Francesco Gonella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1679157/publications.pdf

Version: 2024-02-01

190 papers 4,459 citations

38 h-index 55 g-index

195 all docs 195 docs citations

195 times ranked 3172 citing authors

#	Article	IF	CITATIONS
1	Assessing the temporal-spatial dynamic reduction in ecosystem services caused by air pollution: A near-real-time data perspective. Resources, Conservation and Recycling, 2022, 180, 106205.	10.8	6
2	Thermal annealing and laser induced structural rearrangement and silver state modification in Ag+-Na+ ion-exchanged silicate glasses studied by Raman spectroscopy. Journal of Non-Crystalline Solids, 2021, 552, 120455.	3.1	7
3	Construction and demolition waste in the Metropolitan City of Naples, Italy: State of the art, circular design, and sustainable planning opportunities. Journal of Cleaner Production, 2021, 293, 125856.	9.3	33
4	Ecological sustainability of aquafeed: An emergy assessment of novel or underexploited ingredients. Journal of Cleaner Production, 2021, 294, 126266.	9.3	15
5	Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa. Renewable and Sustainable Energy Reviews, 2021, 141, 110765.	16.4	22
6	Thermal annealing and laser-induced mechanisms in controlling the size and size-distribution of silver nanoparticles in Ag+-Na+ ion-exchanged silicate glasses. Journal of Non-Crystalline Solids, 2021, 563, 120815.	3.1	4
7	Using Stock-Flow Diagrams to Visualize Theranostic Approaches to Solid Tumors in Personalized Nanomedicine. Frontiers in Bioengineering and Biotechnology, 2021, 9, 709727.	4.1	1
8	Energy constrains to increasing complexity in the biosphere. Innovation(China), 2021, 2, 100169.	9.1	5
9	Environmental Assessment of Healthcare Facilities in the Global South A Case Study from Pakistan. Journal of Environmental Accounting and Management, 2021, 9, .	0.5	O
10	Three dimensions of biodiversity: New perspectives and methods. Ecological Indicators, 2021, 130, 108099.	6.3	5
11	Physical Constraints on Global Social-Ecological Energy System. Energies, 2021, 14, 8177.	3.1	1
12	On sustainable PV–solar exploitation: an emergy analysis. , 2020, , 481-507.		0
13	From local to national metabolism: a review and a scale-up framework. Ecosystem Health and Sustainability, 2020, 6, .	3.1	8
14	Sustainability assessment of bioenergy at different scales: An emergy analysis of biogas power production. Journal of Cleaner Production, 2020, 277, 124038.	9.3	20
15	Addressing COVID-19 Communication and Management by a Systems Thinking Approach. Frontiers in Communication, 2020, 5, .	1.2	6
16	On the Systemic Features of Urban Systems. A Look at Material Flows and Cultural Dimensions to Address Post-Growth Resilience and Sustainability. Frontiers in Sustainable Cities, 2020, 2, .	2.4	14
17	Addressing Non-linear System Dynamics of Single-Strand RNA Virus–Host Interaction. Frontiers in Microbiology, 2020, 11, 600254.	3.5	3
18	â€~Kill Venice': a systems thinking conceptualisation of urban life, economy, and resilience in tourist cities. Humanities and Social Sciences Communications, 2020, 7, .	2.9	22

#	Article	IF	CITATIONS
19	Comparison between glass and glass-ceramic silica-hafnia matrices on the down-conversion efficiency of Tb3+/Yb3+ rare earth ions. Optical Materials, 2019, 87, 102-106.	3.6	19
20	Systems Thinking: Adopting an Emergy Perspective as a Tool for Teaching Green Chemistry. Journal of Chemical Education, 2019, 96, 2784-2793.	2.3	10
21	Is technology optimism justified? A discussion towards a comprehensive narrative. Journal of Cleaner Production, 2019, 223, 456-465.	9.3	20
22	INFN muon tomography demonstrator: past and recent results with an eye to near-future activities. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180065.	3.4	8
23	To build or not to build? Megaprojects, resources, and environment: An emergy synthesis for a systemic evaluation of a major highway expansion. Journal of Cleaner Production, 2019, 223, 772-789.	9.3	29
24	The Smart Narrative of a Smart City. Frontiers in Sustainable Cities, 2019, 1, .	2.4	7
25	Energy Efi¬ciency: Barriers and Solutions towards Environmental Integrity and Well-being Policies. Journal of Environmental Accounting and Management, 2019, 7, 117-120.	0.5	0
26	Learning From Hybrid Innovative-Vernacular Solutions in Building Design: Emergy Analysis of Sudanese Energy-Saving Technologies. Journal of Environmental Accounting and Management, 2019, 7, 213-227.	0.5	4
27	Control of silver clustering for broadband Er3+ luminescence sensitization in Er and Ag co-implanted silica. Journal of Luminescence, 2018, 197, 104-111.	3.1	27
28	Venice artistic glass: Linking art, chemistry and environment $\hat{a}\in$ A comprehensive emergy analysis. Journal of Cleaner Production, 2018, 171, 1638-1649.	9.3	14
29	Ag-Sensitized Yb3+ Emission in Glass-Ceramics. Micromachines, 2018, 9, 380.	2.9	10
30	Ag nanoaggregates as efficient broadband sensitizers for Tb3+ ions in silica-zirconia ion-exchanged sol-gel glasses and glass-ceramics. Optical Materials, 2018, 84, 668-674.	3.6	14
31	Role of Ag multimers as broadband sensitizers in Tb3+/Yb3+ co-doped glass-ceramics. , 2018, , .		1
32	From Head to Head: An Emergy Analysis of a War Rifle Bullet. Peace Economics, Peace Science and Public Policy, 2017, 23, .	1.1	1
33	Source apportionment of PAHs and n -alkanes bound to PM 1 collected near the Venice highway. Journal of Environmental Sciences, 2017, 54, 77-89.	6.1	20
34	Precision measurements of linear scattering density using muon tomography. Journal of Instrumentation, 2016, 11, P07010-P07010.	1.2	15
35	Development of an eco-protocol for seaweed chlorophylls extraction and possible applications in dye sensitized solar cells. Journal Physics D: Applied Physics, 2016, 49, 295601.	2.8	16
36	Silver doping of silica-hafnia waveguides containing Tb 3+ /Yb 3+ rare earths for downconversion in PV solar cells. Optical Materials, 2016, 60, 264-269.	3.6	28

#	Article	IF	CITATIONS
37	Silver doping of glasses. Ceramics International, 2015, 41, 6693-6701.	4.8	44
38	Ag+â†"Na+ ion exchanged silicate glasses for solar cells covering: Down-shifting properties. Ceramics International, 2015, 41, 7221-7226.	4.8	32
39	Environmental and traffic-related parameters affecting road dust composition: A multi-technique approach applied to Venice area (Italy). Atmospheric Environment, 2015, 122, 596-608.	4.1	57
40	Economics and science in higher education: the need for a common language. E3S Web of Conferences, 2014, 2, 02004.	0.5	0
41	Cross-sectional Raman micro-spectroscopy study of silver nanoparticles in soda–lime glasses. Journal of Non-Crystalline Solids, 2014, 401, 219-223.	3.1	8
42	Field-driven diffusion of transition metal and rare-earth ions in silicate glasses. Journal of Non-Crystalline Solids, 2014, 405, 39-44.	3.1	6
43	MUON TOMOGRAPHY AS A TOOL TO DETECT RADIOACTIVE SOURCE SHIELDING IN SCRAP METAL CONTAINERS. International Journal of Modern Physics Conference Series, 2014, 27, 1460157.	0.7	7
44	On the Systemic Assessment of a Sustainable University. Journal of Environmental Accounting and Management, 2014, 2, 65-71.	0.5	0
45	Glass structure modifications induced by diffusion of chromium ions into silicate glasses: An investigation by in-depth profiling Raman micro-spectroscopy. Solid State Ionics, 2013, 230, 59-65.	2.7	8
46	Off-Stoichiometry Spectroscopic Investigations of Pure Amorphous Silica and N-Doped Silica Thin Films. Journal of Physical Chemistry C, 2013, 117, 3475-3482.	3.1	8
47	Noise reduction in muon tomography for detecting high density objects. Journal of Instrumentation, 2013, 8, P12007-P12007.	1.2	19
48	Raman Microspectroscopy Investigation of Ag Ion-Exchanged Glass Layers. Journal of Nanoscience and Nanotechnology, 2012, 12, 8573-8579.	0.9	8
49	Multivariate analysis of Ion Beam Induced Luminescence spectra of irradiated silver ion-exchanged silicate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 95, 533-539.	3.9	6
50	Ag clustering investigation in laser irradiated ion-exchanged glasses by optical and vibrational spectroscopy. Applied Surface Science, 2012, 258, 9399-9403.	6.1	18
51	Spectroscopic Investigation of Structural Rearrangements in Silver Ion-Exchanged Silicate Glasses. Journal of Physical Chemistry C, 2012, 116, 3757-3764.	3.1	62
52	Optical investigation of Tb3+-doped Y2O3 nanocrystals prepared by Pechini-type sol–gel process. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	42
53	Temperature-driven local rearrangement in the Er environment of Er-doped silica glass films prepared by rf-cosputtering deposition. Thin Solid Films, 2012, 520, 4758-4761.	1.8	2
54	Chromium doping of silicate glasses by field-assisted solid-state ion exchange. Journal of Non-Crystalline Solids, 2011, 357, 1846-1850.	3.1	10

#	Article	IF	CITATIONS
55	Multivariate analysis as a tool for Ion Beam Induced Luminescence (IBIL) spectra interpretation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 81, 353-358.	3.9	4
56	Characterization of road dust collected in Traforo del San Bernardo highway tunnel: Fe and Mn speciation. Atmospheric Environment, 2011, 45, 6459-6468.	4.1	36
57	Modifications in silver-doped silicate glasses induced by ns laser beams. Applied Surface Science, 2011, 257, 5434-5438.	6.1	39
58	Erbium environment on Er-doped silica and alumino-silicate glass films: An EXAFS study. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 311-315.	1.4	6
59	Laser beam irradiation of silver doped silicate glasses. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3177-3182.	1.4	24
60	Field-assisted solid state doping of glasses for optical materials. Optical Materials, 2010, 32, 1352-1355.	3.6	7
61	A novel technique for doping silicate glasses with transition metals and rare-earth for waveguides applications. , 2010, , .		0
62	Doping of silicate glasses with erbium by a field-assisted solid-state ion exchange technique. Journal Physics D: Applied Physics, 2009, 42, 045301.	2.8	12
63	The CMS muon barrel drift tubes system commissioning. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 598, 192-195.	1.6	1
64	First results on material identification and imaging with a large-volume muon tomography prototype. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 604, 738-746.	1.6	101
65	Silver and gold doping of SiO2 glass by solid-state field-assisted diffusion. Journal of Non-Crystalline Solids, 2009, 355, 1136-1139.	3.1	21
66	Fe and Mn speciation in road dust particles by XAS. Journal of Physics: Conference Series, 2009, 190, 012192.	0.4	4
67	Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149, 195-199.	3.5	24
68	Field-assisted ion diffusion in dielectric matrices: Er3+ in silicate glass. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 146, 163-166.	3.5	9
69	Site of transition metal ions in ion-exchanged metal-doped glasses. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149, 171-176.	3.5	5
70	Modelling the ion exchange process in glass: Phenomenological approaches and perspectives. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149, 133-139.	3.5	41
71	Au–Cu nanoparticles in silica glass as composite material for photonic applications. Applied Surface Science, 2007, 254, 1017-1021.	6.1	42
72	Results of the first integration test of the CMS drift tubes muon trigger. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 579, 951-960.	1.6	7

#	Article	IF	Citations
73	Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses. Materials Science and Engineering C, 2006, 26, 1087-1091.	7.3	33
74	Diffusion behavior of transition metals in field-assisted ion-exchanged glasses. Solid State Ionics, 2006, 177, 3151-3155.	2.7	43
75	Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index. Applied Surface Science, 2005, 247, 390-395.	6.1	34
76	Copper diffusion in ion-exchanged soda-lime glass. Applied Physics A: Materials Science and Processing, 2005, 81, 1065-1071.	2.3	43
77	Silver-sensitized erbium-doped ion-exchanged sol–gel waveguides. Applied Physics A: Materials Science and Processing, 2005, 80, 557-563.	2.3	57
78	Magnetic properties of Co–Cu nanoparticles dispersed in silica matrix. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 187-190.	2.3	19
79	Cu-alkali ion exchange in glass: a model for the copper diffusion based on XAFS experiments. Computational Materials Science, 2005, 33, 31-36.	3.0	14
80	Sensitizing effects in Ag-Er codoped glasses for optical amplification. , 2004, 5451, 311.		17
81	On the use of grazing-incidence small-angle X-ray scattering (GISAXS) in the morphological study of ion-implanted materials. Journal of Synchrotron Radiation, 2004, 11, 272-277.	2.4	6
82	Test beam analysis of the first CMS drift tube muon chamber. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 525, 465-484.	1.6	11
83	Bunched beam test of the CMS drift tubes local muon trigger. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 534, 441-485.	1.6	22
84	Structural and optical properties of Cu:silica nanocomposite films prepared by co-sputtering deposition. Applied Surface Science, 2004, 226, 52-56.	6.1	28
85	Radiofrequency magnetron co-sputtering deposition synthesis of Co-based nanocomposite glasses for optical and magnetic applications. Applied Surface Science, 2004, 226, 62-67.	6.1	10
86	RF magnetron co-sputtering deposition of Cu-based nanocomposite silica films for optical applications. Journal of Non-Crystalline Solids, 2004, 345-346, 689-693.	3.1	8
87	Er $\$ mathsf $\$ ^{3+}} $\$ -Li $\$ mathsf $\$ ^+} $\$ ion exchange in lithium niobate crystals: an EXAFS study. European Physical Journal B, 2003, 32, 157-161.	1.5	6
88	Implanted dielectrics: Synchrotron radiation studies by absorption and diffraction techniques. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 126-137.	1.4	10
89	Deviation from the virtual crystal approximation in disordered Au–Cu alloy nanocrystals: EXAFS and GIXRD investigation. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 178-184.	1.4	23
90	Silver nanocluster formation in ion-exchanged glasses by annealing, ion beam and laser beam irradiation: An EXAFS study. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 185-190.	1.4	37

#	Article	IF	CITATIONS
91	Fast nonlinear refractive index of pure and alloy metallic nanoclusters in silica glass. Composites Science and Technology, 2003, 63, 1203-1208.	7.8	53
92	Grazing-incidence small-angle X-ray scattering and X-ray diffraction from magnetic clusters obtained by Co + Ni sequential ion implantation in silica. Journal of Applied Crystallography, 2003, 36, 732-735.	4.5	6
93	Brillouin scattering in planar waveguides. II. Experiments. Journal of Applied Physics, 2003, 94, 4882.	2.5	4
94	Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study. Journal of Applied Physics, 2002, 91, 90.	2.5	87
95	On the optical absorption and nonlinearity of silica films containing metal nanoparticles. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 735-744.	0.6	21
96	Pd-based alloy nanoclusters in ion-implanted silica: Formation and stability under thermal annealing. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 392-395.	1.4	23
97	Sequential ion implantation of copper and cobalt in silica glass: A study by synchrotron radiation techniques. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 406-410.	1.4	13
98	Synthesis of wide band gap nanocrystals by ion implantation. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 447-451.	1.4	21
99	Construction and test of the final CMS Barrel Drift Tube Muon Chamber prototype. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 480, 658-669.	1.6	15
100	Magnetic characterization of ion implanted CoNi-SiO2 granular film. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 627-630.	2.3	6
101	Metal nanocluster formation in silica films prepared by rf-sputtering: an experimental study. European Physical Journal B, 2002, 25, 11-17.	1.5	11
102	Title is missing!. European Physical Journal B, 2002, 25, 11-17.	1.5	14
103	On the optical absorption and nonlinearity of silica films containing metal nanoparticles. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 735-744.	0.6	18
104	Formation of silver nanoclusters by excimer–laser interaction in silver-exchanged soda-lime glass. Applied Physics Letters, 2001, 79, 2456-2458.	3.3	43
105	Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass. Applied Physics Letters, 2001, 78, 3953-3955.	3.3	79
106	Double implantation in silica glass for metal cluster composite formation: a study by synchrotron radiation techniques. Journal of Non-Crystalline Solids, 2001, 280, 241-248.	3.1	26
107	Synthesis of GaN quantum dots by ion implantation in dielectrics. Journal of Applied Physics, 2001, 90, 4467-4473.	2.5	48
108	Treatment of grazing-incidence small-angle X-ray scattering data taken above the critical angle. Journal of Applied Crystallography, 2001, 34, 152-156.	4.5	4

#	Article	IF	Citations
109	Synthesis, structure and optical properties of GaN nanocrystals prepared by sequential ion implantation in dielectrics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 148-150.	3.5	7
110	Structure and magnetic properties of alloy-based nanoparticles silica composites prepared by ion-implantation and sol–gel techniques. Materials Science and Engineering C, 2001, 15, 59-61.	7.3	18
111	Influence of annealing atmosphere on metal and metal alloy nanoclusters produced by ion implantation in silica. Nuclear Instruments & Methods in Physics Research B, 2001, 178, 176-179.	1.4	32
112	Influence of post-implantation thermal and laser annealing on the stability of metal–alloy nanoclusters in silica. Nuclear Instruments & Methods in Physics Research B, 2001, 175-177, 410-416.	1.4	21
113	Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix. Nuclear Instruments & Methods in Physics Research B, 2001, 175-177, 479-484.	1.4	26
114	Nanostructure and magnetic properties of CoNi-alloy-based nanoparticles dispersed in a silica matrix. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 1912-1914.	2.3	13
115	Metal-Alloy Nanocluster Formation in Silica Glass by Sequential Ion Implantation. Materials Research Society Symposia Proceedings, 2000, 647, 1.	0.1	0
116	GISAXS study of Cu–Ni alloy clusters obtained by double ion implantation in silicate glasses. Journal of Applied Crystallography, 2000, 33, 740-743.	4.5	23
117	On the role of laser-composite interaction in the Z-scan analysis of metal nanocluster glasses. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 704-710.	1.4	5
118	Nanoparticle formation in silicate glasses by ion-beam-based methods. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 831-839.	1.4	77
119	Formation of metal-alloy nanoclusters in silica by ion implantation and annealing in selected atmosphere. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 857-863.	1.4	43
120	Cu-Ni alloy nanocluster formation by ion implantation in silicate glasses: Structure and optical properties. European Physical Journal D, 2000, 10, 123-129.	1.3	23
121	Local coordination geometry around Cu and Cu ions in silicate glasses: an X-ray absorption near edge structure investigation. European Physical Journal B, 2000, 14, 211-216.	1.5	41
122	Laser-irradiation effects during Z-scan measurement on metal nanocluster composite glasses. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 213.	2.1	39
123	Metal nanocluster composite glasses. , 2000, , 81-158.		79
124	Valence state and local atomic structure of copper in Cu-implanted silica glass. Journal of Applied Physics, 2000, 87, 1819-1824.	2.5	26
125	Application of electron paramagnetic resonance to the study of Cu 2+ ions in Cu-Na ion-exchanged glasses. Applied Physics A: Materials Science and Processing, 1999, 68, 539-546.	2.3	14
126	Nanocluster formation in silicate glasses by sequential ion implantation procedures. Nuclear Instruments & Methods in Physics Research B, 1999, 148, 1007-1011.	1.4	35

#	Article	IF	Citations
127	Synchrotron radiation glancing incidence X-ray diffraction: a tool for structural investigations of ion implanted glasses. Nuclear Instruments & Methods in Physics Research B, 1999, 147, 416-421.	1.4	13
128	Auâ€"Cu alloy nanoclusters in silica formed by ion implantation and annealing in reducing or oxidizing atmosphere. Applied Physics Letters, 1999, 75, 55-57.	3.3	70
129	Structural and Optical Properties of Silver-Doped Zirconia and Mixed Zirconiaâ^'Silica Matrices Obtained by Solâ^'Gel Processing. Chemistry of Materials, 1999, 11, 814-821.	6.7	40
130	Synthesis of silver clusters in silica-based glasses for optoelectronics applications. Journal of Non-Crystalline Solids, 1999, 245, 122-128.	3.1	90
131	Silver cluster formation in ion-exchanged waveguides: processing technique and phenomenological model. Journal of Non-Crystalline Solids, 1999, 253, 261-267.	3.1	17
132	Optical properties and structural characterization of erbium-activated SiO ₂ -TiO ₂ planar waveguides prepared by rf sputtering. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 2103-2112.	0.6	21
133	Spectroscopic investigation of silver in soda-lime glass. Chemical Physics Letters, 1998, 284, 429-434.	2.6	80
134	Highly nonlinear optical composites obtained in silica and soda-lime glasses by Ti ion implantation and laser annealing. Nuclear Instruments & Methods in Physics Research B, 1998, 141, 274-278.	1.4	25
135	EXAFS study on metal cluster doped silica glass obtained by ion implantation procedures. Nuclear Instruments & Methods in Physics Research B, 1998, 141, 252-255.	1.4	6
136	Laser-induced sign reversal of the nonlinear refractive index of Ag nanoclusters in soda-lime glass. Applied Physics B: Lasers and Optics, 1998, 66, 517-521.	2.2	55
137	Experimental study of copper–alkali ion exchange in glass. Journal of Applied Physics, 1998, 83, 1200-1206.	2.5	72
138	The local atomic order and the valence state of Cu in Cu-implanted soda-lime glasses. Journal of Non-Crystalline Solids, 1998, 232-234, 364-369.	3.1	16
139	Reverse proton exchange for buried waveguides in LiNbO_3. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1998, 15, 1838.	1.5	76
140	Cobalt nanoclusters in silica glass: Nonlinear optical and magnetic properties. Applied Physics Letters, 1998, 73, 1176-1178.	3.3	68
141	Copper-doped ion-exchanged waveguide characterization. Journal of Modern Optics, 1998, 45, 837-845.	1.3	18
142	Measurement of the third-order nonlinear susceptibility of Ag nanoparticles in glass in a wide spectral range. Europhysics Letters, 1998, 43, 213-218.	2.0	54
143	Erbium doping of LiNbO3 by the ion exchange process. Applied Physics Letters, 1998, 72, 3431-3433.	3.3	27
144	Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica. Applied Physics Letters, 1998, 73, 288-290.	3.3	75

#	Article	IF	CITATIONS
145	Formation of nonlinear optical MQD (metal quantum dot) in waveguides and modification by high-power laser irradiation., 1998, 3405, 533.		3
146	<title>Ion irradiation of glasses for metal quantum-dot composite formation</title> ., 1998, 3413, 87.		0
147	Characterization of metal quantum-dot composites by optical absorption spectroscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 615-619.	0.6	5
148	< title>Effects of laser and particle beams on the synthesis and nonlinear optical response of nanostructures $<$ /title>. , 1997, , .		5
149	Structure and chemistry of Agâ€'Cu nanoclusters in a silica matrix by the sol-gel process. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 621-628.	0.6	7
150	Mesoscale Engineering of Nanocomposite Nonlinear Optical Materials. Materials Research Society Symposia Proceedings, 1997, 504, 327.	0.1	0
151	Structural Investigation of Small Cu Clusters Obtained by Ion-Implantation in Amorphous Silica. European Physical Journal Special Topics, 1997, 7, C2-1107-C2-1109.	0.2	0
152	Local atomic environment of Cu ions in ion-exchanged silicate glass waveguides: An x-ray absorption spectroscopy study. Applied Physics Letters, 1997, 71, 2611-2613.	3.3	35
153	Low-mass ion irradiation of glass waveguides for Cu quantum-dots formation. Nuclear Instruments & Methods in Physics Research B, 1997, 127-128, 562-565.	1.4	8
154	Test of bioactivity in four different glasses. , 1997, , 287-290.		1
155	METAL NANOCLUSTER FORMATION BY ION IMPLANTATION IN SILICATE GLASSES: NONLINEAR OPTICAL APPLICATIONS. Journal of Nonlinear Optical Physics and Materials, 1996, 05, 285-330.	1.8	117
156	Non-linear glasses by metal cluster formation: synthesis and properties. Journal of Non-Crystalline Solids, 1996, 196, 79-83.	3.1	54
157	Detection and size determination of Ag nanoclusters in ionâ€exchanged sodaâ€lime glasses by waveguided Raman spectroscopy. Journal of Applied Physics, 1996, 79, 2055-2059.	2.5	62
158	Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere. Applied Physics A: Materials Science and Processing, 1996, 63, 403-407.	2.3	65
159	Annealing behavior of silver, copper, and silver–copper nanoclusters in a silica matrix synthesized by the solâ€gel technique. Journal of Applied Physics, 1996, 80, 6734-6739.	2.5	90
160	Iterative simplex-finite difference method for the characterization of optical waveguides. Journal of Lightwave Technology, 1996, 14, 1825-1830.	4.6	9
161	Characterization of Cu–Na ionâ€exchanged glass waveguides. Applied Physics Letters, 1996, 69, 314-315.	3.3	35
162	Formation of copper and silver nanometer dimension clusters in silica by the solâ€gel process. Applied Physics Letters, 1996, 68, 3820-3822.	3.3	124

#	Article	IF	Citations
163	Combined Ion-Beam and Laser-Beam Synthesis of Silver Oxide Nanoclusters in Soda-Lime Glass. Materials Research Society Symposia Proceedings, 1996, 438, 401.	0.1	1
164	Waveguide Raman Spectroscopy as a Tool for the Detection of Nanometric Metallic Particles in Glasses. Journal of Raman Spectroscopy, 1996, 27, 793-797.	2.5	12
165	High-energy ion-beam mixing: A new route to form metallic nanoclusters in a dielectric matrix. Nuclear Instruments & Methods in Physics Research B, 1996, 115, 561-564.	1.4	15
166	Formation of nonlinear optical waveguides by using ion-exchange and implantation techniques. Nuclear Instruments & Methods in Physics Research B, 1996, 116, 507-510.	1.4	30
167	EXAFS study on Ag-doped silicate glasses irradiated with low-mass ions. Nuclear Instruments & Methods in Physics Research B, 1996, 120, 110-113.	1.4	17
168	Construction of glass waveguide refractive index profiles by the effective-index finite-difference method. Optical Materials, 1996, 5, 321-326.	3.6	10
169	Interaction of highâ€power laser light with silver nanocluster composite glasses. Applied Physics Letters, 1996, 69, 3101-3103.	3.3	88
170	Analysis of Ti:LiNbO3 waveguides using secondary ion mass spectrometry and near field method. Electronics Letters, 1995, 31, 1054-1056.	1.0	4
171	Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass. Nuclear Instruments & Methods in Physics Research B, 1995, 96, 382-386.	1.4	50
172	Chemical Interactions in Titanium-Implanted Fused Silica. Materials Science Forum, 1995, 195, 49-54.	0.3	1
173	Silver colloidal waveguides for non-linear optics: a new methodology. Journal of Optics, 1995, 4, 771-776.	0.5	9
174	Silver implantation on K+-Na+ ion-exchanged glass waveguides. Electronics Letters, 1995, 31, 968-969.	1.0	4
175	On the role of local electric field correlation effects on the ionic interdiffusion in soda-lime glass. Journal of Non-Crystalline Solids, 1995, 192-193, 334-337.	3.1	12
176	Refractive-index Profiles of Double-silver-exchanged Glass Systems. Journal of Modern Optics, 1994, 41, 1-4.	1.3	3
177	SIMS-RBS depth profiling of silver-diffused glass systems. Surface and Interface Analysis, 1994, 21, 210-212.	1.8	9
178	Quantum eraser and two-slit interference. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 190, 126-127.	2.1	1
179	Peculiarities and application perspectives of metal-ion implants in glasses. Nuclear Instruments & Methods in Physics Research B, 1994, 91, 478-492.	1.4	119
180	Time machine, self-consistency and the foundations of quantum mechanics. Foundations of Physics Letters, 1994, 7, 161-166.	0.6	1

#	Article	IF	CITATIONS
181	<title>Testing of optical waveguides (TOW) cooperative project: preliminary results of the characterization of k-exchanged waveguides <math display="inline"></math> (title>. , 1994, , .</td><td></td><td>7</td></tr><tr><td>182</td><td><</math> title>Optical and compositional characterization of Ag-containing waveguiding systems <math display="inline"><</math> /title>. , 1994, , .</td><td></td><td>1</td></tr><tr><td>183</td><td>On the recovery of refractive-index profiles of ion-exchanged glass waveguides. Journal of Optics, 1993, 2, 405-409.</td><td>0.5</td><td>9</td></tr><tr><td>184</td><td>Comment on â€~â€~Transition between particle behavior and wave behavior,'' by F. Bardou [Am. J. Phys. 5 458–461 (1991)]. American Journal of Physics, 1992, 60, 1045-1046.</td><td>9<sub>b.7</sub></td><td>0</td></tr><tr><td>185</td><td>Stress-induced Birefringence in Silver-diffused Glass Waveguides. Journal of Modern Optics, 1992, 39, 1401-1405.</td><td>1.3</td><td>8</td></tr><tr><td>186</td><td>Stress-induced optical effects in Ag^+–Na^+ ion-exchanged glass waveguides. Optics Letters, 1992, 17, 1667.</td><td>3.3</td><td>21</td></tr><tr><td>187</td><td>Quantum mechanics and imagery: a hermeneutical approach. Foundations of Physics, 1991, 21, 845-854.</td><td>1.3</td><td>4</td></tr><tr><td>188</td><td><title>Stress analysis in ion-exchanged waveguides by using a polarimetric technique</title> ., 1991, 1513, 425.		1
189	Environmental Large-Scale Monitoring of 137Cs Activity by Milk Contamination Measurements and Resultant Doses. Radiation Protection Dosimetry, 1988, 25, 141-142.	0.8	O
190	A Solid-State Route for the Synthesis of Metal Nanocluster Composite Glasses. Solid State Phenomena, 0, 151, 252-258.	0.3	5