Pawel Krzeminski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1679294/publications.pdf

Version: 2024-02-01

29 papers 1,904 citations

393982 19 h-index 25 g-index

29 all docs

29 docs citations

times ranked

29

2404 citing authors

#	Article	IF	CITATIONS
1	Membrane bioreactors – A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. Journal of Membrane Science, 2017, 527, 207-227.	4.1	329
2	Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Science of the Total Environment, 2019, 648, 1052-1081.	3.9	328
3	A review of nature-based solutions for urban water management in European circular cities: a critical assessment based on case studies and literature. Blue-Green Systems, 2020, 2, 112-136.	0.6	183
4	Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. Science of the Total Environment, 2020, 710, 136312.	3.9	167
5	Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Science and Technology, 2012, 65, 380-392.	1.2	148
6	Impact of temperature on raw wastewater composition and activated sludge filterability in full-scale MBR systems for municipal sewage treatment. Journal of Membrane Science, 2012, 423-424, 348-361.	4.1	89
7	The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR). Journal of Membrane Science, 2012, 401-402, 48-55.	4.1	76
8	Occurrence of UV filters, fragrances and organophosphate flame retardants in municipal WWTP effluents and their removal during membrane post-treatment. Journal of Hazardous Materials, 2017, 323, 166-176.	6.5	66
9	Activated sludge characteristics affecting sludge filterability in municipal and industrial MBRs: Unraveling correlations using multi-component regression analysis. Journal of Membrane Science, 2011, 378, 330-338.	4.1	60
10	A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants. Environment International, 2020, 144, 106035.	4.8	55
11	The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment. Current Opinion in Microbiology, 2021, 64, 152-158.	2.3	54
12	MLSS concentration: Still a poorly understood parameter in MBR filterability. Desalination, 2010, 250, 618-622.	4.0	49
13	Removal of antibiotic resistant E. coli in two Norwegian wastewater treatment plants and by nanoand ultra-filtration processes. Water Science and Technology, 2018, 77, 1115-1126.	1.2	47
14	Combined membrane filtration and 265Ânm UV irradiation for effective removal of cell free antibiotic resistance genes from feed water and concentrate. Journal of Membrane Science, 2020, 598, 117676.	4.1	47
15	Management of Urban Waters with Nature-Based Solutions in Circular Citiesâ€"Exemplified through Seven Urban Circularity Challenges. Water (Switzerland), 2021, 13, 3334.	1.2	46
16	Natural organic matter fractions and their removal in full-scale drinking water treatment under cold climate conditions in Nordic capitals. Journal of Environmental Management, 2019, 241, 427-438.	3.8	42
17	Analysis of the filterability in industrial MBRs. Influence of activated sludge parameters and constituents on filterability. Journal of Membrane Science, 2011, 385-386, 96-109.	4.1	25
18	Impact of inflow conditions on activated sludge filterability and membrane bioreactor (MBR) operational performance. Desalination and Water Treatment, 2015, 56, 1-13.	1.0	25

#	Article	IF	CITATIONS
19	Flat sheet or hollow fibre — comparison of full-scale membrane bio-reactor configurations. Desalination and Water Treatment, 2012, 42, 100-106.	1.0	22
20	The optimal MBR configuration: Hybrid versus stand-alone â€" Comparison between three full-scale MBRs treating municipal wastewater. Desalination, 2012, 284, 341-348.	4.0	18
21	Nature-Based Units as Building Blocks for Resource Recovery Systems in Cities. Water (Switzerland), 2021, 13, 3153.	1.2	11
22	Filtration Characterization Method as Tool to Assess Membrane Bioreactor Sludge Filterability—The Delft Experience. Membranes, 2014, 4, 227-242.	1.4	7
23	MBR performance: Operational problems in industry. Filtration and Separation, 2011, 48, 36-41.	0.2	4
24	Treatment Technologies for Removal of Antibiotics, Antibiotic Resistance Bacteria and Antibiotic-Resistant Genes. Emerging Contaminants and Associated Treatment Technologies, 2020, , 415-434.	0.4	4
25	Non-woven polypropylene fabric modified with carbon nanotubes and decorated with nanoakaganeite for arsenite removal. International Journal of Environmental Science and Technology, 2018, 15, 1831-1842.	1.8	2
26	Sludge Residence Time and Membrane Fouling: What is the Connection?. Procedia Engineering, 2012, 44, 1069-1072.	1.2	0
27	Flat sheet or hollow fiber - comparison of full-scale membrane bio-reactor configurations. , 0, 42, 100-106.		0
28	Membranes in wastewater treatment. , 2017, , 129-154.		0
29	Entry Routes of Antibiotics and Antimicrobial Resistance in the Environment. Emerging Contaminants and Associated Treatment Technologies, 2020, , 1-26.	0.4	0