Mrinal K Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1679566/publications.pdf

Version: 2024-02-01

230014 355658 2,319 39 27 38 citations h-index g-index papers 39 39 39 3882 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Cytokine responses in nonlesional psoriatic skin as clinical predictor to anti-TNF agents. Journal of Allergy and Clinical Immunology, 2022, 149, 640-649.e5.	1.5	11
2	Noninvasive Tape-Stripping with High-Resolution RNA Profiling Effectively Captures a Preinflammatory State in Nonlesional Psoriatic Skin. Journal of Investigative Dermatology, 2022, 142, 1587-1596.e2.	0.3	13
3	Skin-Expressing IncRNAs in Inflammatory Responses. Frontiers in Genetics, 2022, 13, 835740.	1.1	10
4	NIX initiates mitochondrial fragmentation via DRP1 to drive epidermal differentiation. Cell Reports, 2021, 34, 108689.	2.9	40
5	Phospholipase A2 enzymes represent a shared pathogenic pathway in psoriasis and pityriasis rubra pilaris. JCI Insight, 2021, 6, .	2.3	35
6	IRAK2 Has a Critical Role in Promoting Feed-Forward Amplification of Epidermal Inflammatory Responses. Journal of Investigative Dermatology, 2021, 141, 2436-2448.	0.3	11
7	Phototherapy-induced interferon kappa drives type I interferon mediated anticancer responses in cutaneous T cell lymphoma. European Journal of Cancer, 2021, 156, S21.	1.3	0
8	Staphylococcus aureus Colonization Is Increased on Lupus Skin Lesions and Is Promoted by IFN-Mediated Barrier Disruption. Journal of Investigative Dermatology, 2020, 140, 1066-1074.e4.	0.3	34
9	Progression of acute-to-chronic atopic dermatitis is associated with quantitative rather than qualitative changes in cytokine responses. Journal of Allergy and Clinical Immunology, 2020, 145, 1406-1415.	1.5	103
10	IL-27 signaling activates skin cells to induce innate antiviral proteins and protects against Zika virus infection. Science Advances, 2020, 6, eaay3245.	4.7	29
11	KLK6 expression in skin induces PAR1-mediated psoriasiform dermatitis and inflammatory joint disease. Journal of Clinical Investigation, 2020, 130, 3151-3157.	3.9	34
12	When bugs and drugs conspire: driving acneiform skin toxicity. Journal of Clinical Investigation, 2020, 130, 1090-1092.	3.9	1
13	IFN-Î ³ enhances cell-mediated cytotoxicity against keratinocytes via JAK2/STAT1 in lichen planus. Science Translational Medicine, 2019, 11, .	5.8	85
14	Atopic Dermatitis Is an IL-13–Dominant Disease with Greater Molecular Heterogeneity Compared to Psoriasis. Journal of Investigative Dermatology, 2019, 139, 1480-1489.	0.3	283
15	Hypersensitive IFN Responses in Lupus Keratinocytes Reveal Key Mechanistic Determinants in Cutaneous Lupus. Journal of Immunology, 2019, 202, 2121-2130.	0.4	44
16	The female-biased factor VGLL3 drives cutaneous and systemic autoimmunity. JCI Insight, 2019, 4, .	2.3	46
17	Transcriptional determinants of individualized inflammatory responses at anatomically separate sites. Journal of Allergy and Clinical Immunology, 2018, 141, 805-808.	1.5	4
18	RNA-Seq Analysis of IL-1B and IL-36 Responses in Epidermal Keratinocytes Identifies a Shared MyD88-Dependent Gene Signature. Frontiers in Immunology, 2018, 9, 80.	2.2	79

#	Article	IF	CITATIONS
19	Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Annals of the Rheumatic Diseases, 2018, 77, 1653-1664.	0.5	162
20	Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis. Genome Medicine, 2017, 9, 24.	3 . 6	118
21	Endogenous Glucocorticoid Deficiency in Psoriasis Promotes Inflammation and Abnormal Differentiation. Journal of Investigative Dermatology, 2017, 137, 1474-1483.	0.3	38
22	The Molecular Revolution in Cutaneous Biology: The Era of Global Transcriptional Analysis. Journal of Investigative Dermatology, 2017, 137, e87-e91.	0.3	6
23	A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. Nature Immunology, 2017, 18, 152-160.	7.0	98
24	IFN- \hat{I}^3 and TNF- \hat{I}^\pm synergism may provide a link between psoriasis and inflammatory atherogenesis. Scientific Reports, 2017, 7, 13831.	1.6	78
25	Psoriasis: a mixed autoimmune and autoinflammatory disease. Current Opinion in Immunology, 2017, 49, 1-8.	2.4	166
26	Six-transmembrane epithelial antigens of the prostate comprise a novel inflammatory nexus in patients with pustular skin disorders. Journal of Allergy and Clinical Immunology, 2017, 139, 1217-1227.	1.5	38
27	Lupus Skin Is Primed for IL-6 Inflammatory Responses through a Keratinocyte-Mediated Autocrine TypeÂlÂInterferon Loop. Journal of Investigative Dermatology, 2017, 137, 115-122.	0.3	77
28	RNA-seq identifies a diminished differentiation gene signature in primary monolayer keratinocytes grown from lesional and uninvolved psoriatic skin. Scientific Reports, 2017, 7, 18045.	1.6	37
29	Cross-Disease Transcriptomics: Unique IL-17A Signaling in Psoriasis Lesions and an Autoimmune PBMC Signature. Journal of Investigative Dermatology, 2016, 136, 1820-1830.	0.3	54
30	IL-17 Responses Are the Dominant Inflammatory Signal Linking Inverse, Erythrodermic, and Chronic Plaque Psoriasis. Journal of Investigative Dermatology, 2016, 136, 2498-2501.	0.3	31
31	Proteogenomic analysis of psoriasis reveals discordant and concordant changes in mRNA and protein abundance. Genome Medicine, 2015, 7, 86.	3.6	80
32	Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin. Genome Biology, 2015, 16, 24.	3.8	204
33	Psoriasis drug development and GWAS interpretation through <i>in silico</i> analysis of transcription factor binding sites. Clinical and Translational Medicine, 2015, 4, 13.	1.7	40
34	An Xist-activating antisense RNA required for X-chromosome inactivation. Nature Communications, 2015, 6, 8564.	5.8	26
35	Differentiation-dependent requirement of Tsix long non-coding RNA in imprinted X-chromosome inactivation. Nature Communications, 2014, 5, 4209.	5.8	43
36	Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era. BMC Medical Genomics, 2014, 7, 27.	0.7	43

#	Article	IF	CITATIONS
37	Prevention of tertiary butyl hydroperoxide induced oxidative impairment and cell death by a novel antioxidant protein molecule isolated from the herb, Phyllanthus niruri. Toxicology in Vitro, 2010, 24, 1711-1719.	1.1	41
38	Purification and characterisation of a novel antioxidant protein molecule from Phyllanthus niruri. Food Chemistry, 2009, 114, 1405-1412.	4.2	38
39	Hepatocytes are protected by herb Phyllanthus niruri protein isolate against thioacetamide toxicity. Pathophysiology, 2007, 14, 113-120.	1.0	39