability and ecotoxicitiy of tramadol, ranitidine, and their photoderivatives in the aquatic environment. Environmental Science and Pollution Research, 2012, 19, 72-85.	2.7	62

#	Article	IF	CITATIONS
19	Extraction of lithium from lepidolite via iron sulphide roasting and water leaching. Hydrometallurgy, 2015, 153, 154-159.	1.8	59
20	Sorption Mechanisms of Zinc to Calcium Silicate Hydrate:Â Sorption and Microscopic Investigations. Environmental Science & Env	4.6	56
21	Determination of 25 elements in the complex oxide mineral zirconolite by analytical electron microscopy. Micron, 1994, 25, 581-587.	1.1	55
22	Chemical composition of fuels and emissions from a coal+tire combustion experiment in a power station. Fuel, 2006, 85, 2278-2285.	3.4	52
23	Zinc Isotopic Composition of Particulate Matter Generated during the Combustion of Coal and Coal + Tire-Derived Fuels. Environmental Science & Environ	4.6	49
24	Surface Crystal Chemistry of Phyllosilicates Using X-Ray Photoelectron Spectroscopy: A Review. Clays and Clay Minerals, 2016, 64, 537-551.	0.6	49
25	Correlation of Growth and Breakdown of Major and Accessory Minerals in Metapelites from Campolungo, Central Alps. Journal of Petrology, 2011, 52, 2293-2334.	1.1	46
26	Genotoxic effects of three selected black toner powders and their dimethyl sulfoxide extracts in cultured human epithelial A549 lung cells in vitro. Environmental and Molecular Mutagenesis, 2011, 52, 296-309.	0.9	46
27	Evolution of compositional polarity and zoning in tourmaline during prograde metamorphism of sedimentary rocks in the Swiss Central Alps. American Mineralogist, 1996, 81, 1222-1236.	0.9	40
28	Recalcitrant pharmaceuticals in the aquatic environment: a comparative screening study of their occurrence, formation of phototransformation products and their in vitro toxicity. Environmental Chemistry, 2014, 11, 431.	0.7	40
29	Magnetite in the human body: Biogenic vs. anthropogenic. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11986-11987.	3.3	38
30	Transport and deposition of REE in H2S-rich fluids: evidence from accessory mineral assemblages. Chemical Geology, 1993, 110, 251-268.	1.4	37
31	The crystal chemistry of roméite. Contributions To Mineralogy and Petrology, 1997, 127, 136-146.	1.2	37
32	Nuclear waste forms. Geological Society Special Publication, 2004, 236, 37-63.	0.8	37
33	Chemical and isotopic properties and origin of coarse airborne particles collected by passive samplers in industrial, urban, and rural environments. Atmospheric Environment, 2012, 62, 631-645.	1.9	36
34	Fe and Mn Oxidation States by TEM-EELS in Fine-Particle Emissions from a Fe–Mn Alloy Making Plant. Environmental Science & Technology, 2013, 47, 10832-10840.	4.6	36
35	Charcoal as an Energy Resource: Global Trade, Production and Socioeconomic Practices Observed in Uganda. Resources, 2019, 8, 183.	1.6	36
36	Stress fibers, autophagy and necrosis by persistent exposure to PM2.5 from biomass combustion. PLoS ONE, 2017, 12, e0180291.	1.1	36

#	Article	IF	CITATIONS
37	Cell-Cycle Changes and Oxidative Stress Response to Magnetite in A549 Human Lung Cells. Chemical Research in Toxicology, 2013, 26, 693-702.	1.7	32
38	Application of analytical electron microscopy to the study of radiation damage in the complex oxide mineral zirconolite. Micron, 1997, 28, 57-68.	1.1	31
39	The role of Th-U minerals in assessing the performance of nuclear waste forms. Mineralogical Magazine, 2014, 78, 1071-1095.	0.6	31
40	ORIGIN AND DISTRIBUTION OF SOME TRACE ELEMENTS IN METAMORPHOSED Fe Mn DEPOSITS, VAL FERRERA, EASTERN SWISS ALPS. Canadian Mineralogist, 2000, 38, 1075-1101.	0.3	30
41	Mineralogical and compositional features of rock fulgurites: A record of lightning effects on granite. American Mineralogist, 2017, 102, 1470-1481.	0.9	29
42	Scheelite-powellite and paraniite-(Y) from the Fe-Mn deposit at Fianel, Eastern Swiss Alps. American Mineralogist, 1998, 83, 1100-1110.	0.9	26
43	Cytotoxic and genotoxic responses of human lung cells to combustion smoke particles of Miscanthus straw, softwood and beech wood chips. Atmospheric Environment, 2017, 163, 138-154.	1.9	25
44	Generation of shock lamellae and melting in rocks by lightningâ€induced shock waves and electrical heating. Geophysical Research Letters, 2017, 44, 8757-8768.	1.5	24
45	Mobility of heavy metals in self-burning waste heaps of the zinc smelting plant in Belovo (Kemerovo) Tj ETQq1 1 (0.784314 1.5	rgBT /Overlo
46	Metamict fergusonite-(Y) in a spessartine-bearing granitic pegmatite from Adamello, Italy. Chemical Geology, 2009, 261, 333-345.	1.4	22
47	Antibiotics and sweeteners in the aquatic environment: biodegradability, formation of phototransformation products, and in vitro toxicity. Environmental Science and Pollution Research, 2015, 22, 18017-18030.	2.7	22
48	Physicochemical and mineralogical characterization of biomass ash from different power plants in the Upper Rhine Region. Fuel, 2019, 258, 116020.	3.4	22
49	Lightning-induced shock lamellae in quartz. American Mineralogist, 2015, 100, 1645-1648.	0.9	21
50	Bottom ash of trees from Cameroon as fertilizer. Applied Geochemistry, 2016, 72, 88-96.	1.4	20
51	A mineralogical and chemical investigation of road dust in Philadelphia, PA, USA. Environmental Science and Pollution Research, 2020, 27, 14883-14902.	2.7	20
52	GANTERITE, A NEW BARIUM-DOMINANT ANALOGUE OF MUSCOVITE FROM THE BERISAL COMPLEX, SIMPLON REGION, SWITZERLAND. Canadian Mineralogist, 2003, 41, 1271-1280.	0.3	19
53	Geochemical behaviour of host phases for actinides and fission products in crystalline ceramic nuclear waste forms. Geological Society Special Publication, 2004, 236, 89-111.	0.8	19
54	Mineralogical and geochemical characterization of a chromium contamination in an aquifer - A combined analytical and modeling approach. Applied Geochemistry, 2017, 87, 44-56.	1.4	19

#	Article	IF	CITATIONS
55	Cellular Uptake and Toxic Effects of Fine and Ultrafine Metal-Sulfate Particles in Human A549 Lung Epithelial Cells. Chemical Research in Toxicology, 2012, 25, 2687-2703.	1.7	18
56	Mineral Fibres and Asbestos Bodies in Human Lung Tissue: A Case Study. Minerals (Basel, Switzerland), 2019, 9, 618.	0.8	18
57	The Crystalline-Amorphous Transformation in Natural Zirconolite: Evidence for Long-Term Annealing. Materials Research Society Symposia Proceedings, 1997, 506, 215.	0.1	16
58	COMPOSITION OF BARIUM-RICH WHITE MICAS FROM THE BERISAL COMPLEX, SIMPLON REGION, SWITZERLAND. Canadian Mineralogist, 2003, 41, 1281-1292.	0.3	16
59	Infra Red Spectroscopy of the Regulated Asbestos Amphiboles. Minerals (Basel, Switzerland), 2018, 8, 413.	0.8	16
60	Asbestos and Other Hazardous Fibrous Minerals: Potential Exposure Pathways and Associated Health Risks. International Journal of Environmental Research and Public Health, 2022, 19, 4031.	1.2	16
61	Investigation of the Long -Term Performance of Betafite and Zirconolite in Hydrothermal Veins From Adamello, Italy. Materials Research Society Symposia Proceedings, 1999, 556, 793.	0.1	15
62	Open-pit coal-mining effects on rice paddy soil composition and metal bioavailability to Oryza sativa L. plants in Cam Pha, northeastern Vietnam. Environmental Science and Pollution Research, 2013, 20, 7686-7698.	2.7	15
63	Coarse-Particle Passive-Sampler Measurements and Single-Particle Analysis by Transmitted Light Microscopy at Highly Frequented Motorways. Aerosol and Air Quality Research, 2017, 17, 1939-1953.	0.9	15
64	Naturally-Occurring Zirconolites - Analogues for the Long-Term Encapsulation of Actinides in Synroc. Radiochimica Acta, 1996, 74, 309-312.	0.5	14
65	Energy, waste and the environment $\hat{a} \in \hat{a}$ a geochemical perspective: introduction. Geological Society Special Publication, 2004, 236, 1-5.	0.8	14
66	Impact of an in-situ Cr(VI)-contaminated site remediation on the groundwater. Environmental Science and Pollution Research, 2020, 27, 14465-14475.	2.7	14
67	Environmental impact of energy recovery from waste tyres. Geological Society Special Publication, 2004, 236, 475-498.	0.8	13
68	Durability of Zirconolite in Hydrothermal Fluids: Implications for Nuclear Waste Disposal. Materials Research Society Symposia Proceedings, 2000, 663, 1.	0.1	12
69	Uranium oxide and other airborne particles deposited on cypress leaves close to a nuclear facility. Journal of Environmental Monitoring, 2012, 14, 1264.	2.1	12
70	Lithium-rich albite–topaz–lepidolite granite from Central Vietnam: a mineralogical and geochemical characterization. European Journal of Mineralogy, 2017, 29, 35-52.	0.4	12
71	Lead Pollution, Demographics, and Environmental Health Risks: The Case of Philadelphia, USA. International Journal of Environmental Research and Public Health, 2021, 18, 9055.	1.2	12
72	Fluorescence Microscopy Analysis of Particulate Matter from Biomass Burning: Polyaromatic Hydrocarbons as Main Contributors. Aerosol Science and Technology, 2015, 49, 1160-1169.	1.5	11

#	Article	IF	CITATIONS
73	Mineralogical Characterization and Dissolution Experiments in Gamble's Solution of Tremolitic Amphibole from Passo di Caldenno (Sondrio, Italy). Minerals (Basel, Switzerland), 2018, 8, 557.	0.8	11
74	Actinides and decay products in selected produce and bioindicators in the vicinity of a uranium plant. Journal of Environmental Monitoring, 2011, 13, 1327.	2.1	10
75	Substituting non-natural agents in UV-protection cream by a mixture of clay with Ganoderma pfeifferi extract. Applied Clay Science, 2011, 53, 66-72.	2.6	10
76	Investigation of Pb-contaminated soil and road dust in a polluted area of Philadelphia. Environmental Monitoring and Assessment, 2021, 193, 440.	1.3	10
77	Intergrowth Structures in Synthetic Pyrochlores: Implications for Radiation Damage Effects and Waste Form Formulation. Materials Research Society Symposia Proceedings, 1999, 556, 19.	0.1	9
78	Multi-scale characterization of glaucophane from Chiavolino (Biella, Italy): implications for international regulations on elongate mineral particles. European Journal of Mineralogy, 2021, 33, 77-112.	0.4	9
79	Spatial Analysis and Leadâ€Risk Assessment of Philadelphia, USA. GeoHealth, 2022, 6, e2021GH000519.	1.9	9
80	Element Partitioning in a Pyrochlore-Based Ceramic Nuclear Waste form. Materials Research Society Symposia Proceedings, 2002, 713, 1.	0.1	8
81	Late-stage hydrothermal alteration and heteromorphism of calc–alkaline lamprophyre dykes in Late Jurassic Granite, Southeast China. Lithos, 2009, 113, 820-830.	0.6	8
82	Redox states of uranium in samples of microlite and monazite. American Mineralogist, 2016, 101, 1884-1891.	0.9	8
83	Experimental quantification of the Fe-valence state at amosite-asbestos boundaries using acSTEM dual-electron energy-loss spectroscopy. American Mineralogist, 2019, 104, 1820-1828.	0.9	8
84	Alteration of yellow traffic paint in simulated environmental and biological fluids. Science of the Total Environment, 2021, 750, 141202.	3.9	8
85	Hydrokenopyrochlore, $(\hat{a}_i, \#)$ 2Nb2O6·H2O, a new species of the pyrochlore supergroup from the Sahatany Pegmatite Field, Antananarivo Province, Madagascar. European Journal of Mineralogy, 2018, 30, 869-876.	0.4	8
86	Road sediment, an underutilized material in environmental science research: A review of perspectives on United States studies with international context. Journal of Hazardous Materials, 2022, 432, 128604.	6.5	8
87	Geikielite exsolution in spinel. American Mineralogist, 2001, 86, 1435-1446.	0.9	7
88	Dimensional distribution control of elongate mineral particles for their use in biological assays. MethodsX, 2020, 7, 100937.	0.7	7
89	Depicting the crystal structure of fibrous ferrierite from British Columbia using a combined synchrotron techniques approach. Journal of Applied Crystallography, 2019, 52, 1397-1408.	1.9	7
90	Nanoscale transformations of amphiboles within human alveolar epithelial cells. Scientific Reports, 2022, 12, 1782.	1.6	7

#	Article	IF	CITATIONS
91	Growth and Alteration of Uranium-Rich Microlite. Materials Research Society Symposia Proceedings, 1999, 608, 519.	0.1	6
92	Communal biofuel burning for district heating: Emissions and immissions from medium-sized (0.4 and) Tj ETQq0	0 O.rgBT	/Overlock 10
93	Alteration Features in Natural Zirconolite from Carbonatites. Materials Research Society Symposia Proceedings, 2000, 663, 1.	0.1	5
94	A Strategy for Teaching an Effective Undergraduate Mineralogy Course. Journal of Geoscience Education, 2004, 52, 15-22.	0.8	5
95	The chemistry of barium anomalies in the Berisal Complex, Simplon Region, Switzerland. International Journal of Earth Sciences, 2008, 97, 51-69.	0.9	5
96	Use of biomass ash from different sources and processes in cement. Journal of Sustainable Cement-Based Materials, 2020, 9, 350-370.	1.7	5
97	Micro―and nanoâ€scale mineralogical characterization of Fe(II)â€oxidizing bacterial stalks. Geobiology, 2020, 18, 606-618.	1.1	5
98	Pb, Sr and Nd isotopic composition and trace element characteristics of coarse airborne particles collected with passive samplers. Comptes Rendus - Geoscience, 2015, 347, 267-276.	0.4	4
99	Metal biogeochemistry in constructed wetlands based on fluviatile sand and zeolite- and clinopyroxene-dominated lava sand. Scientific Reports, 2017, 7, 2981.	1.6	4
100	Characterization and in vitro biological effects of ambient air PM10 from a rural, an industrial and an urban site in Sulaimani City, Iraq. Toxicological and Environmental Chemistry, 2018, 100, 373-394.	0.6	4
101	Geochemistry of surface waters around four hard-rock lithium deposits in Central Europe. Journal of Geochemical Exploration, 2022, 234, 106937.	1.5	4
102	Partitioning of Actinides, Rare Earth Elements, and Other Trace Elements In Titanium-Rich Veins From Adamello, Italy. Materials Research Society Symposia Proceedings, 2000, 663, 1.	0.1	3
103	Natural immobilization processes aid the understanding of long-term evolution of deep geological radioactive waste repositories. Geochemistry: Exploration, Environment, Analysis, 2006, 6, 3-4.	0.5	3
104	Petrography and chemistry of tungsten-rich oxycalciobetafite in hydrothermal veins of the Adamello contact aureole, northern Italy. Mineralogy and Petrology, 2017, 111, 499-509.	0.4	3
105	Opaline phytoliths in Miscanthus sinensis and its cyclone ash from a biomass-combustion facility. Industrial Crops and Products, 2019, 139, 111539.	2.5	3
106	Tire-Abrasion Particles in the Environment. Advances in Polymer Science, 2022, , 71-101.	0.4	3
107	Partitioning and Leaching Behavior of Actinides and Rare Earth Elements in a Zirconolite-bearing Hydrothermal Vein System. Materials Research Society Symposia Proceedings, 2006, 985, 1.	0.1	2
108	Origin and Formation of Tourmaline-rich Cordierite-bearing Metapelitic Rocks from Alpe Sponda, Central Alps (Switzerland). Journal of Petrology, 2016, 57, 277-308.	1.1	2

RETO GIERé

#	Article	IF	CITATIONS
109	Comparing single-particle analysis data of volcanic ash of the 2010 Eyjafjallajökull eruption obtained from scanning electron and light microscope images. European Journal of Mineralogy, 2016, 28, 855-868.	0.4	1
110	11. Titanate ceramics for high-level nuclear waste immobilization. , 2017, , 223-242.		1
111	Chromitites, platinum-group elements, and ore minerals; Special issue dedicated to ZdenÄ∘k Johan (1935–2016): Preface. European Journal of Mineralogy, 2017, 29, 539-541.	0.4	1
112	Geochemistry of Hydrothermal Veins Containing Zirconolite and Betafite at Adamello, Italy. Materials Research Society Symposia Proceedings, 2000, 663, 1.	0.1	0
113	GEOLIFE – Geomaterials for the environment, technology and human activities. Preface to the October 2014 special set of papers arising from presentations at the Goldschmidt 2013 conference. Mineralogical Magazine, 2014, 78, i-iii.	0.6	0
114	MINERALOGICAL AND CHEMICAL CHARACTERIZATION OF ROAD DUST IN PHILADELPHIA, PA., 2017,,.		0