Junying Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/167917/publications.pdf Version: 2024-02-01

ΙΠΝΛΙΝΟ ΣΗΙ

#	Article	IF	CITATIONS
1	Reactive Oxygen Species Are Involved in Brassinosteroid-Induced Stress Tolerance in Cucumber Â. Plant Physiology, 2009, 150, 801-814.	2.3	640
2	Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 2015, 66, 2839-2856.	2.4	572
3	Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2016, 2, 16112.	4.7	529
4	Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Frontiers in Plant Science, 2015, 6, 601.	1.7	278
5	H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. Journal of Experimental Botany, 2014, 65, 4371-4383.	2.4	257
6	Brassinosteroids Alleviate Heat-Induced Inhibition of Photosynthesis by Increasing Carboxylation Efficiency and Enhancing Antioxidant Systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 2008, 27, 49-57.	2.8	255
7	HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. Journal of Pineal Research, 2017, 62, e12387.	3.4	219
8	Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. Journal of Pineal Research, 2016, 61, 457-469.	3.4	216
9	Phytochrome A and B Function Antagonistically to Regulate Cold Tolerance via Abscisic Acid-Dependent Jasmonate Signaling. Plant Physiology, 2016, 170, 459-471.	2.3	216
10	Melatonin mediates seleniumâ€induced tolerance to cadmium stress in tomato plants. Journal of Pineal Research, 2016, 61, 291-302.	3.4	211
11	Tomato HsfA1a plays a critical role in plant drought tolerance by activating <i>ATG</i> genes and inducing autophagy. Autophagy, 2015, 11, 2033-2047.	4.3	166
12	Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants. Plant Physiology and Biochemistry, 2012, 60, 141-149.	2.8	145
13	Hydrogen peroxide mediates abscisic acidâ€induced <scp>HSP</scp> 70 accumulation and heat tolerance in grafted cucumber plants. Plant, Cell and Environment, 2014, 37, 2768-2780.	2.8	135
14	Silencing of tomato <i>RBOH1</i> and <i>MPK2</i> abolishes brassinosteroidâ€induced H ₂ O ₂ generation and stress tolerance. Plant, Cell and Environment, 2013, 36, 789-803.	2.8	132
15	<i>RBOH1</i> -dependent H ₂ O ₂ production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. Journal of Experimental Botany, 2014, 65, 595-607.	2.4	129
16	Induction of systemic stress tolerance by brassinosteroid in <i>Cucumis sativus</i> . New Phytologist, 2011, 191, 706-720.	3.5	124
17	Cellular glutathione redox homeostasis plays an important role in the brassinosteroidâ€induced increase in CO ₂ assimilation in <i>Cucumis sativus</i> . New Phytologist, 2012, 194, 932-943.	3.5	120
18	A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca ²⁺ Signaling in Tomato. Plant Cell, 2018, 30, 652-667.	3.1	120

JUNYING SHI

#	Article	IF	CITATIONS
19	Identification of multiple salicylic acid-binding proteins using two high throughput screens. Frontiers in Plant Science, 2014, 5, 777.	1.7	119
20	Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Journal of Experimental Botany, 2015, 66, 1951-1963.	2.4	116
21	BZR1 Mediates Brassinosteroid-Induced Autophagy and Nitrogen Starvation in Tomato. Plant Physiology, 2019, 179, 671-685.	2.3	114
22	Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants. European Journal of Plant Pathology, 2010, 127, 125-135.	0.8	110
23	Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Scientific Reports, 2015, 5, 9018.	1.6	110
24	Guard cell hydrogen peroxide and nitric oxide mediate elevated <scp>CO</scp> ₂ â€induced stomatal movement in tomato. New Phytologist, 2015, 208, 342-353.	3.5	95
25	Brassinosteroidâ€mediated apoplastic <scp>H₂O₂</scp> â€glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato. Plant, Cell and Environment, 2018, 41, 1052-1064.	2.8	95
26	Brassinosteroids Act as a Positive Regulator of Photoprotection in Response to Chilling Stress. Plant Physiology, 2019, 180, 2061-2076.	2.3	90
27	Systemic Root-Shoot Signaling Drives Jasmonate-Based Root Defense against Nematodes. Current Biology, 2019, 29, 3430-3438.e4.	1.8	89
28	Systemic Induction and Role of Mitochondrial Alternative Oxidase and Nitric Oxide in a Compatible Tomato– <i>Tobacco mosaic virus</i> Interaction. Molecular Plant-Microbe Interactions, 2010, 23, 39-48.	1.4	85
29	Light Signaling-Dependent Regulation of Photoinhibition and Photoprotection in Tomato. Plant Physiology, 2018, 176, 1311-1326.	2.3	85
30	<i><scp>DWARF</scp></i> overexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato. Plant Biotechnology Journal, 2016, 14, 1021-1033.	4.1	83
31	Effects of cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves. Physiologia Plantarum, 2009, 135, 246-257.	2.6	82
32	RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants. BMC Genomics, 2015, 16, 120.	1.2	82
33	Systemic induction of photosynthesis via illumination of the shoot apex is mediated by phytochrome B. Plant Physiology, 2016, 172, pp.01202.2016.	2.3	73
34	Stimulated Leaf Dark Respiration in Tomato in an Elevated Carbon Dioxide Atmosphere. Scientific Reports, 2013, 3, 3433.	1.6	72
35	SIHY5 Integrates Temperature, Light, and Hormone Signaling to Balance Plant Growth and Cold Tolerance. Plant Physiology, 2019, 179, 749-760.	2.3	71
36	Elevated CO2 Improves Photosynthesis Under High Temperature by Attenuating the Functional Limitations to Energy Fluxes, Electron Transport and Redox Homeostasis in Tomato Leaves. Frontiers in Plant Science, 2018, 9, 1739.	1.7	66

JUNYING SHI

#	Article	IF	CITATIONS
37	Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an <scp>ABA</scp> â€independent process in tomato plants. Plant Biology, 2015, 17, 81-89.	1.8	65
38	Redox Signaling and CBF-Responsive Pathway Are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon. Frontiers in Plant Science, 2016, 7, 1519.	1.7	63
39	Genome-Wide Identification and Expression Analysis of Calcium-dependent Protein Kinase in Tomato. Frontiers in Plant Science, 2016, 7, 469.	1.7	62
40	The protein kinase CPK28 phosphorylates ascorbate peroxidase and enhances thermotolerance in tomato. Plant Physiology, 2021, 186, 1302-1317.	2.3	61
41	Brassinosteroids act as a positive regulator for resistance against rootâ€knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOGâ€dependent activation of MAPKs in tomato. Plant, Cell and Environment, 2018, 41, 1113-1125.	2.8	59
42	Strigolactones positively regulate defense against root-knot nematodes in tomato. Journal of Experimental Botany, 2019, 70, 1325-1337.	2.4	59
43	Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants. Frontiers in Plant Science, 2015, 6, 193.	1.7	57
44	Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Scientific Reports, 2016, 6, 20212.	1.6	57
45	Overexpression of a brassinosteroid biosynthetic gene Dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato. BMC Plant Biology, 2016, 16, 33.	1.6	57
46	24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L. Environmental Pollution, 2017, 229, 922-931.	3.7	57
47	Role of ethylene biosynthesis and signaling in elevated CO2-induced heat stress response in tomato. Planta, 2019, 250, 563-572.	1.6	57
48	Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato. Journal of Experimental Botany, 2020, 71, 1092-1106.	2.4	56
49	Salicylic acid binding of mitochondrial alphaâ€ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against <i>tobacco mosaic virus</i> in tomato. New Phytologist, 2015, 205, 1296-1307.	3.5	55
50	Brassinosteroidâ€mediated reactive oxygen species are essential for tapetum degradation and pollen fertility in tomato. Plant Journal, 2020, 102, 931-947.	2.8	55
51	Glutathione biosynthesis and regeneration play an important role in the metabolism of chlorothalonil in tomato. Chemosphere, 2013, 90, 2563-2570.	4.2	52
52	Microarray and genetic analysis reveals that csaâ€miR159b plays a critical role in abscisic acidâ€mediated heat tolerance in grafted cucumber plants. Plant, Cell and Environment, 2016, 39, 1790-1804.	2.8	52
53	Heat Shock Factor HsfA1a Is Essential for <i>R</i> Gene-Mediated Nematode Resistance and Triggers H ₂ O ₂ Production ¹ . Plant Physiology, 2018, 176, 2456-2471.	2.3	52
54	Detached leaves of tomato differ in their photosynthetic physiological response to moderate high and low temperature stress. Scientia Horticulturae, 2009, 123, 17-22.	1.7	49

JUNYING SHI

#	Article	IF	CITATIONS
55	High atmospheric carbon dioxide-dependent alleviation of salt stress is linked to RESPIRATORY BURST OXIDASE 1 (<i>RBOH1</i>)-dependent H ₂ O ₂ production in tomato (<i>Solanum)</i>	Tj ETQq.¥ 1	0.78 4 914 rgET
56	Apoplastic H ₂ O ₂ plays a critical role in axillary bud outgrowth by altering auxin and cytokinin homeostasis in tomato plants. New Phytologist, 2016, 211, 1266-1278.	3.5	49
57	Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
58	Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato. Horticulture Research, 2021, 8, 237.	2.9	47
59	The reduction of reactive oxygen species formation by mitochondrial alternative respiration in tomato basal defense against TMV infection. Planta, 2012, 235, 225-238.	1.6	46
60	The Role of Hydrogen Peroxide and Nitric Oxide in the Induction of Plant-Encoded RNA-Dependent RNA Polymerase 1 in the Basal Defense against Tobacco Mosaic Virus. PLoS ONE, 2013, 8, e76090.	1.1	45
61	Effects of aqueous root extracts and hydrophobic root exudates of cucumber (Cucumis sativus L.) on nuclei DNA content and expression of cell cycle-related genes in cucumber radicles. Plant and Soil, 2010, 327, 455-463.	1.8	42
62	Tomato-Pseudomonas syringae interactions under elevated CO2 concentration: the role of stomata. Journal of Experimental Botany, 2015, 66, 307-316.	2.4	40
63	Interplay between mitogen-activated protein kinase and nitric oxide in brassinosteroid-induced pesticide metabolism in Solanum lycopersicum. Journal of Hazardous Materials, 2016, 316, 221-231.	6.5	39
64	Combined genomic, transcriptomic, and metabolomic analyses provide insights into chayote (Sechium) Tj ET	Qq0 0 0 rg 2.9	BT /Oygrlock 10
65	Effects of calcium cyanamide on soil microbial communities and Fusarium oxysporum f. sp. cucumberinum. Chemosphere, 2009, 75, 872-877.	4.2	37
66	Photoinhibition-induced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves. Plant Growth Regulation, 2010, 60, 175-182.	1.8	37
67	Enhanced photosynthetic capacity and antioxidant potential mediate brassinosteriod-induced phenanthrene stress tolerance in tomato. Environmental Pollution, 2015, 201, 58-66.	3.7	37
68	Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. Planta, 2018, 247, 1217-1227.	1.6	37
69	Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato. Plant, Cell and Environment, 2021, 44, 1596-1610.	2.8	37
70	The phyBâ€dependent induction of HY5 promotes iron uptake by systemically activating <i>FER</i> expression. EMBO Reports, 2021, 22, e51944.	2.0	37
71	Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SINAP1 in the growth and defense response of tomato. Horticulture Research, 2020, 7, 209.	2.9	37
72	Interactions between 2-Cys peroxiredoxins and ascorbate in autophagosome formation during the heat stress response in <i>Solanum lycopersicum</i> . Journal of Experimental Botany, 2016, 67, 1919-1933.	2.4	34

Junying Shi

#	Article	IF	CITATIONS
73	Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock. Frontiers in Plant Science, 2016, 7, 746.	1.7	33
74	Chloroplastic thioredoxin-f and thioredoxin-m1/4 play important roles in brassinosteroids-induced changes in CO2 assimilation and cellular redox homeostasis in tomato. Journal of Experimental Botany, 2014, 65, 4335-4347.	2.4	32
75	Ethylene response factors 15 and 16 trigger jasmonate biosynthesis in tomato during herbivore resistance. Plant Physiology, 2021, 185, 1182-1197.	2.3	32
76	Natural variation for unusual host responses and flagellinâ€mediated immunity against <i>Pseudomonas syringae</i> in genetically diverse tomato accessions. New Phytologist, 2019, 223, 447-461.	3.5	29
77	Brassinosteroid improves seed germination and early development of tomato seedling under phenanthrene stress. Plant Growth Regulation, 2012, 68, 87-96.	1.8	28
78	Tomato photorespiratory glycolateâ€oxidaseâ€derived H ₂ O ₂ production contributes to basal defence against <i>Pseudomonas syringae</i> . Plant, Cell and Environment, 2018, 41, 1126-1138.	2.8	28
79	A novel <scp>CO</scp> ₂ â€responsive systemic signaling pathway controlling plant mycorrhizal symbiosis. New Phytologist, 2019, 224, 106-116.	3.5	28
80	High CO ₂ ―and pathogenâ€driven expression of the carbonic anhydrase βCA3 confers basal immunity in tomato. New Phytologist, 2021, 229, 2827-2843.	3.5	26
81	Stomatal movements are involved in elevated CO ₂ â€mitigated high temperature stress in tomato. Physiologia Plantarum, 2019, 165, 569-583.	2.6	25
82	Light-induced systemic resistance in tomato plants against root-knot nematode Meloidogyne incognita. Plant Growth Regulation, 2015, 76, 167-175.	1.8	22
83	The genome and transcriptome analysis of snake gourd provide insights into its evolution and fruit development and ripening. Horticulture Research, 2020, 7, 199.	2.9	22
84	Flexible change and cooperation between mitochondrial electron transport and cytosolic glycolysis as the basis for chilling tolerance in tomato plants. Planta, 2013, 237, 589-601.	1.6	21
85	Putrescine enhancement of tolerance to root-zone hypoxia in Cucumis sativus: a role for increased nitrate reduction. Functional Plant Biology, 2008, 35, 337.	1.1	20
86	Temperature effects on the reactive oxygen species formation and antioxidant defence in roots of two cucurbit species with contrasting root zone temperature optima. Acta Physiologiae Plantarum, 2012, 34, 713-720.	1.0	20
87	A Novel Role of Pipecolic Acid Biosynthetic Pathway in Drought Tolerance through the Antioxidant System in Tomato. Antioxidants, 2021, 10, 1923.	2.2	19
88	The relationship between the plant-encoded RNA-dependent RNA polymerase 1 and alternative oxidase in tomato basal defense against Tobacco mosaic virus. Planta, 2015, 241, 641-650.	1.6	18
89	Decreased energy synthesis is partially compensated by a switch to sucrose synthase pathway of sucrose degradation in restricted root of tomato plants. Plant Physiology and Biochemistry, 2008, 46, 1040-1044.	2.8	16
90	Microbial community responses associated with the development of Fusarium oxysporum f. sp. cucumerinum after 24-epibrassinolide applications to shoots and roots in cucumber. European Journal of Plant Pathology, 2009, 124, 141-150.	0.8	16

Junying Shi

#	Article	IF	CITATIONS
91	Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem. Scientific Reports, 2017, 7, 43096.	1.6	16
92	Crosstalk between Brassinosteroid and Redox Signaling Contributes to the Activation of CBF Expression during Cold Responses in Tomato. Antioxidants, 2021, 10, 509.	2.2	16
93	Noncoding RNAs: functional regulatory factors in tomato fruit ripening. Theoretical and Applied Genetics, 2020, 133, 1753-1762.	1.8	15
94	The Response of Antioxidant Enzymes in Cellular Organelles in Cucumber (CucumisÂsativus L.) Leaves to Methyl Viologen-induced Photo-oxidative Stress. Plant Growth Regulation, 2006, 49, 85-93.	1.8	14
95	Application of 24-epibrassinolide decreases the susceptibility to cucumber mosaic virus in zucchini (Cucurbita pepo L). Scientia Horticulturae, 2015, 195, 116-123.	1.7	14
96	NPR1-dependent salicylic acid signaling is not involved in elevated CO ₂ -induced heat stress tolerance in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2015, 10, e1011944.	1.2	13
97	An Essential Role of Mitochondrial α-Ketoglutarate Dehydrogenase E2 in the Basal Immune Response Against Bacterial Pathogens in Tomato. Frontiers in Plant Science, 2020, 11, 579772.	1.7	13
98	Effects of Fusarium oxysporum on rhizosphere microbial communities of two cucumber genotypes with contrasting Fusarium wilt resistance under hydroponic condition. European Journal of Plant Pathology, 2014, 140, 643-653.	0.8	10
99	N-decanoyl-homoserine lactone alleviates elevated CO2-induced defense suppression to Botrytis cinerea in tomato. Scientia Horticulturae, 2020, 268, 109353.	1.7	8
100	Glucose sensing by regulator of G protein signaling 1 (<scp>RGS1</scp>) plays a crucial role in coordinating defense in response to environmental variation in tomato. New Phytologist, 2022, 236, 561-575.	3.5	8
101	The Glutamate Receptor Plays a Role in Defense against Botrytis cinerea through Electrical Signaling in Tomato. Applied Sciences (Switzerland), 2021, 11, 11217.	1.3	7
102	Exogenous Rosmarinic Acid Application Enhances Thermotolerance in Tomatoes. Plants, 2022, 11, 1172.	1.6	6
103	The novel leucine-rich repeat receptor-like kinase MRK1 regulates resistance to multiple stresses in tomato. Horticulture Research, 2022, 9, .	2.9	5
104	Crop genetics research in Asia: improving food security and nutrition. Theoretical and Applied Genetics, 2020, 133, 1339-1344.	1.8	4