An-Min Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1678991/publications.pdf Version: 2024-02-01

ΔΝ-ΜΙΝ ΖΟΠ

#	Article	IF	CITATIONS
1	Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network. IEEE Transactions on Systems, Man, and Cybernetics, 2011, 41, 950-963.	5.5	378
2	Adaptive Control of a Class of Nonlinear Pure-Feedback Systems Using Fuzzy Backstepping Approach. IEEE Transactions on Fuzzy Systems, 2008, 16, 886-897.	6.5	283
3	Adaptive Control of an Electrically Driven Nonholonomic Mobile Robot via Backstepping and Fuzzy Approach. IEEE Transactions on Control Systems Technology, 2009, 17, 803-815.	3.2	202
4	Distributed finite-time velocity-free attitude coordination control for spacecraft formations. Automatica, 2016, 67, 46-53.	3.0	193
5	Finite-Time Output Feedback Attitude Tracking Control for Rigid Spacecraft. IEEE Transactions on Control Systems Technology, 2014, 22, 338-345.	3.2	172
6	Distributed Attitude Coordination Control for Spacecraft Formation Flying. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48, 1329-1346.	2.6	138
7	Adaptive fuzzy fault-tolerant attitude control of spacecraft. Control Engineering Practice, 2011, 19, 10-21.	3.2	117
8	Quaternion-Based Adaptive Output Feedback Attitude Control of Spacecraft Using Chebyshev Neural Networks. IEEE Transactions on Neural Networks, 2010, 21, 1457-1471.	4.8	114
9	Neural Network-Based Distributed Attitude Coordination Control for Spacecraft Formation Flying With Input Saturation. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 1155-1162.	7.2	109
10	Attitude Coordination Control for a Group of Spacecraft Without Velocity Measurements. IEEE Transactions on Control Systems Technology, 2012, 20, 1160-1174.	3.2	89
11	Robust Attitude Coordination Control for Spacecraft Formation Flying Under Actuator Failures. Journal of Guidance, Control, and Dynamics, 2012, 35, 1247-1255.	1.6	81
12	Fixed-time attitude tracking control for rigid spacecraft. Automatica, 2020, 113, 108792.	3.0	81
13	Distributed consensus control for multiâ€agent systems using terminal sliding mode and Chebyshev neural networks. International Journal of Robust and Nonlinear Control, 2013, 23, 334-357.	2.1	77
14	Adaptive attitude control of spacecraft without velocity measurements using Chebyshev neural network. Acta Astronautica, 2010, 66, 769-779.	1.7	73
15	Robust attitude tracking control of spacecraft under control input magnitude and rate saturations. International Journal of Robust and Nonlinear Control, 2016, 26, 799-815.	2.1	72
16	A behavior controller based on spiking neural networks for mobile robots. Neurocomputing, 2008, 71, 655-666.	3.5	68
17	Fixed-Time Attitude Tracking Control for Rigid Spacecraft Without Angular Velocity Measurements. IEEE Transactions on Industrial Electronics, 2020, 67, 6795-6805.	5.2	59
18	Quaternion-Based Distributed Output Feedback Attitude Coordination Control for Spacecraft Formation Flying. Journal of Guidance, Control, and Dynamics, 2013, 36, 548-556.	1.6	57

AN-MIN ZOU

#	Article	IF	CITATIONS
19	Predefined-Time Predefined-Bounded Attitude Tracking Control for Rigid Spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58, 464-472.	2.6	56
20	Distributed Attitude Synchronization and Tracking Control for Multiple Rigid Bodies. IEEE Transactions on Control Systems Technology, 2014, 22, 478-490.	3.2	52
21	Multi-Agent Based Adaptive Consensus Control for Multiple Manipulators with Kinematic Uncertainties. , 2008, , .		50
22	Disturbance Observer-Based Attitude Control for Spacecraft With Input MRS. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55, 384-396.	2.6	50
23	Neural network-based adaptive output feedback formation control for multi-agent systems. Nonlinear Dynamics, 2012, 70, 1283-1296.	2.7	45
24	Distributed attitude synchronization control for a group of flexible spacecraft using only attitude measurements. Information Sciences, 2016, 343-344, 66-78.	4.0	44
25	Finiteâ€ŧime attitude tracking control for rigid spacecraft with control input constraints. IET Control Theory and Applications, 2017, 11, 931-940.	1.2	41
26	Finite-time attitude control for rigid spacecraft subject to actuator saturation. Nonlinear Dynamics, 2019, 96, 1017-1035.	2.7	37
27	Fixedâ€ŧime outputâ€feedback consensus tracking control for secondâ€order multiagent systems. International Journal of Robust and Nonlinear Control, 2019, 29, 4419-4434.	2.1	36
28	Neural Networks for Mobile Robot Navigation: A Survey. Lecture Notes in Computer Science, 2006, , 1218-1226.	1.0	35
29	Distributed fixedâ€ŧime attitude coordination control for multiple rigid spacecraft. International Journal of Robust and Nonlinear Control, 2020, 30, 266-281.	2.1	35
30	A novel single thruster control strategy for spacecraft attitude stabilization. Acta Astronautica, 2013, 86, 55-67.	1.7	32
31	Finite-time output feedback attitude control for rigid spacecraft under control input saturation. Journal of the Franklin Institute, 2016, 353, 4442-4470.	1.9	30
32	Robust stationkeeping and reconfiguration of underactuated spacecraft formations. Acta Astronautica, 2014, 105, 495-510.	1.7	27
33	Finite-time spacecraft attitude control under input magnitude and rate saturation. Nonlinear Dynamics, 2020, 99, 2201-2217.	2.7	24
34	Velocityâ€free fixedâ€ŧime attitude cooperative control for spacecraft formations under directed graphs. International Journal of Robust and Nonlinear Control, 2021, 31, 2905-2927.	2.1	20
35	Spacecraft attitude control using two control torques. Information Sciences, 2017, 408, 23-40.	4.0	17
36	Adaptive Output Feedback Control of Spacecraft Formation Flying Using Chebyshev Neural Networks. Journal of Aerospace Engineering, 2011, 24, 361-372.	0.8	15

AN-MIN ZOU

#	Article	IF	CITATIONS
37	Charge State Determination of Peptide Tandem Mass Spectra Using Support Vector Machine (SVM). IEEE Transactions on Information Technology in Biomedicine, 2010, 14, 552-558.	3.6	14
38	Quality assessment of tandem mass spectra using support vector machine (SVM). BMC Bioinformatics, 2009, 10, S49.	1.2	9
39	A Neural Network-Based Camera Calibration Method for Mobile Robot Localization Problems. Lecture Notes in Computer Science, 2005, , 277-284.	1.0	7
40	Adaptive dynamic surface control of a class of uncertain nonlinear systems in pure-feedback form using fuzzy backstepping approach. , 2008, , .		7
41	Feature Selection for Tandem Mass Spectrum Quality Assessment. , 2008, , .		5
42	Comments on "Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints― Automatica, 2019, 100, 417-418.	3.0	4
43	An Robust RPCL Algorithm and Its Application in Clustering of Visual Features. Lecture Notes in Computer Science, 2007, , 438-447.	1.0	4
44	Fixed-Time Output Feedback Control for a Class of Second-Order MIMO Nonlinear Systems. , 2018, , .		3
45	Tracking Control of a Mobile Robot with Kinematic Uncertainty Using Neural Networks. Lecture Notes in Computer Science, 2006, , 721-730.	1.0	3
46	Finite-Time Resilient Consensus Tracking Control of Multi-Agent Systems. , 2020, , .		3
47	Vision-Guided Mobile Robot Navigation. , 0, , .		2
48	Scene Analysis for Mobile Robot Based on Multi-Sonar-Ranger Data. , 2006, , .		2
49	Correction to "Attitude coordination control for a group of spacecraft without velocity measurements" [Sep 12 1146-1159]. IEEE Transactions on Control Systems Technology, 2013, 21, 1044-1044.	3.2	2
50	Output Feedback Tracking Control for Second-Order Nonlinear Systems in Predefined Time. , 2021, , .		2
51	Path Planning for Mobile Robots Using Straight Lines. , 0, , .		1
52	Robust Passivity-Based Adaptive Control Of A Nonholonomic Mobile Robot Using Fuzzy Logic. Intelligent Automation and Soft Computing, 2009, 15, 187-200.	1.6	1
53	Indoor mobile robot navigation using doorplate landmarks. International Journal of Vehicle Autonomous Systems, 2006, 4, 143.	0.2	0
54	Charge state determination of peptide tandem mass spectra using support vector machine (SVM). , 2008, , .		0

111 200

#	Article	IF	CITATIONS
55	Corrections to: †Distributed consensus control for multiâ€agent systems using terminal sliding mode and Chebyshev neural networks'. International Journal of Robust and Nonlinear Control, 2013, 23, 358-358.	2.1	Ο
56	Fixed-Time Output Feedback Control for a Class of High-Order Nonlinear Systems. , 2019, , .		0
57	Stabilization of Networked Systems with Asynchronous Sensors and Controllers: the Random Clock Offsets Case. , 2021, , .		0
58	A Hybrid Deep Neural Network Model for Stock Prediction. , 2021, , .		0