Cong Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1679480/publications.pdf Version: 2024-02-01

CONC CAO

#	Article	IF	CITATIONS
1	DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chemical Reviews, 2018, 118, 4-72.	23.0	141
2	Reference values for peripheral blood lymphocyte subsets of healthy children in China. Journal of Allergy and Clinical Immunology, 2018, 142, 970-973.e8.	1.5	93
3	Programmable biomolecular switches for rewiring flux in Escherichia coli. Nature Communications, 2019, 10, 3751.	5.8	84
4	Engineering <i>Escherichia coli</i> for malate production by integrating modular pathway characterization with CRISPRiâ€guided multiplexed metabolic tuning. Biotechnology and Bioengineering, 2018, 115, 661-672.	1.7	77
5	Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nature Catalysis, 2021, 4, 395-406.	16.1	75
6	An efficient enzymatic production of N-acetyl- <scp>d</scp> -glucosamine from crude chitin powders. Green Chemistry, 2016, 18, 2147-2154.	4.6	63
7	Engineering Escherichia coli lifespan for enhancing chemical production. Nature Catalysis, 2020, 3, 307-318.	16.1	61
8	Engineering synergetic CO2-fixing pathways for malate production. Metabolic Engineering, 2018, 47, 496-504.	3.6	55
9	Light-powered Escherichia coli cell division for chemical production. Nature Communications, 2020, 11, 2262.	5.8	51
10	Improving lysine production through construction of an <i>Escherichia coli</i> enzyme onstrained model. Biotechnology and Bioengineering, 2020, 117, 3533-3544.	1.7	47
11	Characterization of extracellular chitinase from Chitinibacter sp. GC72 and its application in GlcNAc production from crayfish shell enzymatic degradation. Biochemical Engineering Journal, 2015, 97, 59-64.	1.8	45
12	Genetic Circuit-Assisted Smart Microbial Engineering. Trends in Microbiology, 2019, 27, 1011-1024.	3.5	45
13	Enhancement of malate production through engineering of the periplasmic rTCA pathway in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2018, 115, 1571-1580.	1.7	37
14	Open Gate of <i>Corynebacterium glutamicum</i> Threonine Deaminase for Efficient Synthesis of Bulky α-Keto Acids. ACS Catalysis, 2020, 10, 9994-10004.	5.5	36
15	Rewiring carbon flux in Escherichia coli using a bifunctional molecular switch. Metabolic Engineering, 2020, 61, 47-57.	3.6	34
16	Engineering microbial cell morphology and membrane homeostasis toward industrial applications. Current Opinion in Biotechnology, 2020, 66, 18-26.	3.3	26
17	Comprehensive understanding of <i>Saccharomyces cerevisiae</i> phenotypes with whole ell model WM_S288C. Biotechnology and Bioengineering, 2020, 117, 1562-1574.	1.7	23
18	Dynamic consolidated bioprocessing for direct production of xylonate and shikimate from xylan by Escherichia coli. Metabolic Engineering, 2020, 60, 128-137.	3.6	20

Cong Gao

#	Article	IF	CITATIONS
19	Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae. Nature Communications, 2022, 13, 1886.	5.8	20
20	Genome-scale metabolic network models: from first-generation to next-generation. Applied Microbiology and Biotechnology, 2022, 106, 4907-4920.	1.7	19
21	A multi-enzyme cascade for efficient production of d-p-hydroxyphenylglycine from l-tyrosine. Bioresources and Bioprocessing, 2021, 8, .	2.0	18
22	Microbial engineering for the production of C ₂ –C ₆ organic acids. Natural Product Reports, 2021, 38, 1518-1546.	5.2	17
23	Enhancing tryptophan production by balancing precursors in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2022, 119, 983-993.	1.7	17
24	Synergistic Metabolism of Glucose and Formate Increases the Yield of Short-Chain Organic Acids in <i>Escherichia coli</i> . ACS Synthetic Biology, 2022, 11, 135-143.	1.9	16
25	Microbial cell engineering to improve cellular synthetic capacity. Biotechnology Advances, 2020, 45, 107649.	6.0	15
26	Engineering the Cad pathway in Escherichia coli to produce glutarate from l-lysine. Applied Microbiology and Biotechnology, 2021, 105, 3587-3599.	1.7	15
27	Microbial physiological engineering increases the efficiency of microbial cell factories. Critical Reviews in Biotechnology, 2021, 41, 339-354.	5.1	14
28	A biosynthesis pathway for 3-hydroxypropionic acid production in genetically engineered <i>Saccharomyces cerevisiae</i> . Green Chemistry, 2021, 23, 4502-4509.	4.6	13
29	Reprogramming microbial populations using a programmed lysis system to improve chemical production. Nature Communications, 2021, 12, 6886.	5.8	13
30	One-Pot Enzymatic–Chemical Cascade Route for Synthesizing Aromatic α-Hydroxy Ketones. ACS Catalysis, 2021, 11, 2808-2818.	5.5	10
31	Dynamic regulation of membrane integrity to enhance <scp>l</scp> â€malate stress tolerance in <i>Candida glabrata</i> . Biotechnology and Bioengineering, 2021, 118, 4347-4359.	1.7	10
32	Rational design of a highly efficient catalytic system for the production of PAPS from ATP and its application in the synthesis of chondroitin sulfate. Biotechnology and Bioengineering, 2021, 118, 4503-4515.	1.7	10
33	Bifunctional optogenetic switch for improving shikimic acid production in E. coli. , 2022, 15, 13.		10
34	Reprogramming <i>Escherichia coli</i> Metabolism for Bioplastics Synthesis from Waste Cooking Oil. ACS Synthetic Biology, 2021, 10, 1966-1979.	1.9	9
35	Engineering a CRISPRi Circuit for Autonomous Control of Metabolic Flux in <i>Escherichia coli</i> . ACS Synthetic Biology, 2021, 10, 2661-2671.	1.9	9
36	Fumarate Production by Torulopsis glabrata: Engineering Heterologous Fumarase Expression and Improving Acid Tolerance. PLoS ONE, 2016, 11, e0164141.	1,1	8

Cong Gao

#	Article	IF	CITATIONS
37	Enhanced chitinase production by <i>Chitinolyticbacter meiyuanensis</i> SYBC-H1 using staged pH control. Journal of General and Applied Microbiology, 2016, 62, 126-131.	0.4	7
38	Thermoelectric Parameter Modeling of Single-Layer Graphene Considering Carrier Concentration and Mobility With Temperature and Gate Voltage. IEEE Access, 2019, 7, 139329-139336.	2.6	7
39	Mediator Engineering of <i>Saccharomyces cerevisiae</i> To Improve Multidimensional Stress Tolerance. Applied and Environmental Microbiology, 2022, 88, e0162721.	1.4	7
40	Expanding the lysine industry: biotechnological production of l-lysine and its derivatives. Advances in Applied Microbiology, 2021, 115, 1-33.	1.3	6
41	Immobilization of Microbial Consortium for Glutaric Acid Production from Lysine. ChemCatChem, 2021, 13, 5047-5055.	1.8	6
42	Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production. Bioresources and Bioprocessing, 2021, 8, .	2.0	6
43	Enzymatic Production of Ascorbic Acid-2-Phosphate by Engineered Pseudomonas aeruginosa Acid Phosphatase. Journal of Agricultural and Food Chemistry, 2021, 69, 14215-14221.	2.4	5
44	Rational Design of Phospholipase D to Improve the Transphosphatidylation Activity for Phosphatidylserine Synthesis. Journal of Agricultural and Food Chemistry, 2022, 70, 6709-6718.	2.4	5
45	Improving succinate production by engineering oxygen-dependent dynamic pathway regulation in Escherichia coli. Systems Microbiology and Biomanufacturing, 2022, 2, 331-344.	1.5	4
46	Production of phenylpyruvic acid by engineered l-amino acid deaminase from Proteus mirabilis. Biotechnology Letters, 2022, 44, 635-642.	1.1	3
47	Advances in microbial engineering for the production of value-added products in a biorefinery. Systems Microbiology and Biomanufacturing, 2023, 3, 246-261.	1.5	3
48	Advances in microbial production of feed amino acid. Advances in Applied Microbiology, 2022, , 1-33.	1.3	3
49	Dynamic control of the distribution of carbon flux between cell growth and butyrate biosynthesis in Escherichia coli. Applied Microbiology and Biotechnology, 2021, 105, 5173-5187.	1.7	2
50	Engineering membrane asymmetry to increase medium hain fatty acid tolerance in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2022, 119, 277-286.	1.7	2
51	Incoherent optical modulation of graphene based on inline fiber Mach-Zehnder interferometer. , 2017, , .		1
52	Study on the Heat Disspation System Using Thermoelectric Cooling Based on Energy Harvesting for High-power LED. , 2019, , .		1
53	Electrothermal Collaborative Cooling With Delayed Power Rail Switching Auxiliary Charging by Considering Energy Harvesting Mechanism for High-Power LEDs. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 1507-1514.	1.4	1
54	Study on the PhotoThermoelectric Characteristic of Graphene with Double-Gate. , 2019, , .		0

• • • • • •	^
	1.10
CONU	UAU.

#	Article	IF	CITATIONS
55	Advances in microbial synthesis of bioplastic monomers. Advances in Applied Microbiology, 2022, , .	1.3	0