Jürgen Götz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1677803/publications.pdf

Version: 2024-02-01

210 papers

22,077 citations

10070 75

h-index

11282 141 g-index

225 all docs 225 docs citations

times ranked

225

23727 citing authors

#	Article	IF	CITATIONS
1	Transcriptional signature in microglia isolated from an Alzheimer's disease mouse model treated with scanning ultrasound. Bioengineering and Translational Medicine, 2023, 8, .	3.9	7
2	Alzheimer's disease research progress in Australia: The Alzheimer's Association International Conference Satellite Symposium in Sydney. Alzheimer's and Dementia, 2022, 18, 178-190.	0.4	5
3	Exosomal and vesicleâ€free tau seeds—propagation and convergence in endolysosomal permeabilization. FEBS Journal, 2022, 289, 6891-6907.	2.2	24
4	Claudin-5 binder enhances focused ultrasound-mediated opening in an <i>in vitro</i> blood-brain barrier model. Theranostics, 2022, 12, 1952-1970.	4.6	18
5	Ultrasound-Mediated Bioeffects in Senescent Mice and Alzheimer's Mouse Models. Brain Sciences, 2022, 12, 775.	1.1	3
6	Tau antibody isotype induces differential effects following passive immunisation of tau transgenic mice. Acta Neuropathologica Communications, 2021, 9, 42.	2.4	14
7	A comparative study of the effects of Aducanumab and scanning ultrasound on amyloid plaques and behavior in the APP23 mouse model of Alzheimer disease. Alzheimer's Research and Therapy, 2021, 13, 76.	3.0	53
8	De novo proteomic methods for examining the molecular mechanisms underpinning long-term memory. Brain Research Bulletin, 2021, 169, 94-103.	1.4	13
9	Low-intensity ultrasound restores long-term potentiation and memory in senescent mice through pleiotropic mechanisms including NMDAR signaling. Molecular Psychiatry, 2021, 26, 6975-6991.	4.1	32
10	PINK1 and parkin shape the organism-wide distribution of a deleterious mitochondrial genome. Cell Reports, 2021, 35, 109203.	2.9	25
11	Altered ribosomal function and protein synthesis caused by tau. Acta Neuropathologica Communications, 2021, 9, 110.	2.4	27
12	Therapeutic Ultrasound as a Treatment Modality for Physiological and Pathological Ageing Including Alzheimer's Disease. Pharmaceutics, 2021, 13, 1002.	2.0	4
13	Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathologica, 2021, 141, 235-256.	3.9	66
14	Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease. Nature Reviews Neuroscience, 2021, 22, 723-740.	4.9	33
15	Mitochondria modulatory effects of new TSPO ligands in a cellular model of tauopathies. Journal of Neuroendocrinology, 2020, 32, e12796.	1.2	22
16	The blood-brain barrier: Physiology and strategies for drug delivery. Advanced Drug Delivery Reviews, 2020, 165-166, 1-14.	6.6	292
17	Fyn Kinase Controls Tau Aggregation InÂVivo. Cell Reports, 2020, 32, 108045.	2.9	46
18	Role for caveolin-mediated transcytosis in facilitating transport of large cargoes into the brain via ultrasound. Journal of Controlled Release, 2020, 327, 667-675.	4.8	41

#	Article	IF	CITATIONS
19	PTEN activation contributes to neuronal and synaptic engulfment by microglia in tauopathy. Acta Neuropathologica, 2020, 140, 7-24.	3.9	24
20	Altered Brain Endothelial Cell Phenotype from a Familial Alzheimer Mutation and Its Potential Implications for Amyloid Clearance and Drug Delivery. Stem Cell Reports, 2020, 14, 924-939.	2.3	63
21	Cell-specific non-canonical amino acid labelling identifies changes in the de novo proteome during memory formation. ELife, 2020, 9, .	2.8	30
22	Scanning ultrasound in the absence of blood-brain barrier opening is not sufficient to clear \hat{l}^2 -amyloid plaques in the APP23 mouse model of Alzheimer's disease. Brain Research Bulletin, 2019, 153, 8-14.	1.4	26
23	Tauopathy in veterans with long-term posttraumatic stress disorder and traumatic brain injury. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1139-1151.	3.3	51
24	Repeated ultrasound treatment of tau transgenic mice clears neuronal tau by autophagy and improves behavioral functions. Theranostics, 2019, 9, 3754-3767.	4.6	82
25	Ultrasound-mediated blood-brain barrier opening enhances delivery of therapeutically relevant formats of a tau-specific antibody. Scientific Reports, 2019, 9, 9255.	1.6	56
26	Decreased synthesis of ribosomal proteins in tauopathy revealed by non anonical amino acid labelling. EMBO Journal, 2019, 38, e101174.	3.5	84
27	The search for improved animal models of Alzheimer's disease and novel strategies for therapeutic intervention. Future Medicinal Chemistry, 2019, 11, 1853-1857.	1.1	7
28	Molecular Pathogenesis of the Tauopathies. Annual Review of Pathology: Mechanisms of Disease, 2019, 14, 239-261.	9.6	161
29	Diseaseâ €e ssociated tau impairs mitophagy by inhibiting Parkin translocation to mitochondria. EMBO Journal, 2019, 38, .	3. 5	161
30	Experimental Models of Tauopathy– From Mechanisms to Therapies. Advances in Experimental Medicine and Biology, 2019, 1184, 381-391.	0.8	16
31	Frontotemporal dementia mutant Tau promotes aberrant Fyn nanoclustering in hippocampal dendritic spines. ELife, 2019, 8, .	2.8	38
32	A Novel Antibody Targeting Tau Phosphorylated at Serine 235 Detects Neurofibrillary Tangles. Journal of Alzheimer's Disease, 2018, 61, 899-905.	1.2	14
33	Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain, 2018, 141, 521-534.	3.7	114
34	Amyloid-β and Tau in Alzheimer's Disease: Novel Pathomechanisms and Non-Pharmacological Treatment Strategies. Journal of Alzheimer's Disease, 2018, 64, S517-S527.	1,2	42
35	Shedding light on mitophagy in neurons: what is the evidence for PINK1/Parkin mitophagy in vivo?. Cellular and Molecular Life Sciences, 2018, 75, 1151-1162.	2.4	57
36	Amyloid-β and tau complexity â€" towards improved biomarkers and targeted therapies. Nature Reviews Neurology, 2018, 14, 22-39.	4.9	303

#	Article	IF	CITATIONS
37	Multimodal analysis of aged wild-type mice exposed to repeated scanning ultrasound treatments demonstrates long-term safety. Theranostics, 2018, 8, 6233-6247.	4.6	30
38	Are you <i> <scp>TORC</scp> ing tau </i> me? Amyloidâ€Î² blocks the conversation between lysosomes and mitochondria. EMBO Journal, 2018, 37, .	3.5	4
39	Rodent models for Alzheimer disease. Nature Reviews Neuroscience, 2018, 19, 583-598.	4.9	240
40	Local Oxidative Damage in the Soma and Dendrites Quarantines Neuronal Mitochondria at the Site of Insult. IScience, 2018, 6, 114-127.	1.9	19
41	Pyk2 is a Novel Tau Tyrosine Kinase thatÂisÂRegulated by the Tyrosine Kinase Fyn. Journal of Alzheimer's Disease, 2018, 64, 205-221.	1.2	36
42	Safety and Efficacy of Scanning Ultrasound Treatment of Aged APP23 Mice. Frontiers in Neuroscience, 2018, 12, 55.	1.4	50
43	Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons. Acta Neuropathologica Communications, 2018, 6, 10.	2.4	127
44	Establishing sheep as an experimental species to validate ultrasound-mediated blood-brain barrier opening for potential therapeutic interventions. Theranostics, 2018, 8, 2583-2602.	4.6	35
45	Modeling ultrasound propagation through material of increasing geometrical complexity. Ultrasonics, 2018, 90, 52-62.	2.1	7
46	Mouse models of frontotemporal dementia: A comparison of phenotypes with clinical symptomatology. Neuroscience and Biobehavioral Reviews, 2017, 74, 126-138.	2.9	23
47	Hyperphosphorylated tau causes reduced hippocampal CA1 excitability by relocating the axon initial segment. Acta Neuropathologica, 2017, 133, 717-730.	3.9	108
48	Accelerated aging exacerbates a preâ€existing pathology in a tau transgenic mouse model. Aging Cell, 2017, 16, 377-386.	3.0	29
49	The amyloid- \hat{l}^2 oligomer A \hat{l}^2 *56 induces specific alterations in neuronal signaling that lead to tau phosphorylation and aggregation. Science Signaling, 2017, 10, .	1.6	90
50	Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain, 2017, 140, 1220-1230.	3.7	158
51	Off-loading strategies in diabetic foot syndrome–evaluation of different devices. International Orthopaedics, 2017, 41, 239-246.	0.9	19
52	Tau-based therapies in neurodegeneration: opportunities and challenges. Nature Reviews Drug Discovery, 2017, 16, 863-883.	21.5	193
53	Somatodendritic accumulation of Tau in Alzheimer's disease is promoted by Fynâ€mediated local protein translation. EMBO Journal, 2017, 36, 3120-3138.	3.5	140
54	Ultrasound as a treatment modality for neurological diseases. Medical Journal of Australia, 2017, 206, 470-471.	0.8	1

#	Article	IF	CITATIONS
55	A corticostriatal deficit promotes temporal distortion of automatic action in ageing. ELife, 2017, 6, .	2.8	12
56	Scanning Ultrasound (SUS) Causes No Changes to Neuronal Excitability and Prevents Age-Related Reductions in Hippocampal CA1 Dendritic Structure in Wild-Type Mice. PLoS ONE, 2016, 11, e0164278.	1.1	26
57	Glutamate Receptors in Alzheimer's Disease: Mechanisms and Therapies. Neural Plasticity, 2016, 2016, 1-2.	1.0	14
58	Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum. PLoS ONE, 2016, 11, e0157682.	1.1	35
59	Extracellular Vesicles Containing P301L Mutant Tau Accelerate Pathological Tau Phosphorylation and Oligomer Formation but Do Not Seed Mature Neurofibrillary Tangles in ALZ17 Mice. Journal of Alzheimer's Disease, 2016, 54, 1207-1217.	1.2	69
60	Mobility and subcellular localization of endogenous, gene-edited Tau differs from that of over-expressed human wild-type and P301L mutant Tau. Scientific Reports, 2016, 6, 29074.	1.6	37
61	Extracellular Vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner. Journal of Biological Chemistry, 2016, 291, 12445-12466.	1.6	208
62	A local insult of okadaic acid in wild-type mice induces tau phosphorylation and protein aggregation in anatomically distinct brain regions. Acta Neuropathologica Communications, 2016, 4, 32.	2.4	31
63	Aging-Related Dysfunction of Striatal Cholinergic Interneurons Produces Conflict in Action Selection. Neuron, 2016, 90, 362-373.	3.8	74
64	Munc18-1 is a molecular chaperone for $\hat{l}\pm$ -synuclein, controlling its self-replicating aggregation. Journal of Cell Biology, 2016, 214, 705-718.	2.3	56
65	Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer's disease. Translational Psychiatry, 2016, 6, e907-e907.	2.4	194
66	Tau physiology and pathomechanisms in frontotemporal lobar degeneration. Journal of Neurochemistry, 2016, 138, 71-94.	2.1	85
67	Special issue on â€~Cytoskeletal proteins in health and neurodegenerative disease'. Brain Research Bulletin, 2016, 126, 213-216.	1.4	6
68	Motor cortical function determines prognosis in sporadic ALS. Neurology, 2016, 87, 513-520.	1.5	76
69	Ultrasound treatment of neurological diseases — current and emerging applications. Nature Reviews Neurology, 2016, 12, 161-174.	4.9	200
70	Impulsivity, decreased social exploration, and executive dysfunction in a mouse model of frontotemporal dementia. Neurobiology of Learning and Memory, 2016, 130, 34-43.	1.0	24
71	Co-immunoprecipitation with Tau Isoform-specific Antibodies Reveals Distinct Protein Interactions and Highlights a Putative Role for 2N Tau in Disease. Journal of Biological Chemistry, 2016, 291, 8173-8188.	1.6	117
72	The frontotemporal dementia-motor neuron disease continuum. Lancet, The, 2016, 388, 919-931.	6.3	294

#	Article	IF	Citations
73	Sex hormone-related neurosteroids differentially rescue bioenergetic deficits induced by amyloid- \hat{l}^2 or hyperphosphorylated tau protein. Cellular and Molecular Life Sciences, 2016, 73, 201-215.	2.4	79
74	No full admission for tau to the exclusive prion club yet. EMBO Journal, 2015, 34, 2990-2992.	3.5	9
75	Pseudophosphorylation of Tau at distinct epitopes or the presence of the P301L mutation targets the microtubule-associated protein Tau to dendritic spines. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 913-924.	1.8	81
76	Tauâ€ŧargeting passive immunization modulates aspects of pathology in tau transgenic mice. Journal of Neurochemistry, 2015, 132, 135-145.	2.1	70
77	Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer's disease mouse model. Science Translational Medicine, 2015, 7, 278ra33.	5.8	409
78	What we can learn from animal models about cerebral multi-morbidity. Alzheimer's Research and Therapy, 2015, 7, 11.	3.0	8
79	FTD and ALS—translating mouse studies into clinical trials. Nature Reviews Neurology, 2015, 11, 360-366.	4.9	64
80	Neuronal protein with tauâ \in like repeats (PTL â \in 1) regulates intestinal SKN â \in 1 nuclear accumulation in response to oxidative stress. Aging Cell, 2015, 14, 148-151.	3.0	10
81	Tau aggregation and its interplay with amyloid- \hat{l}^2 . Acta Neuropathologica, 2015, 129, 207-220.	3.9	283
82	Connecting the dots between tau dysfunction and neurodegeneration. Trends in Cell Biology, 2015, 25, 46-53.	3.6	108
83	Premature lethality, hyperactivity, and aberrant phosphorylation in transgenic mice expressing a constitutively active form of Fyn. Frontiers in Molecular Neuroscience, 2014, 7, 40.	1.4	21
84	Altered proteostasis in aging and heat shock response in C. elegans revealed by analysis of the global and de novo synthesized proteome. Cellular and Molecular Life Sciences, 2014, 71, 3339-3361.	2.4	63
85	Granulovacuolar degeneration and unfolded protein response in mouse models of tauopathy and ${\rm A\hat{l}^2}$ amyloidosis. Neurobiology of Disease, 2014, 71, 169-179.	2.1	45
86	Bio-orthogonal labeling as a tool to visualize and identify newly synthesized proteins in Caenorhabditis elegans. Nature Protocols, 2014, 9, 2237-2255.	5.5	39
87	Visualizing the microtubule-associated protein tau in the nucleus. Science China Life Sciences, 2014, 57, 422-431.	2.3	36
88	The herbal compound geniposide rescues formaldehyde-induced apoptosis in N2a neuroblastoma cells. Science China Life Sciences, 2014, 57, 412-421.	2.3	26
89	March separate, strike together — Role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1258-1266.	1.8	92
90	Regulation of age-related structural integrity in neurons by protein with tau-like repeats (PTL-1) is cell autonomous. Scientific Reports, 2014, 4, 5185.	1.6	12

#	Article	IF	CITATIONS
91	Single Nucleotide Variants (SNVs) Define Senescence-Accelerated SAMP8 Mice, a Model of a Geriatric Condition. Journal of Alzheimer's Disease, 2013, 36, 349-363.	1.2	7
92	Active glycogen synthase kinase-3 and tau pathology-related tyrosine phosphorylation in pR5 human tau transgenic mice. Neurobiology of Aging, 2013, 34, 1369-1379.	1.5	40
93	Pattern of tau hyperphosphorylation and neurotransmitter markers in the brainstem of senescent tau filament forming transgenic mice. Brain Research, 2013, 1497, 73-84.	1.1	10
94	Glutamate Metabolism is Impaired in Transgenic Mice with Tau Hyperphosphorylation. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 684-691.	2.4	54
95	Why size matters – balancing mitochondrial dynamics in Alzheimer's disease. Trends in Neurosciences, 2013, 36, 325-335.	4.2	150
96	How it all Started: Tau and Protein Phosphatase 2A. Journal of Alzheimer's Disease, 2013, 37, 483-494.	1.2	24
97	Protein with tau-like repeats regulates neuronal integrity and lifespan in <i>C. elegans</i> . Journal of Cell Science, 2013, 126, 2079-91.	1,2	49
98	Aging in the nervous system of <i>Caenorhabditis elegans </i> . Communicative and Integrative Biology, 2013, 6, e25288.	0.6	8
99	Profiling Murine Tau with 0N, 1N and 2N Isoform-Specific Antibodies in Brain and Peripheral Organs Reveals Distinct Subcellular Localization, with the 1N Isoform Being Enriched in the Nucleus. PLoS ONE, 2013, 8, e84849.	1.1	123
100	Lessons from two prevalent amyloidoses—what amylin and Aβ have in common. Frontiers in Aging Neuroscience, 2013, 5, 38.	1.7	36
101	What Renders TAU Toxic. Frontiers in Neurology, 2013, 4, 72.	1.1	67
102	Alzheimer's disease models and functional genomicsâ€"How many needles are there in the haystack?. Frontiers in Physiology, 2012, 3, 320.	1.3	18
103	A neuroprotective role for the DNA damage checkpoint in tauopathy. Aging Cell, 2012, 11, 360-362.	3.0	47
104	Decoding the non-coding RNAs in Alzheimer's disease. Cellular and Molecular Life Sciences, 2012, 69, 3543-3559.	2.4	60
105	Role of hippocalcin in mediating $\hat{Al^2}$ toxicity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1247-1257.	1.8	12
106	Insights into Mitochondrial Dysfunction: Aging, Amyloid-β, and Tau–A Deleterious Trio. Antioxidants and Redox Signaling, 2012, 16, 1456-1466.	2.5	115
107	Tau Promotes Neurodegeneration via DRP1 Mislocalization InÂVivo. Neuron, 2012, 75, 618-632.	3.8	331
108	Alzheimer's Disease, Oestrogen and Mitochondria: an Ambiguous Relationship. Molecular Neurobiology, 2012, 46, 151-160.	1.9	51

#	Article	IF	CITATIONS
109	Tauâ€targeted treatment strategies in Alzheimer's disease. British Journal of Pharmacology, 2012, 165, 1246-1259.	2.7	114
110	MicroRNA networks surrounding APP and amyloid-β metabolism â€" Implications for Alzheimer's disease. Experimental Neurology, 2012, 235, 447-454.	2.0	90
111	Target Gene Repression Mediated by miRNAs miR-181c and miR-9 Both of Which Are Down-regulated by Amyloid- \hat{l}^2 . Journal of Molecular Neuroscience, 2012, 46, 324-335.	1.1	139
112	Tau-Mediated Nuclear Depletion and Cytoplasmic Accumulation of SFPQ in Alzheimer's and Pick's Disease. PLoS ONE, 2012, 7, e35678.	1.1	82
113	Mitochondrial dysfunction - the beginning of the end in Alzheimer's disease? Separate and synergistic modes of tau and amyloid- \hat{l}^2 toxicity. Alzheimer's Research and Therapy, 2011, 3, 15.	3.0	136
114	Novel functions of the protein tau in disease. Neuroscience Research, 2011, 71, e26.	1.0	0
115	Altered phosphorylation but no neurodegeneration in a mouse model of tau hyperphosphorylation. Neurobiology of Aging, 2011, 32, 991-1006.	1.5	24
116	Tau-Targeted Immunization Impedes Progression of Neurofibrillary Histopathology in Aged P301L Tau Transgenic Mice. PLoS ONE, 2011, 6, e26860.	1.1	142
117	Inhibition of the Mitochondrial Enzyme ABAD Restores the Amyloid-Î ² -Mediated Deregulation of Estradiol. PLoS ONE, 2011, 6, e28887.	1.1	49
118	Amyloid- \hat{l}^2 and tau $\hat{a}\in$ " a toxic pas de deux in Alzheimer's disease. Nature Reviews Neuroscience, 2011, 12, 67-72.	4.9	1,147
119	Reduced secretagogin expression in the hippocampus of P301L tau transgenic mice. Journal of Neural Transmission, 2011, 118, 737-745.	1.4	19
120	Modes of Al̂² toxicity in Alzheimer's disease. Cellular and Molecular Life Sciences, 2011, 68, 3359-3375.	2.4	78
121	Brief update on different roles of tau in neurodegeneration. IUBMB Life, 2011, 63, 495-502.	1.5	42
122	Mice lacking phosphatase PP2A subunit PR61/B'δ (<i>Ppp2r5d</i>) develop spatially restricted tauopathy by deregulation of CDK5 and GSK3β. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6957-6962.	3.3	105
123	ENU Mutagenesis Screen to Establish Motor Phenotypes in Wild-Type Mice and Modifiers of a Pre-Existing Motor Phenotype in Tau Mutant Mice. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-11.	3.0	8
124	Chapter 5. Invertebrate and Vertebrate Models of Tauopathies. RSC Drug Discovery Series, 2011, , 69-85.	0.2	1
125	Cytoplasmic Accumulation and Aggregation of TDP-43 upon Proteasome Inhibition in Cultured Neurons. PLoS ONE, 2011, 6, e22850.	1.1	91
126	Convergence of Amyloid- \hat{l}^2 and Tau Pathologies on Mitochondria In Vivo. Molecular Neurobiology, 2010, 41, 107-114.	1.9	144

#	Article	IF	CITATIONS
127	Gateway-compatible lentiviral transfer vectors for ubiquitin promoter driven expression of fluorescent fusion proteins. Plasmid, 2010, 63, 155-160.	0.4	11
128	Analysis of the cholinergic pathology in the P301L tau transgenic pR5 model of tauopathy. Brain Research, 2010, 1347, 111-124.	1.1	8
129	$\hat{A^2}$ and human amylin share a common toxicity pathway <i>via</i> mitochondrial dysfunction. Proteomics, 2010, 10, 1621-1633.	1.3	112
130	Neuronal MicroRNA Deregulation in Response to Alzheimer's Disease Amyloid-Î ² . PLoS ONE, 2010, 5, e11070.	1.1	183
131	Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13888-13893.	3.3	237
132	Dissecting Toxicity of Tau and \hat{I}^2 -Amyloid. Neurodegenerative Diseases, 2010, 7, 10-12.	0.8	25
133	Animal models reveal role for tau phosphorylation in human disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 860-871.	1.8	67
134	Dendritic Function of Tau Mediates Amyloid- \hat{l}^2 Toxicity in Alzheimer's Disease Mouse Models. Cell, 2010, 142, 387-397.	13.5	1,563
135	Parkinson's disease: Insights from non-traditional model organisms. Progress in Neurobiology, 2010, 92, 558-571.	2.8	60
136	Experimental Diabetes Mellitus Exacerbates Tau Pathology in a Transgenic Mouse Model of Alzheimer's Disease. PLoS ONE, 2009, 4, e7917.	1.1	161
137	Amyloid- \hat{l}^2 and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20057-20062.	3.3	581
138	Animal Models for Alzheimer's Disease and Frontotemporal Dementia: A Perspective. ASN Neuro, 2009, 1, AN20090042.	1.5	31
139	Phosphorylated Tau Interacts with c-Jun N-terminal Kinase-interacting Protein 1 (JIP1) in Alzheimer Disease. Journal of Biological Chemistry, 2009, 284, 20909-20916.	1.6	139
140	Phosphorylation of soluble tau differs in Pick's disease and Alzheimer's disease brains. Journal of Neural Transmission, 2009, 116, 1243-1251.	1.4	35
141	Response to the comment †Iron, type 2 diabetes mellitus, and Alzheimer's disease' to our Visions and Reflections article †Common features between diabetes mellitus and Alzheimer's disease'. Cellular and Molecular Life Sciences, 2009, 66, 2945-2945.	2.4	O
142	Common features between diabetes mellitus and Alzheimer's disease. Cellular and Molecular Life Sciences, 2009, 66, 1321-1325.	2.4	100
143	Primary support cultures of hippocampal and substantia nigra neurons. Nature Protocols, 2009, 4, 78-85.	5.5	185
144	Substrate-specific reduction of PP2A activity exaggerates tau pathology. Biochemical and Biophysical Research Communications, 2009, 379, 400-405.	1.0	36

#	Article	IF	Citations
145	Alzheimer's Disease Selective Vulnerability and Modeling in Transgenic Mice. Journal of Alzheimer's Disease, 2009, 18, 243-251.	1.2	29
146	Oligomeric and fibrillar species of \hat{l}^2 -amyloid (A \hat{l}^2 42) both impair mitochondrial function in P301L tau transgenic mice. Journal of Molecular Medicine, 2008, 86, 1255-1267.	1.7	123
147	Neuroproteomics as a promising tool in Parkinson's disease research. Journal of Neural Transmission, 2008, 115, 1413-1430.	1.4	26
148	Animal models of Alzheimer's disease and frontotemporal dementia. Nature Reviews Neuroscience, 2008, 9, 532-544.	4.9	604
149	Divergent phosphorylation pattern of tau in P301L tau transgenic mice. European Journal of Neuroscience, 2008, 28, 137-147.	1.2	76
150	Human but not rat amylin shares neurotoxic properties with Aβ42 in longâ€ŧerm hippocampal and cortical cultures. FEBS Letters, 2008, 582, 2188-2194.	1.3	64
151	Antiviral CD8 T Cells Recognize Borna Disease Virus Antigen Transgenically Expressed in either Neurons or Astrocytes. Journal of Virology, 2008, 82, 3099-3108.	1.5	13
152	Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15997-16002.	3.3	201
153	Soluble Beta-Amyloid Leads to Mitochondrial Defects in Amyloid Precursor Protein and Tau Transgenic Mice. Neurodegenerative Diseases, 2008, 5, 157-159.	0.8	134
154	Functional Genomics Dissects Pathomechanisms in Tauopathies: Mitosis Failure and Unfolded Protein Response. Neurodegenerative Diseases, 2008, 5, 179-181.	0.8	9
155	Transgenic mice with ocular overexpression of an adrenomedullin receptor reflect human acute angle-closure glaucoma. Clinical Science, 2008, 114, 49-58.	1.8	18
156	Is Tau Aggregation Toxic or Protective: A Sensible Question in the Absence of Sensitive Methods?. Journal of Alzheimer's Disease, 2008, 14, 423-429.	1.2	31
157	An update on the toxicity of Aβ in Alzheimer's disease. Neuropsychiatric Disease and Treatment, 2008, 4, 1033.	1.0	32
158	Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing \hat{Al}^2 protofibrils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19232-19237.	3.3	204
159	Possibilities for the prevention and treatment of cognitive impairment and dementia. British Journal of Psychiatry, 2007, 190, 371-372.	1.7	20
160	Pronuclear injection for the production of transgenic mice. Nature Protocols, 2007, 2, 1206-1215.	5.5	159
161	A Decade of Tau Transgenic Animal Models and Beyond. Brain Pathology, 2007, 17, 91-103.	2.1	145
162	$\hat{Al^2}$ treatment and P301L tau expression in an Alzheimer's disease tissue culture model act synergistically to promote aberrant cell cycle re-entry. European Journal of Neuroscience, 2007, 26, 60-72.	1.2	31

#	Article	IF	Citations
163	Impact of \hat{I}^2 -Amyloid on the Tau Pathology in Tau Transgenic Mouse and Tissue Culture Models. , 2007, , 198-215.		O
164	Impaired development of the Harderian gland in mutant protein phosphatase 2A transgenic mice. Mechanisms of Development, 2006, 123, 362-371.	1.7	15
165	P70 S6 kinase mediates tau phosphorylation and synthesis. FEBS Letters, 2006, 580, 107-114.	1.3	105
166	Altered phosphorylation of cytoskeletal proteins in mutant protein phosphatase 2A transgenic mice. Biochemical and Biophysical Research Communications, 2006, 343, 1171-1178.	1.0	37
167	Altered levels of PP2A regulatory B/PR55 isoforms indicate role in neuronal differentiation. International Journal of Developmental Neuroscience, 2006, 24, 437-443.	0.7	15
168	Alzheimer's disease and frontotemporal dementia: prospects of a tailored therapy?. Medical Journal of Australia, 2006, 185, 381-384.	0.8	27
169	β-Amyloid treatment of two complementary P301L tau-expressing Alzheimer's disease models reveals similar deregulated cellular processes. Proteomics, 2006, 6, 6566-6577.	1.3	62
170	Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer's disease?. Journal of Neurochemistry, 2006, 98, 993-1006.	2.1	113
171	Impaired spatial reference memory and increased exploratory behavior in P301L tau transgenic mice. Genes, Brain and Behavior, 2006, 5, 369-379.	1.1	94
172	Active immunization trial in A \hat{I}^2 42-injected P301L tau transgenic mice. Neurobiology of Disease, 2006, 22, 50-56.	2.1	18
173	Enhanced Vascular Responses to Adrenomedullin in Mice Overexpressing Receptor-Activity–Modifying Protein 2. Circulation Research, 2006, 98, 262-270.	2.0	50
174	Proteomic and Functional Analyses Reveal a Mitochondrial Dysfunction in P301L Tau Transgenic Mice. Journal of Biological Chemistry, 2005, 280, 23802-23814.	1.6	362
175	Different tau epitopes define $\hat{Al^2}42$ -mediated tau insolubility. Biochemical and Biophysical Research Communications, 2005, 337, 1097-1101.	1.0	34
176	Functional Genomics meets neurodegenerative disorders. Progress in Neurobiology, 2005, 76, 153-168.	2.8	33
177	Functional Genomics meets neurodegenerative disorders. Progress in Neurobiology, 2005, 76, 169-188.	2.8	42
178	Role of the protein tau in Alzheimer's disease. Drug Discovery Today Disease Mechanisms, 2005, 2, 395-400.	0.8	1
179	Posttranslational Modifications of Tau - Role in Human Tauopathies and Modeling in Transgenic Animals. Current Drug Targets, 2004, 5, 503-515.	1.0	99
180	Transgenic Mice Expressing the Nucleoprotein of Borna Disease Virus in either Neurons or Astrocytes: Decreased Susceptibility to Homotypic Infection and Disease. Journal of Virology, 2004, 78, 3621-3632.	1.5	22

#	Article	lF	Citations
181	Role for glyoxalase I in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7687-7692.	3.3	150
182	Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy. Molecular Psychiatry, 2004, 9, 664-683.	4.1	248
183	Reference genes identified in SH-SY5Y cells using custom-made gene arrays with validation by quantitative polymerase chain reaction. Analytical Biochemistry, 2004, 335, 30-41.	1.1	73
184	Accelerated extinction of conditioned taste aversion in P301L tau transgenic mice. Neurobiology of Disease, 2004, 15, 500-509.	2.1	81
185	Amyloidâ€induced neurofibrillary tangle formation in Alzheimer's disease: insight from transgenic mouse and tissueâ€culture models. International Journal of Developmental Neuroscience, 2004, 22, 453-465.	0.7	122
186	Genomic Organisation, Chromosomal Localisation Tissue Distribution and Developmental Regulation of the PR61/B′ Regulatory Subunits of Protein Phosphatase 2A in Mice. Journal of Molecular Biology, 2004, 336, 971-986.	2.0	53
187	Expression of truncated PrP targeted to Purkinje cells of PrP knockout mice causes Purkinje cell death and ataxia. EMBO Journal, 2003, 22, 3095-3101.	3.5	66
188	Activation of the ERK and JNK Signaling Pathways Caused by Neuron-Specific Inhibition of PP2A in Transgenic Mice. American Journal of Pathology, 2003, 163, 833-843.	1.9	147
189	Î ² -Amyloid Induces Paired Helical Filament-like Tau Filaments in Tissue Culture. Journal of Biological Chemistry, 2003, 278, 40162-40168.	1.6	159
190	Saitohin gene is not associated with Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2003, 74, 362-363.	0.9	19
191	Transgenic and Knockout Models of PP2A. Methods in Enzymology, 2003, 366, 390-403.	0.4	27
192	Glial Cells Under Physiologic and Pathologic Conditions. Archives of Neurology, 2002, 59, 1524.	4.9	77
193	Alzheimer's and Parkinson's disease – overlapping or synergistic pathologies?. Trends in Molecular Medicine, 2002, 8, 3-5.	3. 5	57
194	Diversity, developmental regulation and distribution of murine PR55/B subunits of protein phosphatase 2A. European Journal of Neuroscience, 2002, 16, 2039-2048.	1.2	50
195	Interactions of Beta-Amyloid with the Formation of Neurofibrillary Tangles in Transgenic Mice. Advances in Behavioral Biology, 2002, , 139-144.	0.2	0
196	Tau and transgenic animal models. Brain Research Reviews, 2001, 35, 266-286.	9.1	142
197	Oligodendroglial tau filament formation in transgenic mice expressing G272V tau. European Journal of Neuroscience, 2001, 13, 2131-2140.	1.2	96
198	Formation of Neurofibrillary Tangles in P301L Tau Transgenic Mice Induced by Abeta 42 Fibrils. Science, 2001, 293, 1491-1495.	6.0	1,410

#	ARTICLE	IF	CITATIONS
199	Tau Filament Formation in Transgenic Mice Expressing P301L Tau. Journal of Biological Chemistry, 2001, 276, 529-534.	1.6	433
200	Reduced Protein Phosphatase 2A Activity Induces Hyperphosphorylation and Altered Compartmentalization of Tau in Transgenic Mice. Journal of Biological Chemistry, 2001, 276, 38193-38200.	1.6	184
201	Human Tau Transgenic Mice. Advances in Experimental Medicine and Biology, 2001, , 71-83.	0.8	7
202	Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathologica, 2000, 99, 469-481.	3.9	344
203	Immature human NT2 cells grafted into mouse brain differentiate into neuronal and glial cell types. FEBS Letters, 2000, 486, 121-125.	1.3	43
204	Distinct role of protein phosphatase 2A subunit C \hat{l}_{\pm} in the regulation of E-cadherin and \hat{l}^2 -catenin during development. Mechanisms of Development, 2000, 93, 83-93.	1.7	81
205	The Role of Protein Phosphatase 2A Catalytic Subunit Cα in Embryogenesis: Evidence from Sequence Analysis and Localization Studies. Biological Chemistry, 1999, 380, 1117-1120.	1.2	13
206	Expression of Amino-Terminally Truncated PrP in the Mouse Leading to Ataxia and Specific Cerebellar Lesions. Cell, 1998, 93, 203-214.	13.5	506
207	Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit CÂ. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12370-12375.	3.3	195
208	Generation of mice with a 200-kb amyloid precursor protein gene deletion by Cre recombinase-mediated site-specific recombination in embryonic stem cells Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6158-6162.	3.3	139
209	FGF5 as a regulator of the hair growth cycle: Evidence from targeted and spontaneous mutations. Cell, 1994, 78, 1017-1025.	13.5	551
210	Non-tolerance and differential susceptibility to diabetes in transgenic mice expressing major histocompatibility class II genes on pancreatic \hat{l}^2 cells. European Journal of Immunology, 1990, 20, 1677-1683.	1.6	22