Netrananda Sahu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1679725/publications.pdf

Version: 2024-02-01

47 1,036 18 29 g-index

48 48 48 48 747

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmospheric Science Letters, 2019, 20, e932.	1.9	123
2	Spatiotemporal evaluation of water quality incidents in Japan between 1996 and 2007. Chemosphere, 2013, 93, 946-953.	8.2	61
3	Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review. Resources, 2019, 8, 149.	3.5	59
4	IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia. Climate Dynamics, 2012, 39, 1673-1680.	3.8	54
5	Hydrogeochemical Assessment of Groundwater Quality of Bundelkhand, India Using Statistical Approach. Water Quality, Exposure, and Health, 2013, 5, 105-115.	1.5	49
6	Changes in temporal inequality of precipitation extremes over China due to anthropogenic forcings. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	43
7	Advanced Rainfall Trend Analysis of 117 Years over West Coast Plain and Hill Agro-Climatic Region of India. Atmosphere, 2020, 11, 1225.	2.3	40
8	Why apple orchards are shifting to the higher altitudes of the Himalayas?. PLoS ONE, 2020, 15, e0235041.	2.5	39
9	Vulnerability and Risk Assessment to Climate Change in Sagar Island, India. Water (Switzerland), 2022, 14, 823.	2.7	37
10	An integrated assessment of runoff dynamics in the Amu Darya River Basin: Confronting climate change and multiple human activities, 1960–2017. Journal of Hydrology, 2021, 603, 126905.	5.4	34
11	An integrated assessment of surface water dynamics in the Irtysh River Basin during 1990–2019 and exploratory factor analyses. Journal of Hydrology, 2021, 593, 125905.	5.4	32
12	Agroforestry land suitability analysis in the Eastern Indian Himalayan region. Environmental Challenges, 2021, 4, 100199.	4.2	32
13	Assessing the Yield of Wheat Using Satellite Remote Sensing-Based Machine Learning Algorithms and Simulation Modeling. Remote Sensing, 2022, 14, 3005.	4.0	27
14	Monitoring Effect of Spatial Growth on Land Surface Temperature in Dhaka. Remote Sensing, 2020, 12, 1191.	4.0	21
15	Remote Sensing for International Peace and Security: Its Role and Implications. Remote Sensing, 2021, 13, 439.	4.0	21
16	Spatio-Temporal Analysis of Surface Water Quality in Mokopane Area, Limpopo, South Africa. Water (Switzerland), 2021, 13, 220.	2.7	21
17	Identifying the Potential Dam Sites to Avert the Risk of Catastrophic Floods in the Jhelum Basin, Kashmir, NW Himalaya, India. Remote Sensing, 2022, 14, 1538.	4.0	21
18	El Niño Modoki connection to extremely-low streamflow of the ParanaÃba River in Brazil. Climate Dynamics, 2014, 42, 1509-1516.	3.8	20

#	Article	IF	CITATIONS
19	Impact of Forest Fires on Air Quality in Wolgan Valley, New South Wales, Australia—A Mapping and Monitoring Study Using Google Earth Engine. Forests, 2022, 13, 4.	2.1	20
20	Spatiotemporal variability of Hokkaido's seasonal precipitation in recent decades and connection to water vapour flux. International Journal of Climatology, 2017, 37, 3660-3673.	3.5	18
21	Probabilistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models. Stochastic Environmental Research and Risk Assessment, 2017, 31, 1747-1758.	4.0	18
22	Did the COVID-19 Lockdown-Induced Hydrological Residence Time Intensify the Primary Productivity in Lakes? Observational Results Based on Satellite Remote Sensing. Water (Switzerland), 2020, 12, 2573.	2.7	18
23	Assessing the Groundwater Reserves of the Udaipur District, Aravalli Range, India, Using Geospatial Techniques. Water (Switzerland), 2022, 14, 648.	2.7	18
24	Impact of Indo-Pacific Climate Variability on High Streamflow Events in Mahanadi River Basin, India. Water (Switzerland), 2020, 12, 1952.	2.7	17
25	Impact of Indo-Pacific Climate Variability on Rice Productivity in Bihar, India. Sustainability, 2020, 12, 7023.	3.2	17
26	Impact of Climate Variability on Crop Yield in Kalahandi, Bolangir, and Koraput Districts of Odisha, India. Climate, 2019, 7, 126.	2.8	16
27	Management of Landslides in a Rural–Urban Transition Zone Using Machine Learning Algorithms—A Case Study of a National Highway (NH-44), India, in the Rugged Himalayan Terrains. Land, 2022, 11, 884.	2.9	16
28	La Niña Impacts on Austral Summer Extremely High-Streamflow Events of the ParanaÃba River in Brazil. Advances in Meteorology, 2013, 2013, 1-6.	1.6	14
29	Decoding trend of Indian summer monsoon rainfall using multimethod approach. Stochastic Environmental Research and Risk Assessment, 2021, 35, 2313-2333.	4.0	14
30	Assessing the Influence of Land Use/Land Cover Alteration on Climate Variability: An Analysis in the Aurangabad District of Maharashtra State, India. Sustainability, 2022, 14, 642.	3.2	12
31	Understanding the Hydropower and Potential Climate Change Impact on the Himalayan River Regimes—A Study of Local Perceptions and Responses from Himachal Pradesh, India. Water (Switzerland), 2020, 12, 2739.	2.7	11
32	Scenario-Based Hydrological Modeling for Designing Climate-Resilient Coastal Water Resource Management Measures: Lessons from Brahmani River, Odisha, Eastern India. Sustainability, 2021, 13, 6339.	3.2	10
33	Rapid eco-physical impact assessment of tropical cyclones using geospatial technology: a case from severe cyclonic storms Amphan. Natural Hazards, 2022, 110, 2381-2395.	3.4	10
34	Aerosol Characteristics and Their Impact on the Himalayan Energy Budget. Sustainability, 2022, 14, 179.	3.2	10
35	Urban Growth Dynamics and Modelling Using Remote Sensing Data and Multivariate Statistical Techniques. Current Science, 2018, 114, 2080.	0.8	9
36	Unraveling Intricacies of Monsoon Attributes in Homogenous Monsoon Regions of India. Frontiers in Earth Science, 2022, 10, .	1.8	9

3

#	Article	IF	CITATIONS
37	Neural Network-Based Modeling of Water Quality in Jodhpur, India. Hydrology, 2022, 9, 92.	3.0	9
38	Evaluation of Observed and Future Climate Change Projection for Uttarakhand, India, Using CORDEX-SA. Atmosphere, 2022, 13, 947.	2.3	9
39	Quantifying the Northward Spread of Ticks (Ixodida) as Climate Warms in Northern Russia. Atmosphere, 2021, 12, 233.	2.3	8
40	Landsat-based multi-decadal spatio-temporal assessment of the vegetation greening and browning trend in the Eastern Indian Himalayan Region. Remote Sensing Applications: Society and Environment, 2022, 25, 100695.	1.5	6
41	Tracing geochemical sources and health risk assessment of uranium in groundwater of arid zone of India. Scientific Reports, 2022, 12, .	3.3	5
42	Assessing The Vulnerability Index Of Covid-19 Pandemic In India. Geography, Environment, Sustainability, 2021, 14, 131-139.	1.3	4
43	Application of "Observation Minus Reanalysis―Method towards LULC Change Impact over Southern India. ISPRS International Journal of Geo-Information, 2022, 11, 94.	2.9	3
44	Ramification of Global and Local Climatic Variability on Resurgent Cases of Dengue in Delhi, India. Disaster Advances, 2021, 14, 32-41.	0.3	1
45	Association and Effects of ISMR and El Niño Southern Oscillation on Dengue Outbreaks in India. Advances in Geographical and Environmental Sciences, 2021, , 157-166.	0.6	O
46	Spatiotemporal Distribution and Trend Analysis of Waterborne Diseases in Kalahandi District of Odisha, India. Journal of Communicable Diseases, 2021, 53, 23-28.	0.1	0
47	Climate and Disease vulnerability analysis in blocks of Kalahandi District of Odisha, India. Indian Journal of Public Health, 2022, 66, 20.	0.6	O