
James Engstrom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1679768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleation, growth, and stability of WSe2 thin films deposited on HOPG examined using in situ, real-time synchrotron x-ray radiation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 012201.	0.9	1
2	Area-selective atomic layer deposition enabled by competitive adsorption. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 062411.	0.9	8
3	A Vacuum Ultraviolet-Enhanced Oxidation Mechanism for Pd: Near-Surface Oxidation for Atomic Layer Etching. ACS Applied Materials & Interfaces, 2020, 12, 50985-50995.	4.0	3
4	Vacuum Ultraviolet-Enhanced Oxidation—A Route to the Atomic Layer Etching of Palladium Metal. Chemistry of Materials, 2020, 32, 6035-6042.	3.2	7
5	Competitive Adsorption as a Route to Area-Selective Deposition. ACS Applied Materials & amp; Interfaces, 2020, 12, 9989-9999.	4.0	14
6	Faster Is Smoother and So Is Lower Temperature: The Curious Case of Thin Film Growth of Tetracene on SiO ₂ . Journal of Physical Chemistry C, 2017, 121, 8464-8472.	1.5	5
7	Preface: Special Topic on Atomic and Molecular Layer Processing: Deposition, Patterning, and Etching. Journal of Chemical Physics, 2017, 146, 052501.	1.2	2
8	Who's on first? Tracking in real time the growth of multiple crystalline phases of an organic semiconductor: Tetracene on SiO2. Journal of Chemical Physics, 2017, 146, 052815.	1.2	19
9	Design and characterization of a microreactor for spatially confined atomic layer deposition and <i>in situ</i> UHV surface analysis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	4
10	Effect of substrate composition on atomic layer deposition using self-assembled monolayers as blocking layers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	21
11	Unexpected Effects of the Rate of Deposition on the Mode of Growth and Morphology of Thin Films of Tetracene Grown on SiO ₂ . Journal of Physical Chemistry C, 2016, 120, 7183-7191.	1.5	12
12	When the Sequence of Thin Film Deposition Matters: Examination of Organic-on-Organic Heterostructure Formation Using Molecular Beam Techniques and <i>in Situ</i> Real Time X-ray Synchrotron Radiation. Journal of Physical Chemistry C, 2016, 120, 6165-6179.	1.5	10
13	Tuning of Coupling and Surface Quality of PbS Nanocrystals via a Combined Ammonium Sulfide and Iodine Treatment. Journal of Physical Chemistry Letters, 2016, 7, 642-646.	2.1	15
14	Nucleation of diindenoperylene and pentacene at thermal and hyperthermal incident kinetic energies. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	3
15	Probing ultrathin film continuity and interface abruptness with x-ray photoelectron spectroscopy and low-energy ion scattering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	4
16	Molecular imaging of chemical species adsorbed on solid surfaces by scanning probe microscopy. , 2012, , .		0
17	Nucleation delay in atomic layer deposition on a thin organic layer and the role of reaction thermochemistry. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	31
18	Thin Film Growth of Pentacene on Polymeric Dielectrics: Unexpected Changes in the Evolution of Surface Morphology with Substrate. Journal of Physical Chemistry C, 2012, 116, 12541-12552.	1.5	19

#	Article	IF	CITATIONS
19	Initial Stages of Atomic Layer Deposition of Tantalum Nitride on SiO ₂ and Porous Low-l̂º Substrates Modified by a Branched Interfacial Organic Layer: Chemisorption and the Transition to Steady-State Growth. Journal of Physical Chemistry C, 2012, 116, 21948-21960.	1.5	4
20	Hyperthermal Growth ofN,N′-Ditridecylperylene-3,4,9,10-tetracarboxylic Diimide on Self-Assembled Monolayers: Adsorption Dynamics and Sub- and Multilayer Thin Film Growth. Journal of Physical Chemistry C, 2011, 115, 18221-18234.	1.5	12
21	Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage. Journal of the American Chemical Society, 2011, 133, 3131-3138.	6.6	198
22	Hyperthermal organic thin film growth on surfaces terminated with self-assembled monolayers. I. The dynamics of trapping. Journal of Chemical Physics, 2011, 134, 224702.	1.2	15
23	Integration of Self-Assembled Redox Molecules in Flash Memory Devices. IEEE Transactions on Electron Devices, 2011, 58, 826-834.	1.6	33
24	Quantitative modeling of <i>in situ</i> x-ray reflectivity during organic molecule thin film growth. Physical Review B, 2011, 84, .	1.1	42
25	Three-dimensional imaging of pore structures inside low- \hat{I}^{e} dielectrics. Applied Physics Letters, 2010, 96, .	1.5	19
26	Interfacial organic layers: Tailored surface chemistry for nucleation and growth. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 1033-1059.	0.9	18
27	Nucleation and Growth of Perfluoropentacene on Self-Assembled Monolayers: Significant Changes in Island Density and Shape with Surface Termination. Journal of Physical Chemistry C, 2010, 114, 20120-20129.	1.5	38
28	Coverage dependent adsorption dynamics in hyperthermal organic thin film growth. Journal of Chemical Physics, 2009, 130, 124701.	1.2	29
29	Organic thin-film transistors of pentacene films fabricated fromÂaÂsupersonic molecular beam source. Applied Physics A: Materials Science and Processing, 2009, 95, 29-35.	1.1	9
30	Post-deposition reorganization of pentacene films deposited on low-energy surfaces. Journal of Materials Chemistry, 2009, 19, 5580.	6.7	60
31	Molecular-Scale Events in Hyperthermal Deposition of Organic Semiconductors Implicated from Experiment and Molecular Simulation. Journal of Physical Chemistry C, 2009, 113, 6068-6073.	1.5	14
32	Observation from Scanning Tunneling Microscopy of a Striped Phase for Octanethiol Adsorbed on Au(111) from Solution. Langmuir, 2008, 24, 9937-9940.	1.6	25
33	Gasâ~'Surface Reactions between Pentakis(dimethylamido)tantalum and Surface Grown Hyperbranched Polyglycidol Films. Langmuir, 2008, 24, 8610-8619.	1.6	7
34	Real time monitoring of pentacene growth on SiO2 from a supersonic source. Applied Physics Letters, 2008, 92, 253304.	1.5	31
35	Effects of Interfacial Organic Layers on Nucleation, Growth, and Morphological Evolution in Atomic Layer Thin Film Deposition. Journal of Physical Chemistry C, 2007, 111, 11045-11058.	1.5	36
36	Growth of First Generation Dendrons on SiO ₂ :  Controlling Chemisorption of Transition Metal Coordination Complexes. Journal of the American Chemical Society, 2007, 129, 15022-15033.	6.6	8

#	Article	IF	CITATIONS
37	A supersonic molecular beam study of the reaction of tetrakis(dimethylamido)titanium with self-assembled alkyltrichlorosilane monolayers. Journal of Chemical Physics, 2006, 125, 034706.	1.2	11
38	Ab Initio Calculations of the Reaction Mechanisms for Metalâ^'Nitride Deposition from Organo-Metallic Precursors onto Functionalized Self-Assembled Monolayers. Journal of the American Chemical Society, 2006, 128, 836-847.	6.6	28
39	Nucleation of pentacene thin films on silicon dioxide modified with hexamethyldisilazane. Applied Physics Letters, 2006, 88, 143125.	1.5	27
40	Effects of interfacial organic layers on thin film nucleation in atomic layer deposition. Applied Physics Letters, 2006, 89, 164108.	1.5	21
41	A surface modification strategy on silicon nitride for developing biosensors. Analytical Biochemistry, 2005, 343, 322-328.	1.1	79
42	Nucleation of pentacene on silicon dioxide at hyperthermal energies. Applied Physics Letters, 2005, 87, 033110.	1.5	31
43	The Reaction of Tetrakis(dimethylamido)titanium with Self-Assembled Alkyltrichlorosilane Monolayers Possessing â~OH, â~NH2, and â~CH3Terminal Groups. Journal of the American Chemical Society, 2005, 127, 6300-6310.	6.6	60
44	Covalent Attachment of a Transition Metal Coordination Complex to Functionalized Oligo(phenylene-ethynylene) Self-Assembled Monolayers. Journal of the American Chemical Society, 2005, 127, 14299-14309.	6.6	28
45	The nucleation and growth of silicon thin films on silicate glasses of variable composition using supersonic gas source molecular beam deposition. Journal of Applied Physics, 2004, 95, 6470-6479.	1.1	3
46	Effects of atomic hydrogen on the selective area growth of Si and Si[sub 1â^'x]Ge[sub x] thin films on Si and SiO[sub 2] surfaces: Inhibition, nucleation, and growth. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 578.	0.9	11
47	Analysis of a toluene stripping process: a comparison between a microfabricated stripping column and a conventional packed tower. Chemical Engineering Journal, 2004, 101, 49-56.	6.6	35
48	Precursor states of atomic hydrogen on the Si(100)-(2×1) surface. Journal of Chemical Physics, 2003, 118, 3294-3299.	1.2	14
49	Nucleation of copper on TiN and SiO2 from the reaction of hexafluoroacetylacetonate copper(I) trimethylvinylsilane. Applied Physics Letters, 2002, 80, 2604-2606.	1.5	12
50	Selective Si epitaxial growth technique employing atomic hydrogen and substrate temperature modulation. Applied Physics Letters, 2001, 79, 2181-2183.	1.5	4
51	Etching by atomic hydrogen of Ge overlayers on Si(100). Journal of Applied Physics, 2001, 90, 3614-3622.	1.1	13
52	A growth method for creating arrays of atomically flat mesas on silicon. Applied Physics Letters, 2001, 78, 1349-1351.	1.5	20
53	A Growth Technique to Make Extensive Atomically Flat Silicon Surfaces. Materials Research Society Symposia Proceedings, 2000, 648, 1.	0.1	2
54	Combinatorial materials science: Paradigm shift in materials discovery and optimization. AICHE Journal, 2000, 46, 2-5.	1.8	35

#	Article	IF	CITATIONS
55	The effect of coincident atomic hydrogen on the gas-source molecular beam epitaxial growth of silicon from disilane. Surface Science, 2000, 470, 131-140.	0.8	11
56	Three dimensional modeling of silicon deposition process scale-up employing supersonic jets. II. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 978-985.	0.9	2
57	Pattern formation and shadow instability in collimated energetic molecular beam growth of silicon. Applied Physics Letters, 1999, 74, 25-27.	1.5	7
58	Modeling of Ge surface segregation in vapor-phase deposited Si1â^'xGex thin films. Applied Physics Letters, 1999, 75, 817-819.	1.5	15
59	The effect of strain on gas–surface reactivity in group-IV heteroepitaxial systems. Chemical Physics Letters, 1998, 292, 229-234.	1.2	8
60	A kinetic Monte Carlo study of the growth of Si on Si(100) at varying angles of incident deposition. Surface Science, 1998, 401, 112-123.	0.8	54
61	Study of thin film deposition processes employing variable kinetic energy, highly collimated neutral molecular beams. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 3423-3433.	0.9	25
62	Direct in situ characterization of Ge surface segregation in strained Si1â^'xGex epitaxial thin films. Applied Physics Letters, 1998, 73, 2027-2029.	1.5	15
63	Monte Carlo analysis of a hyperthermal silicon deposition process. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 689-699.	0.9	9
64	Gas—surface reactivity in mixed-crystal systems: the reaction of GeH4 and Ge2H6 on Si surfaces. Surface Science, 1997, 393, 205-221.	0.8	24
65	A 3-D Kinetic Monte Carlo Study of the Growth of Si Thin Films Using Beams With Varying Angle of Incidence. Materials Research Society Symposia Proceedings, 1996, 440, 413.	0.1	О
66	Supersonic molecular beam studies of the dissociative chemisorption of GeH4 and Ge2H6 on the Ge(110) and Ge(111) surfaces. Journal of Chemical Physics, 1996, 105, 7140-7151.	1.2	21
67	Dissociative Chemisorption at Hyperthermal Energies: Benchmark Studies in Group IV Systems. Materials Research Society Symposia Proceedings, 1995, 388, 221.	0.1	0
68	Dissociation and pyrolysis of Si2H6 on Si surfaces: The influence of surface structure and adlayer composition. Journal of Chemical Physics, 1995, 103, 1691-1701.	1.2	45
69	Thermal and plasmaâ€assisted nitridation of GaAs(100) using NH3. Applied Physics Letters, 1995, 67, 542-544.	1.5	33
70	Supersonic molecular beam scattering as a probe of thin film deposition processes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 2651-2664.	0.9	57
71	Effect of PH3 on the dissociative chemisorption of SiH4 and Si2H6 on Si(100): Implications on the growth of in situ doped Si thin films. Applied Physics Letters, 1995, 66, 1909-1911.	1.5	21
72	A supersonic molecular beam study of the chemisorption of PH3 on the Si(100) surface. Surface Science, 1995, 344, 203-220.	0.8	9

#	Article	IF	CITATIONS
73	The adsorption of PH3 on the Si(111)-(7 × 7) surface: an example of autocatalytic dissociative chemisorption. Surface Science, 1995, 344, L1201-L1206.	0.8	6
74	The role of surface corrugation in direct translationally activated dissociative adsorption. Journal of Chemical Physics, 1994, 101, 5329-5342.	1.2	33
75	Translationally activated dissociative chemisorption of SiH4 on the Si(100) and Si(111) surfaces. Chemical Physics Letters, 1994, 229, 401-407.	1.2	35
76	Dissociative adsorption of Si2H6 on silicon at hyperthermal energies: The influence of surface structure. Applied Physics Letters, 1993, 63, 1821-1823.	1.5	42
77	Dynamics of the dissociative adsorption of disilane on Si(100): Energy scaling and the effect of corrugation. Journal of Chemical Physics, 1993, 99, 4051-4054.	1.2	45
78	Reactive Scattering of Si ₂ H ₆ from the Si(100) Surface. Materials Research Society Symposia Proceedings, 1992, 282, 549.	0.1	6
79	The reaction of atomic oxygen with Si(100) and Si(111). Surface Science, 1992, 268, 238-264.	0.8	91
80	The reaction of atomic oxygen with Si(100) and Si(111). Surface Science, 1991, 256, 317-343.	0.8	117
81	Reaction of cyclopropane, methylcyclopropane and propylene with hydrogen on the (111) and (110)-(1) Tj ETQq1	1.9.7843	14.rgBT /0v 27
82	Atomic versus molecular reactivity at the gas-solid interface: The adsorption and reaction of atomic oxygen on the Si(100) surface. Physical Review B, 1990, 41, 1038-1041.	1.1	79
83	Effect of coincident ion bombardment on the oxidation of Si (100) by atomic oxygen. Applied Physics Letters, 1989, 55, 2202-2204.	1.5	11
84	Reactive atom–surface scattering: The adsorption and reaction of atomic oxygen on the Si(100) surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 1837-1840.	0.9	38
85	The adsorption and reaction of fluorine on the Si(100) surface. Surface Science, 1989, 215, 437-500.	0.8	82
86	Hydrogenolysis of ethane, propane, n-butane, and neopentane on the (111) and (110)-(1.times.2) surfaces of iridium. Journal of the American Chemical Society, 1988, 110, 8305-8319.	6.6	83
87	Analysis of gas-surface reactions by surface temperature modulation: Experimental applications to the adsorption and oxidation of carbon monoxide on the Pt(110)-(1 × 2) surface. Surface Science, 1988, 201, 145-170.	0.8	24
88	Thermal decomposition of a silicon-fluoride adlayer: Evidence for spatially inhomogeneous removal of a single monolayer of the silicon substrate. Physical Review B, 1988, 37, 6563-6566.	1.1	33
89	Reactive Atom-Surface Scattering the Adsorption and Reaction of Atomic Oxygen on the Si(100) Surface. Materials Research Society Symposia Proceedings, 1988, 131, 245.	0.1	0
90	Analysis of gas–surface reactions by surface temperature modulation: Theoretical formulation. Journal of Chemical Physics, 1987, 87, 4211-4222.	1.2	5

#	Article	IF	CITATIONS
91	The chemisorption of hydrogen on the (111) and (110)â€(1×2) surfaces of iridium and platinum. Journal of Chemical Physics, 1987, 87, 3104-3119.	1.2	115
92	Summary Abstract: The oxidation of carbon monoxide on the Pt(110)â€(1×2) surface: The influence of the adlayer composition on the reaction dynamics. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 640-642.	0.9	3
93	Summary Abstract: The hydrogenolysis of alkanes over singleâ€crystalline surfaces of iridium: The influence of surface structure on the catalytic selectivity. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 825-827.	0.9	5
94	Hydrogenolysis of n-butane over the (111) and (110)-(1.times.2) surfaces of iridium: a direct correlation between catalytic selectivity and surface structure. Journal of the American Chemical Society, 1986, 108, 4653-4655.	6.6	41
95	Adsorption and reaction of n-alkanes on the platinum(110)-(1 .times. 2) surface. The Journal of Physical Chemistry, 1985, 89, 2497-2502.	2.9	64
96	Surface Reaction Dynamics via Temperature Modulation: Applications to the Oxidation of Carbon Monoxide on the Pt(110)-(1×2) Surface. Physical Review Letters, 1985, 55, 2017-2020.	2.9	12
97	Summary Abstract: Comparative studies of alkane activation by lowâ€index surfaces of iridium and platinum. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1985, 3, 1560-1561.	0.9	0
98	The reaction of saturated and unsaturated hydrocarbons with the (110)â€(1×2) and (111) surfaces of iridium. Journal of Chemical Physics, 1984, 80, 508-517.	1.2	56
99	Design and construction of a digital temperature controller for use in surface studies. Review of Scientific Instruments, 1984, 55, 404-409.	0.6	29