Yang Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1679729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab on A Chip, 2012, 12, 746.	6.0	197
2	Femtosecond laser nanostructuring in porous glass with sub-50Ânm feature sizes. Optics Letters, 2013, 38, 187.	3.3	149
3	Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Lab on A Chip, 2013, 13, 1626.	6.0	113
4	Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Optics Letters, 2010, 35, 3225.	3.3	98
5	Electro-optic integration of embedded electrodes and waveguides in LiNbO_3 using a femtosecond laser. Optics Letters, 2008, 33, 2281.	3.3	88
6	High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation. Optica, 2015, 2, 329.	9.3	77
7	Micro- and Macro-Tribological Study on a Self-Assembled Dual-Layer Film. Langmuir, 2003, 19, 2763-2767.	3.5	75
8	Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser. Optics Letters, 2010, 35, 282.	3.3	75
9	Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass. Sensors, 2014, 14, 19402-19440.	3.8	70
10	Selective metallization on insulator surfaces with femtosecond laser pulses. Optics Express, 2007, 15, 12743.	3.4	67
11	On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes. Optics Express, 2017, 25, 124.	3.4	44
12	Preparation and Tribological Studies of C60Thin Film Chemisorbed on a Functional Polymer Surface. Langmuir, 2004, 20, 3601-3605.	3.5	37
13	Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation. Optics Letters, 2015, 40, 3623.	3.3	37
14	Fabrication of microelectrodes deeply embedded in LiNbO3 using a femtosecond laser. Applied Surface Science, 2008, 254, 7018-7021.	6.1	29
15	Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining. Optics Express, 2014, 22, 14792.	3.4	29
16	Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses. Journal of Applied Physics, 2011, 109, .	2.5	27
17	Fabrication of large-volume microfluidic chamber embedded in glass using three-dimensional femtosecond laser micromachining. Microfluidics and Nanofluidics, 2011, 11, 111-117.	2.2	26
18	Rapid fabrication of optical volume gratings in Foturan glass byÂfemtosecond laser micromachining. Applied Physics A: Materials Science and Processing, 2009, 97, 853-857.	2.3	22

Yang Liao

#	Article	IF	CITATIONS
19	Fabrication of polarization-independent single-mode waveguides in lithium niobate crystal with femtosecond laser pulses. Optical Materials Express, 2016, 6, 2554.	3.0	21
20	Fabrication of three-dimensional microfluidic channels inside glass using nanosecond laser direct writing. Optics Express, 2012, 20, 4291.	3.4	19
21	Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation. Optics Express, 2013, 21, 15259.	3.4	18
22	Three-dimensional staggered herringbone mixer fabricated by femtosecond laser direct writing. Journal of Optics (United Kingdom), 2013, 15, 025601.	2.2	17
23	Fabrication of a micro-optical lens using femtosecond laser 3D micromachining for two-photon imaging of bio-tissues. Optics Communications, 2011, 284, 2988-2991.	2.1	16
24	Time-resolved shadowgraphs of transient plasma induced by spatiotemporally focused femtosecond laser pulses in fused silica glass. Optics Letters, 2015, 40, 5726.	3.3	16
25	Femtosecond Laser 3D Fabrication in Porous Glass for Micro- and Nanofluidic Applications. Micromachines, 2014, 5, 1106-1134.	2.9	14
26	High-throughput in-volume processing in glass with isotropic spatial resolutions in three dimensions. Optical Materials Express, 2016, 6, 3787.	3.0	14
27	Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator. Optics Communications, 2009, 282, 1370-1373.	2.1	12
28	Threshold effect in femtosecond laser induced nanograting formation in glass: influence of the pulse duration. Applied Physics A: Materials Science and Processing, 2014, 114, 223-230.	2.3	11
29	Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam. Scientific Reports, 2016, 6, 28790.	3.3	11
30	Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing. Scientific Reports, 2017, 7, 41211.	3.3	11
31	Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	5.1	11
32	On-Chip Tuning of the Resonant Wavelength in a High-Q Microresonator Integrated with a Microheater. International Journal of Optomechatronics, 2015, 9, 187-194.	6.6	10
33	Mechanism study of femtosecond laser induced selective metallization (FLISM) on glass surfaces. Optics Communications, 2008, 281, 3505-3509.	2.1	9
34	Fabrication of a liquid crystal light modulator by use of femtosecond-laser-induced nanoripples. Optical Materials Express, 2013, 3, 1698.	3.0	8
35	Fabrication of an Optical Waveguide-Mode-Field Compressor in Glass Using a Femtosecond Laser. Materials, 2018, 11, 1926.	2.9	8
36	Metal surface structuring with spatiotemporally focused femtosecond laser pulses. Journal of Optics (United Kingdom), 2018, 20, 014010.	2.2	7

Yang Liao

#	Article	IF	CITATIONS
37	Surface-Enhanced Raman Scattering Substrate Fabricated by Femtosecond Laser Induced Co-deposition of Silver Nanoparticles and Fluorescent Molecules. Japanese Journal of Applied Physics, 2010, 49, 022703.	1.5	6
38	Alignment of liquid crystal molecules in a micro-cell fabricated by femtosecond laser. Chemical Physics Letters, 2010, 498, 188-191.	2.6	5
39	Femtosecond laser 3D nanofabrication in glass: enabling direct write of integrated micro/nanofluidic chips. , 2014, , .		4
40	Effects of femtosecond laser texture on the tribological properties of 20CrNiMo/beryllium bronze tribo-pairs of rock bit sliding bearings under non-Newtonian lubrication. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019, 233, 1293-1305.	1.8	4
41	Laser-induced damage in porous glass: a pathway to 3D fabrication of micro-/nanofluidics. Proceedings of SPIE, 2013, , .	0.8	2
42	Formation of nanogratings in a porous glass immersed in water by femtosecond laser irradiation. Proceedings of SPIE, 2015, , .	0.8	2
43	An Auto-Focus Method of Microscope for the Surface Structure of Transparent Materials under Transmission Illumination. Sensors, 2021, 21, 2487.	3.8	2
44	Laser alchemy: direct writing of multifunctional components in a glass chip with femtosecond laser pulses. , 2013, , .		1
45	Formation of in-volume nanogratings in glass induced by spatiotemporally focused femtosecond laser pulses. Advanced Optical Technologies, 2016, 5, 81-85.	1.7	1
46	3. Three-dimensional integration of hybrid functionalities in transparent dielectrics by femtosecond laser direct writing. , 2018, , 111-248.		1
47	Selective deposition of conductive copper films on glass surfaces using femtosecond laser surface modification and electroless plating. Proceedings of SPIE, 2007, , .	0.8	0
48	Fabrication of Raman biochip prototype by femtosecond laser micromachining. , 2010, , .		0
49	Fabrication of microfluidic systems with arbitrary 3D geometries inside fused silica using femtosecond laser direct writing. , 2012, , .		0
50	Femtosecond laser direct writing of three-dimensional micro/nanofluidics in porous glass. MATEC Web of Conferences, 2013, 8, 05002.	0.2	0
51	Deterministic laser nanomachining in glass. , 2016, , .		0
52	Direct laser writing of 3D microfluidic structures in glass for lab-on-a-chip applications. , 2018, , .		0