
Jun Min Suh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1679885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palladium Nanoparticles on Assorted Nanostructured Supports: Applications for Suzuki, Heck, and Sonogashira Cross-Coupling Reactions. ACS Applied Nano Materials, 2020, 3, 2070-2103.	5.0	196
2	Recent Advances in the Nanocatalyst-Assisted NaBH ₄ Reduction of Nitroaromatics in Water. ACS Omega, 2019, 4, 483-495.	3.5	180
3	Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. Journal of Materials Chemistry C, 2019, 7, 9782-9802.	5.5	173
4	Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: efficient reduction of nitroaromatics in aqueous media. Green Chemistry, 2018, 20, 3809-3817.	9.0	143
5	Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS ₂ van der Waals composites. Journal of Materials Chemistry A, 2018, 6, 5016-5024.	10.3	132
6	Reduced graphene oxideâ€based materials for electrochemical energy conversion reactions. , 2019, 1, 85-108.		108
7	p–p Heterojunction of Nickel Oxide-Decorated Cobalt Oxide Nanorods for Enhanced Sensitivity and Selectivity toward Volatile Organic Compounds. ACS Applied Materials & Interfaces, 2018, 10, 1050-1058.	8.0	103
8	Two-Dimensional NbS ₂ Gas Sensors for Selective and Reversible NO ₂ Detection at Room Temperature. ACS Sensors, 2019, 4, 2395-2402.	7.8	101
9	Substantially enhanced photoelectrochemical performance of TiO2 nanorods/CdS nanocrystals heterojunction photoanode decorated with MoS2 nanosheets. Applied Catalysis B: Environmental, 2019, 259, 118102.	20.2	99
10	Copper oxide–graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water. Nano Convergence, 2019, 6, 6.	12.1	94
11	Long-term reliable physical health monitoring by sweat pore–inspired perforated electronic skins. Science Advances, 2021, 7, .	10.3	89
12	Synthesis of Numerous Edge Sites in MoS ₂ via SiO ₂ Nanorods Platform for Highly Sensitive Gas Sensor. ACS Applied Materials & Interfaces, 2018, 10, 31594-31602.	8.0	79
13	Chemical Sensors Based on Two-Dimensional (2D) Materials for Selective Detection of Ions and Molecules in Liquid. Frontiers in Chemistry, 2019, 7, 708.	3.6	75
14	Facile synthesis of monodispersed Pd nanocatalysts decorated on graphene oxide for reduction of nitroaromatics in aqueous solution. Research on Chemical Intermediates, 2019, 45, 599-611.	2.7	75
15	Substantially improved room temperature NO ₂ sensing in 2-dimensional SnS ₂ nanoflowers enabled by visible light illumination. Journal of Materials Chemistry A, 2021, 9, 11168-11178.	10.3	75
16	Heterojunction Based on Rh-Decorated WO ₃ Nanorods for Morphological Change and Gas Sensor Application Using the Transition Effect. Chemistry of Materials, 2019, 31, 207-215.	6.7	71
17	Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109. NPG Asia Materials, 2020, 12, .	7.9	71
18	SnS ₂ Nanograins on Porous SiO ₂ Nanorods Template for Highly Sensitive NO ₂ Sensor at Room Temperature with Excellent Recovery. ACS Sensors, 2019, 4, 678-686.	7.8	64

Jun Min Suh

#	Article	IF	CITATIONS
19	Electrocatalytic Water Splitting and CO ₂ Reduction: Sustainable Solutions via Singleâ€Atom Catalysts Supported on 2D Materials. Small Methods, 2019, 3, 1800492.	8.6	63
20	Colorimetric Sensors for Toxic and Hazardous Gas Detection: A Review. Electronic Materials Letters, 2021, 17, 1-17.	2.2	62
21	Recent Advances in Rechargeable Aluminum-Ion Batteries and Considerations for Their Future Progress. ACS Applied Energy Materials, 2020, 3, 6019-6035.	5.1	58
22	Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence. Nature Electronics, 2022, 5, 386-393.	26.0	57
23	Pd- and Au-Decorated MoS2 Gas Sensors for Enhanced Selectivity. Electronic Materials Letters, 2019, 15, 368-376.	2.2	50
24	Light-activated gas sensing: a perspective of integration with micro-LEDs and plasmonic nanoparticles. Materials Advances, 2021, 2, 827-844.	5.4	46
25	Nanogap-controlled Pd coating for hydrogen sensitive switches and hydrogen sensors. Sensors and Actuators B: Chemical, 2018, 255, 1841-1848.	7.8	42
26	Synergetically Selective Toluene Sensing in Hematiteâ€Decorated Nickel Oxide Nanocorals. Advanced Materials Technologies, 2017, 2, 1600259.	5.8	41
27	Morphological Evolution Induced through a Heterojunction of W-Decorated NiO Nanoigloos: Synergistic Effect on High-Performance Gas Sensors. ACS Applied Materials & Interfaces, 2019, 11, 7529-7538.	8.0	39
28	Directly Assembled 3D Molybdenum Disulfide on Silicon Wafer for Efficient Photoelectrochemical Water Reduction. Advanced Sustainable Systems, 2018, 2, 1700142.	5.3	36
29	Au decoration of vertical hematite nanotube arrays for further selective detection of acetone in exhaled breath. Sensors and Actuators B: Chemical, 2018, 274, 587-594.	7.8	35
30	Ionicâ€Activated Chemiresistive Gas Sensors for Roomâ€Temperature Operation. Small, 2019, 15, e1902065.	10.0	34
31	Substantially enhanced front illumination photocurrent in porous SnO ₂ nanorods/networked BiVO ₄ heterojunction photoanodes. Journal of Materials Chemistry A, 2018, 6, 14633-14643.	10.3	30
32	Edge-exposed WS2 on 1D nanostructures for highly selective NO2 sensor at room temperature. Sensors and Actuators B: Chemical, 2021, 333, 129566.	7.8	30
33	Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production. MRS Communications, 2017, 7, 272-279.	1.8	29
34	Optically Activated 3D Thinâ€6hell TiO ₂ for Superâ€6ensitive Chemoresistive Responses: Toward Visible Light Activation. Advanced Science, 2021, 8, 2001883.	11.2	28
35	Transfer of ultrathin molybdenum disulfide and transparent nanomesh electrode onto silicon for efficient heterojunction solar cells. Nano Energy, 2018, 50, 649-658.	16.0	26
36	Artificial Adaptive and Maladaptive Sensory Receptors Based on a Surfaceâ€Dominated Diffusive Memristor. Advanced Science, 2022, 9, e2103484.	11.2	26

Jun Min Suh

#	Article	IF	CITATIONS
37	Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces. ACS Applied Materials & Interfaces, 2016, 8, 23793-23800.	8.0	22
38	Daylight-Induced Metal–Insulator Transition in Ag-Decorated Vanadium Dioxide Nanorod Arrays. ACS Applied Materials & Interfaces, 2019, 11, 11568-11578.	8.0	20
39	Microscopic evidence of strong interactions between chemical vapor deposited 2D MoS2 film and SiO2 growth template. Nano Convergence, 2021, 8, 11.	12.1	20
40	Rationally Designed TiO ₂ Nanostructures of Continuous Pore Network for Fastâ€Responding and Highly Sensitive Acetone Sensor. Small Methods, 2021, 5, e2100941.	8.6	18
41	Triple Planar Heterojunction of SnO2/WO3/BiVO4 with Enhanced Photoelectrochemical Performance under Front Illumination. Applied Sciences (Switzerland), 2018, 8, 1765.	2.5	17
42	Direct Observation of Surface Potential Distribution in Insulation Resistance Degraded Acceptor-Doped BaTiO3 Multilayered Ceramic Capacitors. Electronic Materials Letters, 2018, 14, 629-635.	2.2	15
43	Visible Light Driven Ultrasensitive and Selective NO ₂ Detection in Tin Oxide Nanoparticles with Sulfur Doping Assisted by <scp>l</scp> ysteine. Small, 2022, 18, e2106613.	10.0	14
44	Surface-tailored graphene channels. Npj 2D Materials and Applications, 2021, 5, .	7.9	12
45	Strong Fermi-level pinning at metal contacts to halide perovskites. Journal of Materials Chemistry C, 2021, 9, 15212-15220.	5.5	12
46	Architecture engineering of nanostructured catalyst via layer-by-layer adornment of multiple nanocatalysts on silica nanorod arrays for hydrogenation of nitroarenes. Scientific Reports, 2022, 12, 2.	3.3	10
47	Extremely Sensitive and Selective NO2 Detection at Relative Humidity 90% in 2-Dimensional Tin Sulfides/SnO2 Nanorod Heterostructure. Sensors and Actuators B: Chemical, 2022, 369, 132319.	7.8	7
48	High Hole Mobility Inorganic Halide Perovskite Fieldâ€Effect Transistors with Enhanced Phase Stability and Interfacial Defect Tolerance. Advanced Electronic Materials, 2022, 8, 2100624.	5.1	6
49	2â€Dimensional Materials: Electrocatalytic Water Splitting and CO ₂ Reduction: Sustainable Solutions via Singleâ€Atom Catalysts Supported on 2D Materials (Small Methods 9/2019). Small Methods, 2019, 3, 1970028.	8.6	4
50	Lightâ€Activated Gas Sensors: Optically Activated 3D Thinâ€Shell TiO ₂ for Superâ€Sensitive Chemoresistive Responses: Toward Visible Light Activation (Adv. Sci. 3/2021). Advanced Science, 2021, 8, 2170012.	11.2	2
51	Effects of Metal–Organic Framework Membrane on Hydrogen Selectivity. Journal of Sensor Science and Technology, 2020, 29, 374-381.	0.2	2
52	Sensors/Biosensors: Ionic-Activated Chemiresistive Gas Sensors for Room-Temperature Operation (Small 40/2019). Small, 2019, 15, 1970214.	10.0	0