Poonam Nigam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1679634/publications.pdf

Version: 2024-02-01

156 papers 20,581 citations

28190 55 h-index 9839 141 g-index

163 all docs

163
docs citations

163 times ranked 19361 citing authors

#	Article	IF	CITATIONS
1	Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 2001, 77, 247-255.	4.8	4,185
2	Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 2011, 37, 52-68.	15.8	1,660
3	Microbial decolorization of textile-dyecontaining effluents: A review. Bioresource Technology, 1996, 58, 217-227.	4.8	1,593
4	Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology, 2000, 74, 69-80.	4.8	961
5	Advances in microbial amylases. Biotechnology and Applied Biochemistry, 2000, 31, 135.	1.4	793
6	Microbial decolourisation and degradation of textile dyes. Applied Microbiology and Biotechnology, 2001, 56, 81-87.	1.7	751
7	Renewable fuels from algae: An answer to debatable land based fuels. Bioresource Technology, 2011, 102, 10-16.	4.8	560
8	Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource Technology, 2000, 72, 219-226.	4.8	537
9	Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Research, 2002, 36, 2824-2830.	5. 3	508
10	Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Advances, 2012, 2, 1248-1263.	1.7	468
11	A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochemical Engineering Journal, 2001, 9, 17-23.	1.8	442
12	Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technology, 2011, 102, 26-34.	4.8	410
13	Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochemical Engineering Journal, 2000, 6, 153-162.	1.8	361
14	Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochemistry, 1996, 31, 435-442.	1.8	347
15	Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresource Technology, 2000, 74, 81-87.	4.8	343
16	Enzyme and microbial systems involved in starch processing. Enzyme and Microbial Technology, 1995, 17, 770-778.	1.6	259
17	Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four <i>Mentha</i> species. Journal of the Science of Food and Agriculture, 2010, 90, 1827-1836.	1.7	227
18	Microbial Enzymes with Special Characteristics for Biotechnological Applications. Biomolecules, 2013, 3, 597-611.	1.8	222

#	Article	IF	Citations
19	Solid-state fermentation: a promising microbial technology for secondary metabolite production. Applied Microbiology and Biotechnology, 2001, 55, 284-289.	1.7	213
20	Isolation of thermotolerant, fermentative yeasts growing at 52 i / ${}_{2}$ C and producing ethanol at 45 i / ${}_{2}$ C and 50 i / ${}_{2}$ C. World Journal of Microbiology and Biotechnology, 1992, 8, 259-263.	1.7	196
21	Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk. Environment International, 2002, 28, 29-33.	4.8	193
22	Title is missing!. World Journal of Microbiology and Biotechnology, 1998, 14, 809-821.	1.7	173
23	Effect of pretreatments of three waste residues, wheat straw, corncobs and barley husks on dye adsorption. Bioresource Technology, 2002, 85, 119-124.	4.8	170
24	Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzyme and Microbial Technology, 2001, 29, 575-579.	1.6	148
25	Food and agricultural wastes as substrates for bioelectrochemical system (BES): The synchronized recovery of sustainable energy and waste treatment. Food Research International, 2015, 73, 213-225.	2.9	132
26	Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Brazilian Journal of Microbiology, 2010, 41, 1070-1078.	0.8	127
27	Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens. Complementary Therapies in Clinical Practice, 2012, 18, 173-176.	0.7	124
28	Antibacterial activity of Manuka honey and its components: An overview. AIMS Microbiology, 2018, 4, 655-664.	1.0	121
29	A universally calibrated microplate ferric reducing antioxidant power (FRAP) assay for foods and applications to Manuka honey. Food Chemistry, 2015, 174, 119-123.	4.2	115
30	Global status of lignocellulosic biorefinery: Challenges and perspectives. Bioresource Technology, 2022, 344, 126415.	4.8	113
31	Decolorization of Remazol Black-B using a thermotolerant yeast, Kluyveromyces marxianus IMB3. Environment International, 2000, 26, 75-79.	4.8	109
32	Decolorization and biodegradation of anaerobically digested sugarcane molasses spent wash effluent from biomethanation plants by white-rot fungi. Process Biochemistry, 1998, 33, 83-88.	1.8	106
33	Application of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and L. helveticus for sourdough bread making. Food Chemistry, 2008, 106, 985-990.	4.2	100
34	Solid-state (substrate) fermentation systems and their applications in biotechnology. Journal of Basic Microbiology, 1994, 34, 405-423.	1.8	99
35	High-temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Bioresource Technology, 2002, 82, 177-181.	4.8	94
36	Decolourisation of synthetic and spentwash melanoidins using the white-rot fungus Phanerochaete chrysosporium JAG-40. Bioresource Technology, 2001, 78, 95-98.	4.8	93

#	Article	IF	Citations
37	Bread making using kefir grains as baker's yeast. Food Chemistry, 2005, 93, 585-589.	4.2	92
38	A viable technology to generate thirdâ€generation biofuel. Journal of Chemical Technology and Biotechnology, 2011, 86, 1349-1353.	1.6	89
39	Thermostable, alkalophilic and cellulase free xylanase production by Thermoactinomyces thalophilus subgroup C. Enzyme and Microbial Technology, 2001, 28, 606-610.	1.6	88
40	Antibacterial activity of some Lamiaceae essential oils using resazurin as an indicator of cell growth. LWT - Food Science and Technology, 2011, 44, 1199-1206.	2.5	83
41	Decolourisation of effluent from the textile industry by a microbial consortium. Biotechnology Letters, 1996, 18, 117-120.	1.1	81
42	Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresource Technology, 2000, 72, 261-266.	4.8	81
43	Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: A biorefinery approach. Bioresource Technology, 2016, 199, 173-180.	4.8	76
44	Bioremediation and decolorization of anaerobically digested distillery spent wash. Biotechnology Letters, 1997, 19, 311-314.	1.1	75
45	Bioreactor design for protein enrichment of agricultural residues by solid state fermentation. Biochemical Engineering Journal, 2003, 13, 197-203.	1.8	7 5
46	Food additives: production of microbial pigments and their antioxidant properties. Current Opinion in Food Science, 2016, 7, 93-100.	4.1	72
47	An overview: Recycling of solid barley waste generated as a by-product in distillery and brewery. Waste Management, 2017, 62, 255-261.	3.7	72
48	Evolution of aroma volatiles during storage of sourdough breads made by mixed cultures of Kluyveromyces marxianus and Lactobacillus delbrueckii ssp. bulgaricus or Lactobacillus helveticus. Food Chemistry, 2008, 107, 883-889.	4.2	70
49	Biological treatment of distillery waste for pollution-remediation. Journal of Basic Microbiology, 1995, 35, 293-301.	1.8	65
50	Immobilization of kefir and Lactobacillus casei on brewery spent grains for use in sourdough wheat bread making. Food Chemistry, 2007, 105, 187-194.	4.2	63
51	Title is missing!. World Journal of Microbiology and Biotechnology, 2002, 18, 81-97.	1.7	61
52	Evaluation of Freeze-Dried Kefir Coculture as Starter in Feta-Type Cheese Production. Applied and Environmental Microbiology, 2006, 72, 6124-6135.	1.4	60
53	Composition, antioxidant and chemotherapeutic properties of the essential oils from two Origanum species growing in Pakistan. Revista Brasileira De Farmacognosia, 2011, 21, 943-952.	0.6	59
54	Nano-Tubular Cellulose for Bioprocess Technology Development. PLoS ONE, 2012, 7, e34350.	1.1	57

#	Article	IF	CITATIONS
55	Growth adaptation of probiotics in biopolymer-based coacervate structures to enhance cell viability. LWT - Food Science and Technology, 2017, 77, 282-289.	2.5	56
56	Isolation of thermotolerant ethanologenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery. Biotechnology and Bioengineering, 2000, 68, 531-535.	1.7	55
57	Antioxidant and genoprotective activity of selected cucurbitaceae seed extracts and LC–ESIMS/MS identification of phenolic components. Food Chemistry, 2016, 199, 307-313.	4.2	55
58	Enhanced probiotic viability and aromatic profile of yogurts produced using wheat bran (Triticum) Tj ETQq0 0 0	rgBT /Ovei 1.8	·lock 10 Tf 50
59	Improving the quality of industrially important enzymes by directed evolution. Molecular and Cellular Biochemistry, 2001, 224, 159-168.	1.4	54
60	Studies on the removal of dyes from a synthetic textile effluent using barley husk in static-batch mode and in a continuous flow, packed-bed, reactor. Bioresource Technology, 2002, 85, 43-49.	4.8	54
61	Studies on desorption of individual textile dyes and a synthetic dye effluent from dye-adsorbed agricultural residues using solvents. Bioresource Technology, 2002, 84, 299-301.	4.8	53
62	Continuous ethanol production from sugarcane molasses using a column reactor of immobilizedSaccharomyces cerevisiae HAU-1. Journal of Basic Microbiology, 1998, 38, 123-128.	1.8	51
63	Remediation of Textile Dye Waste Water Using a White-Rot Fungus Bjerkandera adusta Through Solid-state Fermentation (SSF). Applied Biochemistry and Biotechnology, 2008, 151, 618-628.	1.4	51
64	Title is missing!. World Journal of Microbiology and Biotechnology, 1998, 14, 823-834.	1.7	50
65	Kefir as a Functional Beverage Gaining Momentum towards Its Health Promoting Attributes. Beverages, 2021, 7, 48.	1.3	46
66	The isolation of thermophilic bacterial cultures capable of textile dyes decolorization. Environment International, 1997, 23, 547-551.	4.8	45
67	The Gut Microbiota Influenced by the Intake of Probiotics and Functional Foods with Prebiotics Can Sustain Wellness and Alleviate Certain Ailments like Gut-inflammation and Colon-Cancer. Microorganisms, 2022, 10, 665.	1.6	44
68	Effect of various carbohydrate substrates on the production of kefir grains for use as a novel baking starter. Food Chemistry, 2004, 88, 237-242.	4.2	43
69	Probiotics, Prebiotics, Synbiotics, and Fermented Foods as Potential Biotics in Nutrition Improving Health via Microbiome-Gut-Brain Axis. Fermentation, 2022, 8, 303.	1.4	42
70	Biotransformation of cholesterol using Lactobacillus bulgaricus in a glucose-controlled bioreactor. Bioresource Technology, 2001, 78, 209-211.	4.8	41
71	Saccharomyces cerevisiae and Oenococcus oeni immobilized in different layers of a cellulose/starch gel composite for simultaneous alcoholic and malolactic wine fermentations. Process Biochemistry, 2013, 48, 1279-1284.	1.8	40
72	Decolourisation of molasses wastewater by cells of Pseudomonas fluorescens immobilised on porous cellulose carrier. Bioresource Technology, 2001, 78, 111-114.	4.8	39

#	Article	IF	Citations
73	Malolactic Fermentation in Wine withLactobacillus caseiCells Immobilized on Delignified Cellulosic Material. Journal of Agricultural and Food Chemistry, 2005, 53, 2546-2551.	2.4	39
74	Title is missing!. World Journal of Microbiology and Biotechnology, 2002, 18, 835-839.	1.7	38
75	Entrapment of Lactobacillus casei ATCC393 in the viscus matrix of Pistacia terebinthus resin for functional myzithra cheese manufacture. LWT - Food Science and Technology, 2018, 89, 441-448.	2.5	37
76	Ethanol production at 45°C by alginate-immobilized Kluyveromyces marxianus IMB3 during growth on lactose-containing media. Bioprocess and Biosystems Engineering, 1997, 16, 101-104.	0.5	33
77	Evaluation of Chios mastic gum as antimicrobial agent and matrix forming material targeting probiotic cell encapsulation for functional fermented milk production. LWT - Food Science and Technology, 2018, 97, 109-116.	2.5	33
78	Sustainability of biohydrogen as fuel: Present scenario and future perspective. AIMS Energy, 2019, 7, 1-19.	1.1	33
79	Studies on the decolourisation of an artificial textile-effluent by white-rot fungi in N-rich and N-limited media. Applied Microbiology and Biotechnology, 2001, 57, 810-814.	1.7	32
80	Simultaneous raw starch hydrolysis and ethanol fermentation by glucoamylase fromRhizoctonia solani and Saccharomyces cerevisiae. Journal of Basic Microbiology, 1995, 35, 117-121.	1.8	31
81	Food Additive Lactic Acid Production by Immobilized Cells ofLactobacillus brevison Delignified Cellulosic Material. Journal of Agricultural and Food Chemistry, 2003, 51, 5285-5289.	2.4	31
82	Exploring endophytes for <i>in vitro</i> synthesis of bioactive compounds similar to metabolites produced <i>in vivo</i> by host plants. AIMS Microbiology, 2021, 7, 175-199.	1.0	30
83	Process selection for protein-enrichment: fermentation of the sugar industry by-products molasses and sugar beet pulp. Process Biochemistry, 1994, 29, 337-342.	1.8	29
84	Waste Management by Biological Approach Employing Natural Substrates and Microbial Agents for the Remediation of Dyes' Wastewater. Applied Sciences (Switzerland), 2020, 10, 2958.	1.3	28
85	Selection of a substratum for composing biofilm system of a textile-effluent decolourizing bacteria. Biotechnology Letters, 1995, 17, 993-996.	1.1	27
86	Cellulase and ligninase production by basidiomycete culture in solid-state fermentation. Biological Wastes, 1987, 20, 1-9.	0.3	26
87	Investigation of some factors important for solid-state fermentation of sugar cane bagasse for animal feed production. Enzyme and Microbial Technology, 1990, 12, 808-811.	1.6	26
88	Bioconversion of sugar industry by-products—molasses and sugar beet pulp for single cell protein production by yeasts. Biomass and Bioenergy, 1991, 1, 339-345.	2.9	25
89	Remediation of Textile Effluent Using Agricultural Residues. Applied Biochemistry and Biotechnology, 2002, 102-103, 207-212.	1.4	25
90	Utilization of waste fruit-peels to inhibit aflatoxins synthesis by Aspergillus flavus: A biotreatment of rice for safer storage. Bioresource Technology, 2014, 172, 423-428.	4.8	25

#	Article	IF	CITATIONS
91	Title is missing!. World Journal of Microbiology and Biotechnology, 1997, 13, 283-288.	1.7	24
92	An Overview of Bioprocesses Employing Specifically Selected Microbial Catalysts for \hat{l}^3 -Aminobutyric Acid Production. Microorganisms, 2021, 9, 2457.	1.6	24
93	Ethanol production at 45 i $^1\!$	1.1	23
94	Captopril and its synthesis from chiral intermediates. Journal of Chemical Technology and Biotechnology, 2001, 76, 123-127.	1.6	23
95	Process optimization for continuous ethanol fermentation by alginate-immobilized cells of Saccharomyces cerevisiae HAU-1. Journal of Basic Microbiology, 1996, 36, 205-210.	1.8	22
96	Production of ethanol from sucrose at $45 \hat{A}^{\circ} \text{C}$ by alginate-immoblized preparations of the thermotolerant yeast strain Kluyveromyces marxianus IMB3. Bioresource Technology, 1996, 55, 171-173.	4.8	22
97	Title is missing!. World Journal of Microbiology and Biotechnology, 2001, 17, 411-415.	1.7	22
98	Apple juice preservation through microbial adsorption by nano/micro-tubular cellulose. Innovative Food Science and Emerging Technologies, 2016, 33, 416-421.	2.7	22
99	Simultaneous saccharification and protein enrichment fermentation of sugar beet pulp. Biotechnology Letters, 1988, 10, 67-72.	1.1	21
100	An unusual facultatively anaerobic filamentous fungus isolated under prolonged enrichment culture conditions. Mycological Research, 1994, 98, 757-760.	2.5	21
101	Title is missing!. Biotechnology Letters, 1998, 20, 753-755.	1.1	20
102	Characterisation of laccase produced by Coniothyrium minitans. Journal of Basic Microbiology, 1998, 38, 349-359.	1.8	19
103	Processes for Fermentative Production of Xylitol a Sugar Substitute. Process Biochemistry, 1995, 30, 117-124.	0.1	19
104	Promotion of maltose fermentation at extremely low temperatures using a cryotolerant Saccharomyces cerevisiae strain immobilized on porous cellulosic material. Enzyme and Microbial Technology, 2014, 66, 56-59.	1.6	18
105	Utilization of agro-wastes to inhibit aflatoxins synthesis by Aspergillus parasiticus: A biotreatment of three cereals for safe long-term storage. Bioresource Technology, 2015, 197, 443-450.	4.8	18
106	Resolution of (RS)-Proglumide using Lipase from Candida cylindraceae. Bioorganic and Medicinal Chemistry, 2002, 10, 1471-1475.	1.4	15
107	A cell-factory model of Saccharomyces cerevisiae based on bacterial cellulose without GMO for consolidated bioprocessing of starch. Food and Bioproducts Processing, 2021, 128, 202-214.	1.8	14
108	Production of ethanol from molasses at 45 °C using alginate-immobilized. Bioprocess and Biosystems Engineering, 1997, 16, 389.	0.5	14

#	Article	IF	Citations
109	A Biological Approach for Color-Stripping of Cotton Fabric Dyed with C.I. Reactive Black 5 Using Fungal Enzymes from Solid State Fermentation. Current Biotechnology, 2014, 3, 166-173.	0.2	14
110	Microbial degradation of bagasse: Isolation and cellulolytic properties of Basidiomycetes Spp. from biomanure from a biogas plant. Agricultural Wastes, 1985, 12, 273-285.	0.4	13
111	Production of endo-1,4- \hat{l}^2 -glucanase by a biocontrol fungus Cladorrhinum foecundissimum. Bioresource Technology, 2000, 75, 95-97.	4.8	13
112	Degradation of naphthalene by bacterial cultures. Environment International, 1998, 24, 671-677.	4.8	12
113	Phospholipid—the dynamic structure between living and non-living world; a much obligatory supramolecule for present and future. AIMS Molecular Science, 2019, 6, 1-19.	0.3	12
114	Consolidated bioprocessing of lactose into lactic acid and ethanol using non-engineered cell factories. Bioresource Technology, 2022, 345, 126464.	4.8	12
115	A critical review for advances on industrialization of immobilized cell Bioreactors: Economic evaluation on cellulose hydrolysis for PHB production. Bioresource Technology, 2022, 349, 126757.	4.8	12
116	Application of biological systems and processes employing microbes and algae to Reduce, Recycle, Reuse (3Rs) for the sustainability of circular bioeconomy. AIMS Microbiology, 2022, 8, 83-102.	1.0	12
117	Production, partial characterization, and potential diagnostic use of salicylate hydroxylase from Pseudomonas putida UUC-1. Enzyme and Microbial Technology, 1994, 16, 665-670.	1.6	11
118	Production of salicylate hydroxylase fromPseudomonas putida UUC-1 and its application in the construction of a biosensor. Journal of Chemical Technology and Biotechnology, 1995, 64, 331-338.	1.6	10
119	Selection of preculture conditions for solid state fermentation of sugar beet pulp. Biotechnology Letters, 1988, 10, 755-758.	1.1	9
120	Ethanol production at $45 \hat{A}^{\circ}$ C using preparations of Kluyveromyces marxianus IMB3 immobilized in calcium alginate and kissiris. Bioprocess and Biosystems Engineering, 1996, 15, 275-277.	0.5	9
121	Food Industries Wastewater Recycling for Biodiesel Production through Microalgal Remediation. Sustainability, 2021, 13, 8267.	1.6	9
122	Bioactivites of Penicillium citrinum isolated from a medicinal plant Swertia chirayita. Archives of Microbiology, 2021, 203, 5173-5182.	1.0	9
123	Cell factory models of non-engineered S. cerevisiae containing lactase in a second layer for lactose fermentation in one batch. Enzyme and Microbial Technology, 2021, 145, 109750.	1.6	8
124	Mixed cultures fermentation for bioconversion of whole bagasse into microbial protein. Journal of Basic Microbiology, 1987, 27, 323-327.	1.8	7
125	The effects of microencapsulated Lactobacillus casei on tumour cell growth: In vitro and in vivo studies. International Journal of Medical Microbiology, 2012, 302, 293-299.	1.5	7
126	Chemical preservative delivery in meat using edible vegetable tubular cellulose. LWT - Food Science and Technology, 2021, 141, 111049.	2.5	7

#	Article	IF	CITATIONS
127	Bioactivity of extracts of Centaurea polyclada dc. (Asteraceae). Archives of Biological Sciences, 2009, 61, 447-452.	0.2	7
128	Bioethanol synthesis for fuel or beverages from the processing of agri-food by-products and natural biomass using economical and purposely modified biocatalytic systems. AIMS Energy, 2018, 6, 979-992.	1.1	7
129	Biosynthesis of fuel-grade ethanol from cellobiose by a cell-factory of non-GMO Saccharomyces cerevisiae/starch-gel-cellulase. Fuel, 2022, 313, 122986.	3.4	7
130	A note on utilization of bagasse for the production of proteinaceous cattle feed. Biological Wastes, 1987, 19, 275-280.	0.3	6
131	Effect of cultural factors on cellulase biosynthesis in submerged bagasse fermentation by basidiomycetes cultures. Journal of Basic Microbiology, 1991, 31, 285-292.	1.8	6
132	The effect of Mn2+ on ethanol production from lactose using Kluyveromyces marxianus IMB3 immobilized in magnetically responsive matrices. Bioprocess and Biosystems Engineering, 1997, 17, 31-34.	0.5	6
133	A bioprocess for the remediation of anaerobically digested molasses spentwash from biogas plant and simultaneous production of lactic acid. Bioprocess and Biosystems Engineering, 1999, 20, 337.	0.5	6
134	Upgrading of Mixed Food Industry Side-Streams by Solid-State Fermentation with P. ostreatus. Recycling, 2018, 3, 12.	2.3	6
135	Thermal activation and stability of cellulases derived from two basidiomycetes. Biotechnology Letters, 1988, 10, 919-920.	1.1	5
136	The isolation and characterisation of a salicylate-hydroxylase-producing strain of Pseudomonas putida. Applied Microbiology and Biotechnology, 1992, 37, 378-381.	1.7	5
137	Comparison of Iron (III) Reducing Antioxidant Capacity (iRAC) and ABTS Radical Quenching Assays for Estimating Antioxidant Activity of Pomegranate. Beverages, 2018, 4, 58.	1.3	5
138	Bioconversion of potato-processing wastes into an industrially-important chemical lactic acid. Bioresource Technology Reports, 2021, 15, 100698.	1.5	5
139	The effects of some added carbohydrates on cellulases and ligninase and decomposition of whole bagasse. Agricultural Wastes, 1986, 17, 293-299.	0.4	4
140	Fermentation of Bagasse by submerged fungal cultures: Effect of nitrogen sources. Biological Wastes, 1988, 23, 313-317.	0.3	4
141	Process selection for bioconversion of sugar beet pulp into microbial protein. Biological Wastes, 1988, 26, 71-75.	0.3	4
142	Influence of sugars on the activity of cellulase system from two basidiomycetes cultures. Journal of Basic Microbiology, 1991, 31, 279-283.	1.8	4
143	Processing of sugar beet pulp in simultaneous saccharification and fermentation for the production of a protein-enriched product. Process Biochemistry, 1994, 29, 331-336.	1.8	4
144	Production of the enzyme dihydrofolate reductase by methotrexateâ€resistant bacteria isolated from soil. Journal of Chemical Technology and Biotechnology, 1993, 56, 35-40.	1.6	4

#	ARTICLE	lF	CITATIONS
145	An Overview of Microorganisms'; Contribution and Performance in Alco- hol Fermentation Processing a Variety of Substrates. Current Biotechnology, 2017, 6, 9-16.	0.2	4
146	Microbial biofuels production. , 2014, , 155-168.		3
147	An overview of three biocatalysts of pharmaceutical importance synthesized by microbial cultures. AIMS Microbiology, 2021, 7, 124-137.	1.0	3
148	Glutathione transferase-P1-1 binding with naturally occurring ligands: assessment by docking simulations. Journal of Biophysical Chemistry, 2011, 02, 401-407.	0.1	3
149	Anticancer Effects of Novel Tetrahydro-Dimethyl-Xanthene-Diones. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 909-916.	0.9	3
150	Isolation of antimicrobial compounds from aniseed and technoâ€economic feasibility report for industrialâ€scale application. International Journal of Food Science and Technology, 2022, 57, 5155-5163.	1.3	3
151	Dihydrofolate reductase synthesis in continuous culture using a methotrexate-resistant Escherichia coli. Enzyme and Microbial Technology, 1993, 15, 652-656.	1.6	2
152	Effect of cellulose crystallinity modification by starch gel treatment for improvement in ethanol fermentation rate by non-GM yeast cell factories. Bioprocess and Biosystems Engineering, 2022, 45, 783-790.	1.7	2
153	Some factors affecting bioconversion of whole bagasse into fungal biomass. Journal of Basic Microbiology, 1990, 30, 747-751.	1.8	1
154	Preface. Bioresource Technology, 2015, 188, 1.	4.8	0
155	Continuous ethanol fermentation at 45 °C using. Bioprocess and Biosystems Engineering, 1998, 18, 187.	0.5	0
156	Current Aspects of Medicinal Properties and Health Benefits of Plant Withania somnifera. , 2019, , 311-325.		0