
Mj Gonçalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1680082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antifungal activity of Thymus oils and their major compounds. Journal of the European Academy of Dermatology and Venereology, 2004, 18, 73-78.	2.4	308
2	Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology, 2006, 55, 1367-1373.	1.8	249
3	Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. Journal of Applied Microbiology, 2006, 100, 1333-1338.	3.1	165
4	Chemical composition and antifungal activity of the essential oils of Lavandula viridis L'Hér Journal of Medical Microbiology, 2011, 60, 612-618.	1.8	113
5	Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food and Chemical Toxicology, 2013, 62, 349-354.	3.6	99

6 Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

7	Phenolic compounds characterization by LC-DAD- ESI/MSn and bioactive properties of Thymus algeriensis Boiss. & Reut. and Ephedra alata Decne. Food Research International, 2019, 116, 312-319.	6.2	61
8	Myrtus communis L. as source of a bioactive and safe essential oil. Food and Chemical Toxicology, 2015, 75, 166-172.	3.6	53
9	Ocimum tenuiflorum L. and Ocimum basilicum L., two spices of Lamiaceae family with bioactive essential oils. Industrial Crops and Products, 2018, 113, 89-97.	5.2	43
10	Bioactive properties and phenolic profile of Momordica charantia L. medicinal plant growing wild in Trinidad and Tobago. Industrial Crops and Products, 2017, 95, 365-373.	5.2	40
11	Phytochemical analysis and assessment of antioxidant, antimicrobial, anti-inflammatory and cytotoxic properties of Tetraclinis articulata (Vahl) Masters leaves. Industrial Crops and Products, 2018, 112, 460-466.	5.2	40
12	Detailed chemical composition and functional properties of Ammodaucus leucotrichus Cross. & Dur. and Moringa oleifera Lamarck. Journal of Functional Foods, 2019, 53, 237-247.	3.4	39
13	Antifungal activity of the essential oil of Thymus villosus subsp. lusitanicus against Candida, Cryptococcus, Aspergillus and dermatophyte species. Industrial Crops and Products, 2013, 51, 93-99.	5.2	38
14	Wild Fragaria vesca L. fruits: a rich source of bioactive phytochemicals. Food and Function, 2016, 7, 4523-4532.	4.6	38
15	Antifungal activity of essential oil from <i>Mentha spicata</i> L. and <i>Mentha pulegium</i> L. growing wild in Sardinia island (Italy). Natural Product Research, 2021, 35, 993-999.	1.8	38
16	<i>Calluna vulgaris</i> (L.) Hull: chemical characterization, evaluation of its bioactive properties and effect on the vaginal microbiota. Food and Function, 2019, 10, 78-89.	4.6	36
17	Profiling polyphenol composition by HPLC-DAD-ESI/MSn and the antibacterial activity of infusion preparations obtained from four medicinal plants. Food and Function, 2018, 9, 149-159.	4.6	29
18	Unveiling the Antifungal Potential of Two Iberian Thyme Essential Oils: Effect on C. albicans Germ Tube and Preformed Biofilms. Frontiers in Pharmacology, 2019, 10, 446.	3.5	29

MJ GONçALVES

#	Article	IF	CITATIONS
19	New Claims for Wild Carrot (<i>Daucus carota</i> subsp. <i>carota</i>) Essential Oil. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-10.	1.2	27
20	Chemical Composition and Effect against Skin Alterations of Bioactive Extracts Obtained by the Hydrodistillation of Eucalyptus globulus Leaves. Pharmaceutics, 2022, 14, 561.	4.5	23
21	HPLC-DAD-ESI-MS/MS screening of phytochemical compounds and the bioactive properties of different plant parts of <i>Zizyphus lotus</i> (L.) Desf Food and Function, 2019, 10, 5898-5909.	4.6	21
22	Chemical characterization and bioactivity of phytochemicals from Iberian endemic Santolina semidentata and strategies for ex situ propagation. Industrial Crops and Products, 2015, 74, 505-513.	5.2	18
23	Ziziphora tenuior L. essential oil from Dana Biosphere Reserve (Southern Jordan); Chemical characterization and assessment of biological activities. Journal of Ethnopharmacology, 2016, 194, 963-970.	4.1	18
24	Red pitaya (Hylocereus costaricensis) peel as a source of valuable molecules: Extraction optimization to recover natural colouring agents. Food Chemistry, 2022, 372, 131344.	8.2	18
25	Phenolic profiling, biological activities and in silico studies of Acacia tortilis (Forssk.) Hayne ssp. raddiana extracts. Food Bioscience, 2020, 36, 100616.	4.4	17
26	Phenolic profile and <i>in vitro</i> bioactive potential of Saharan <i>Juniperus phoenicea</i> L. and <i>Cotula cinerea</i> (Del) growing in Algeria. Food and Function, 2018, 9, 4664-4672.	4.6	16
27	Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity. Food and Function, 2016, 7, 3083-3090.	4.6	11
28	Chemical characterisation and biological activity of leaf essential oils obtained from Pistacia terebinthus growing wild in Tunisia and Sardinia Island. Natural Product Research, 2017, 31, 2684-2689.	1.8	11
29	Chemical characterization and bioactive potential of Artemisia campestris L. subsp. maritima (DC) Arcang. essential oil and hydrodistillation residual water. Journal of Ethnopharmacology, 2021, 276, 114146.	4.1	11
30	Margotia gummifera essential oil as a source of anti-inflammatory drugs. Industrial Crops and Products, 2013, 47, 86-91.	5.2	10
31	Phenolic profile and antimicrobial activity of different dietary supplements based on Cochlospermum angolensis Welw Industrial Crops and Products, 2015, 74, 412-416.	5.2	10
32	Antifungal activity and chemical composition of the essential oil from the aerial parts of two new <i>Teucrium capitatum</i> L. chemotypes from Sardinia Island, Italy. Natural Product Research, 2021, 35, 6007-6013.	1.8	10
33	Bioactive properties and phytochemical assessment of Bacupari-anão (Garcinia brasiliensis Mart.) leaves native to Rondônia, Brazil. Food and Function, 2018, 9, 5621-5628.	4.6	9
34	Antifungal and anti-inflammatory potential of the endangered aromatic plant Thymus albicans. Scientific Reports, 2020, 10, 18859.	3.3	9
35	Evaluation of the mycotoxins content of <i>Salicornia</i> spp .: a gourmet plant alternative to salt. Food Additives and Contaminants: Part B Surveillance, 2020, 13, 162-170.	2.8	9
36	Chemical and biomolecular analyses to discriminate three taxa of Pistacia genus from Sardinia Island (Italy) and their antifungal activity. Natural Product Research, 2018, 32, 2766-2774.	1.8	8

MJ GONçALVES

#	Article	IF	CITATIONS
37	Chemical characterization and bioactivity of the essential oil from <i>Santolina insularis</i> , a Sardinian endemism. Natural Product Research, 2022, 36, 445-449.	1.8	8
38	Chemical composition and biological activity of essential oil of <i>Teucrium scordium</i> L. subsp. <i>scordioides</i> (Schreb.) Arcang. (Lamiaceae) from Sardinia Island (Italy). Natural Product Research, 2021, , 1-8.	1.8	8
39	Detailed phytochemical characterization and bioactive properties of Myrtus nivelii Batt & Trab. Food and Function, 2017, 8, 3111-3119.	4.6	6
40	Chemical characterization and biological activities of two varieties of xoconostle fruits <i>Opuntia joconostle</i> F.A.C. Weber ex Diguet and <i>Opuntia matudae</i> Scheinvar. Food and Function, 2019, 10, 3181-3187.	4.6	6
41	Phenolic profile and effects of acetone fractions obtained from the inflorescences of Calluna vulgaris (L.) Hull on vaginal pathogenic and non-pathogenic bacteria. Food and Function, 2019, 10, 2399-2407.	4.6	6
42	User's Profile of Thermal Establishments: A Literature Review. , 2022, 15, 344-352.		2
43	User's Profile of a Portuguese Thermal Establishment: Empirical Study. , 2022, 15, 449-458.		1
44	Health and Wellness Activities: Contemporary Market of Thermalism. Smart Innovation, Systems and Technologies, 2022, , 361-371.	0.6	1
45	Biochemical Approaches on Commercial Strains of Agaricus subrufescens Growing under Two Environmental Cultivation Conditions. Journal of Fungi (Basel, Switzerland), 2022, 8, 616.	3.5	0