
Toshihiro Hasegawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1677696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing CO2 threatens human nutrition. Nature, 2014, 510, 139-142.	13.7	1,024
2	Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 2015, 21, 1328-1341.	4.2	339
3	Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology, 2007, 13, 1989-2007.	4.2	324
4	Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan. Functional Plant Biology, 2013, 40, 148.	1.1	213
5	Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology, 2009, 149, 51-58.	1.9	179
6	Rice Morphogenesis and Plant Architecture: Measurement, Specification and the Reconstruction of Structural Development by 3D Architectural Modelling. Annals of Botany, 2005, 95, 1131-1143.	1.4	150
7	Revising a processâ€based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Global Change Biology, 2008, 14, 382-402.	4.2	131
8	Response of growth and grain yield in paddy rice to cool water at different growth stages. Field Crops Research, 2002, 73, 67-79.	2.3	120
9	Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature. Global Change Biology, 2011, 17, 3327-3337.	4.2	113
10	Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, 2009, 60, 523-532.	2.4	108
11	Effects of free-air CO ₂ enrichment (FACE) and soil warming on CH ₄ emission from a rice paddy field: impact assessment and stoichiometric evaluation. Biogeosciences, 2010, 7, 2639-2653.	1.3	97
12	Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.). Agricultural and Forest Meteorology, 2010, 150, 1174-1181.	1.9	91
13	Rice grain yield and quality responses to freeâ€air CO ₂ enrichment combined with soil and water warming. Global Change Biology, 2016, 22, 1256-1270.	4.2	86
14	Stability of Rice Pollination in The Field Under Hot And Dry Conditions in The Riverina Region of New South Wales, Australia. Plant Production Science, 2007, 10, 57-63.	0.9	80
15	Enhancement of rice canopy carbon gain by elevated CO 2 is sensitive to growth stage and leaf nitrogen concentration. New Phytologist, 2006, 170, 321-332.	3.5	79
16	Heat-Induced Floret Sterility of Hybrid Rice (<i>Oryza sativa</i> L.) Cultivars under Humid and Low Wind Conditionsin the Field of Jianghan Basin, China. Plant Production Science, 2010, 13, 243-251.	0.9	79
17	Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates. Theoretical and Applied Genetics, 2016, 129, 805-817.	1.8	72
18	Impacts of elevated atmospheric CO2 on nutrient content of important food crops. Scientific Data, 2015, 2, 150036.	2.4	66

2

#	Article	IF	CITATIONS
19	A meta-analysis of leaf nitrogen distribution within plant canopies. Annals of Botany, 2016, 118, 239-247.	1.4	66
20	Response of Spikelet Number to Plant Nitrogen Concentration and Dry Weight in Paddy Rice. Agronomy Journal, 1994, 86, 673-676.	0.9	62
21	The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (<i>Oryza) Tj ETQq1 1 (Plantarum, 2012, 145, 395-405.</i>	0.784314 rg 2.6	gBT /Overlock 62
22	Combined drought and heat stress impact during flowering and grain filling in contrasting rice cultivars grown under field conditions. Field Crops Research, 2018, 229, 66-77.	2.3	61
23	Changes in grain protein and amino acids composition of wheat and rice under shortâ€ŧerm increased [CO ₂] and temperature of canopy air in a paddy from East China. New Phytologist, 2019, 222, 726-734.	3.5	61
24	Integrated micrometeorology model for panicle and canopy temperature (IM2PACT) for rice heat stress studies under climate change. J Agricultural Meteorology, 2011, 67, 233-247.	0.8	59
25	Seasonal Changes in Temperature Dependence of Photosynthetic Rate in Rice Under a Free-air CO2 Enrichment. Annals of Botany, 2006, 97, 549-557.	1.4	58
26	Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant and Soil, 2015, 392, 27-44.	1.8	58
27	Modeling Spikelet Sterility Induced by Low Temperature in Rice. Agronomy Journal, 2005, 97, 1524-1536.	0.9	57
28	Do the Rich Always Become Richer? Characterizing the Leaf Physiological Response of the High-Yielding Rice Cultivar Takanari to Free-Air CO2 Enrichment. Plant and Cell Physiology, 2014, 55, 381-391.	1.5	57
29	Responses of leaf photosynthesis and plant water status in rice to low water temperature at different growth stages. Field Crops Research, 2004, 89, 71-83.	2.3	56
30	Gene expression profiling of rice grown in free air CO2 enrichment (FACE) and elevated soil temperature. Field Crops Research, 2011, 121, 195-199.	2.3	55
31	Rice yield enhancement by elevated CO ₂ is reduced in cool weather. Global Change Biology, 2008, 14, 276-284.	4.2	52
32	CH ₄ emission with differences in atmospheric CO ₂ enrichment and rice cultivars in a Japanese paddy soil. Global Change Biology, 2008, 14, 2678-2687.	4.2	51
33	Effects of Temperature, Solar Radiation, and Vapor-Pressure Deficit on Flower Opening Time in Rice. Plant Production Science, 2010, 13, 21-28.	0.9	50
34	Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment. Rice, 2014, 7, 6.	1.7	50
35	The effects of free-air CO2 enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (Oryza sativa L.). Journal of Experimental Botany, 2013, 64, 3179-3188.	2.4	49
36	Spikelet sterility of rice observed in the record hot summer of 2007 and the factors associated with its variation. J Agricultural Meteorology, 2011, 67, 225-232.	0.8	47

#	Article	IF	CITATIONS
37	Increasing canopy photosynthesis in rice can be achieved without a large increase in water use—A model based on freeâ€air <scp>CO</scp> ₂ enrichment. Global Change Biology, 2018, 24, 1321-1341.	4.2	47
38	Performance of the enlarged Rice-FACE system using pure CO2 installed in Tsukuba, Japan. J Agricultural Meteorology, 2012, 68, 15-23.	0.8	47
39	lsotopomer analysis of production, consumption and soil-to-atmosphere emission processes of N2O at the beginning of paddy field irrigation. Soil Biology and Biochemistry, 2014, 70, 66-78.	4.2	45
40	Grain growth of different rice cultivars under elevated CO2 concentrations affects yield and quality. Field Crops Research, 2015, 179, 72-80.	2.3	45
41	Canopyâ€scale relationships between stomatal conductance and photosynthesis in irrigated rice. Global Change Biology, 2013, 19, 2209-2220.	4.2	43
42	Quantitative trait loci for large sink capacity enhance rice grain yield under free-air CO2 enrichment conditions. Scientific Reports, 2017, 7, 1827.	1.6	43
43	Modeling the dependence of the crop calendar for rain-fed rice on precipitation in Northeast Thailand. Paddy and Water Environment, 2008, 6, 83-90.	1.0	42
44	Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil. Global Change Biology, 2008, 14, 644-656.	4.2	42
45	Rice plant response to long term CO2 enrichment: Gene expression profiling. Plant Science, 2009, 177, 203-210.	1.7	41
46	Soil and Water Warming Accelerates Phenology and Down-Regulation of Leaf Photosynthesis of Rice Plants Grown Under Free-Air CO2 Enrichment (FACE). Plant and Cell Physiology, 2014, 55, 370-380.	1.5	41
47	Effects of Elevated Carbon Dioxide, Elevated Temperature, and Rice Growth Stage on the Community Structure of Rice Root–Associated Bacteria. Microbes and Environments, 2014, 29, 184-190.	0.7	41
48	Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments. Scientific Reports, 2017, 7, 14858.	1.6	41
49	Diurnal and seasonal variations in stomatal conductance of rice at elevated atmospheric CO ₂ under fully open-air conditions. Plant, Cell and Environment, 2010, 33, 322-331.	2.8	40
50	Response of the floating aquatic fern Azolla filiculoides to elevated CO2, temperature, and phosphorus levels. Hydrobiologia, 2010, 656, 5-14.	1.0	39
51	The contribution of entrapped gas bubbles to the soil methane pool and their role in methane emission from rice paddy soil in free-air [CO2] enrichment and soil warming experiments. Plant and Soil, 2013, 364, 131-143.	1.8	39
52	Differential response of rice plants to high night temperatures imposed at varying developmental phases. Agricultural and Forest Meteorology, 2015, 209-210, 69-77.	1.9	38
53	Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria. Frontiers in Microbiology, 2015, 6, 136.	1.5	38
54	An Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils. Journal of Environmental Quality, 2007, 36, 1920-1925.	1.0	37

#	Article	IF	CITATIONS
55	Quantifying rice spikelet sterility in potential heat-vulnerable regions: Field surveys in Laos and southern India. Field Crops Research, 2016, 190, 3-9.	2.3	36
56	MeteoCrop DB: an agro-meteorological database coupled with crop models for studying climate change impacts on rice in Japan. J Agricultural Meteorology, 2011, 67, 297-306.	0.8	36
57	A global dataset for the projected impacts of climate change on four major crops. Scientific Data, 2022, 9, 58.	2.4	36
58	Effect of elevated atmospheric CO2 concentration on soil and root respiration in winter wheat by using a respiration partitioning chamber. Plant and Soil, 2007, 299, 237-249.	1.8	34
59	A model driven by crop water use and nitrogen supply for simulating changes in the regional yield of rain-fed lowland rice in Northeast Thailand. Paddy and Water Environment, 2008, 6, 73-82.	1.0	34
60	Stage-dependent temperature sensitivity function predicts seed-setting rates under short-term extreme heat stress in rice. Agricultural and Forest Meteorology, 2018, 256-257, 196-206.	1.9	32
61	Lodging in rice can be alleviated by atmospheric CO2 enrichment. Agriculture, Ecosystems and Environment, 2007, 118, 223-230.	2.5	31
62	Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to openâ€air <scp><co>scp>CO₂</co></scp> elevation in rice. Global Change Biology, 2013, 19, 2444-2453.	4.2	31
63	A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. Agricultural and Forest Meteorology, 2015, 214-215, 483-493.	1.9	31
64	A High-Yielding Rice Cultivar "Takanari―Shows No N Constraints on CO2 Fertilization. Frontiers in Plant Science, 2019, 10, 361.	1.7	31
65	Genetic improvements for high yield and low soil nitrogen tolerance in rice (Oryza Sativa L.) under a cold environment. Field Crops Research, 2010, 116, 38-45.	2.3	30
66	Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882. Plant Production Science, 2019, 22, 352-366.	0.9	30
67	Lower-Than-Expected Floret Sterility of Rice under Extremely Hot Conditions in a Flood-Irrigated Field in New South Wales, Australia. Plant Production Science, 2014, 17, 245-252.	0.9	28
68	Modeling the Effects of Water Temperature on Rice Growth and Yield under a Cool Climate: I. Model Development. Agronomy Journal, 2007, 99, 1327-1337.	0.9	26
69	Large-scale evaluation of the effects of adaptation to climate change by shifting transplanting date on rice production and quality in Japan. J Agricultural Meteorology, 2017, 73, 156-173.	0.8	25
70	Leaf nitrogen, plant age and crop dry matter production in rice. Field Crops Research, 1996, 47, 107-116.	2.3	24
71	Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature. Plant Production Science, 2012, 15, 258-264.	0.9	24
72	Characterization of Leaf Blade- and Leaf Sheath-Associated Bacterial Communities and Assessment of Their Responses to Environmental Changes in CO ₂ , Temperature, and Nitrogen Levels under Field Conditions. Microbes and Environments, 2015, 30, 51-62.	0.7	24

#	Article	IF	CITATIONS
73	Current rice models underestimate yield losses from shortâ€ŧerm heat stresses. Global Change Biology, 2021, 27, 402-416.	4.2	24
74	Modeling the Effects of Water Temperature on Rice Growth and Yield under a Cool Climate: II. Model Application. Agronomy Journal, 2007, 99, 1338-1344.	0.9	23
75	Effect of panicle removal on photosynthetic acclimation under elevated CO ₂ in rice. Photosynthetica, 2010, 48, 530-536.	0.9	23
76	Effect of Elevated CO ₂ Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil. Microbes and Environments, 2016, 31, 349-356.	0.7	23
77	Microbial community composition controls the effects of climate change on methane emission from rice paddies. Environmental Microbiology Reports, 2012, 4, 648-654.	1.0	22
78	Nitrogen Uptake by Rice (<i>Oryza sativa</i> L.) Exposed to Low Water Temperatures at Different Growth Stages. Journal of Agronomy and Crop Science, 2012, 198, 145-151.	1.7	22
79	Vulnerability of lodging risk to elevated CO2 and increased soil temperature differs between rice cultivars. European Journal of Agronomy, 2013, 46, 20-24.	1.9	22
80	A methodology for estimating phenological parameters of rice cultivars utilizing data from common variety trials. J Agricultural Meteorology, 2015, 71, 77-89.	0.8	22
81	Rice Free-Air Carbon Dioxide Enrichment Studies to Improve Assessment of Climate Change Effects on Rice Agriculture. Advances in Agricultural Systems Modeling, 2016, , 45-68.	0.3	22
82	Genotypic difference in root penetration ability by durum wheat (Triticum turgidum L. var. durum) evaluated by a pot with paraffin-Vaseline discs. Plant and Soil, 2004, 262, 169-177.	1.8	21
83	Microbial biomass carbon and methane oxidation influenced by rice cultivars and elevated CO ₂ in a Japanese paddy soil. European Journal of Soil Science, 2011, 62, 69-73.	1.8	21
84	Phosphorus Solubilizing Microorganisms in the Rhizosphere of Local Rice Varieties Grown without Fertilizer on Acid Sulfate Soils. Soil Science and Plant Nutrition, 2005, 51, 679-681.	0.8	20
85	Elevated temperature has stronger effects on the soil food web of a flooded paddy than does CO2. Soil Biology and Biochemistry, 2014, 70, 166-175.	4.2	20
86	Growth and yield of potato plants grown from microtubers in fields. American Journal of Potato Research, 2003, 80, 371-378.	0.5	19
87	Modelling the effect of nitrogen on rice growth and development. Systems Approaches for Sustainable Agricultural Development, 1997, , 243-257.	0.2	19
88	A taxonomy-based approach to shed light on the babel of mathematical models for rice simulation. Environmental Modelling and Software, 2016, 85, 332-341.	1.9	18
89	Spatial characterization of recent hot summers in Japan with agro-climatic indices related to rice production. J Agricultural Meteorology, 2011, 67, 209-224.	0.8	18
90	Adaptation of rice to climate change through a cultivar-based simulation: a possible cultivar shift in eastern Japan. Climate Research, 2015, 64, 275-290.	0.4	18

1.9

13

#	Article	IF	CITATIONS
91	MINCER: A novel instrument for monitoring the micrometeorology of rice canopies. J Agricultural Meteorology, 2012, 68, 135-147.	0.8	17
92	Effects of elevated [CO2] on stem and root lodging among rice cultivars. Science Bulletin, 2013, 58, 1787-1794.	1.7	16
93	Fully automated, highâ€throughput instrumentation for measuring the δ ¹³ C value of methane and application of the instrumentation to rice paddy samples. Rapid Communications in Mass Spectrometry, 2014, 28, 2315-2324.	0.7	16
94	Planting geometry as a preâ€screening technique for identifying <scp>CO₂</scp> responsive rice genotypes: a case study of panicle number. Physiologia Plantarum, 2014, 152, 520-528.	2.6	16
95	Nitrogen Distribution in Leaf Canopies of High‥ielding Rice Cultivar Takanari. Crop Science, 2017, 57, 2080-2088.	0.8	16
96	Effects of Elevated Atmospheric CO2 on Respiratory Rates in Mature Leaves of Two Rice Cultivars Grown at a Free-Air CO2 Enrichment Site and Analyses of the Underlying Mechanisms. Plant and Cell Physiology, 2018, 59, 637-649.	1.5	16
97	Five-year soil warming changes soil C and N dynamics in a single rice paddy field in Japan. Science of the Total Environment, 2021, 756, 143845.	3.9	16
98	Effect of long anther dehiscence on seed set at high temperatures during flowering in rice (Oryza) Tj ETQq0 0 0 r	gBT /Over 1.6	lock 10 Tf 50
99	Paddy Rice Responses to Free-Air [CO2] Enrichment. , 2006, , 87-104.		15
100	Traits responsible for variation in pollination and seed set among six rice cultivars grown in a miniature paddy field with free air at a hot, humid spot in China. Agriculture, Ecosystems and Environment, 2010, 139, 110-115.	2.5	14
101	Varietal Difference in the Occurrence of Milky White Kernels in Response to Assimilate Supply in Rice Plants (<i>Oryza sativa</i> L.). Plant Production Science, 2011, 14, 111-117.	0.9	14
102	MINCERnet: A global research alliance to support the fight against heat stress in rice. J Agricultural Meteorology, 2012, 68, 149-157.	0.8	14
103	Predicting biomass of rice with intermediate traits: Modeling method combining crop growth models and genomic prediction models. PLoS ONE, 2020, 15, e0233951.	1.1	14
104	High mesophyll conductance in the high-yielding rice cultivar Takanari quantified with the combined gas exchange and chlorophyll fluorescence measurements under free-air CO ₂ enrichment. Plant Production Science, 2019, 22, 395-406.	0.9	13
105	Oxalate contents in leaves of two rice cultivars grown at a free-air CO ₂ enrichment (FACE) site. Plant Production Science, 2019, 22, 407-411.	0.9	13

107	Comparison of Rice Yield after Various Years of Cultivation by Natural Farming. Plant Production Science, 1999, 2, 58-64.	0.9	12	

108Characteristics of water balance in a rainfed paddy field in Northeast Thailand. Paddy and Water1.012108Environment, 2008, 6, 153-157.1.012

Evaluation of crop model prediction and uncertainty using Bayesian parameter estimation and Bayesian model averaging. Agricultural and Forest Meteorology, 2021, 311, 108686.

106

#	Article	IF	CITATIONS
109	Effect of Elevated [CO ₂] on Soil Bubble and CH ₄ Emission from a Rice Paddy: A Test by ^{<i>13</i>} C Pulse-Labeling under Free-Air CO ₂ Enrichment. Geomicrobiology Journal, 2008, 25, 396-403.	1.0	12
110	Elevated CO2 Decreases the Photorespiratory NH3 Production but Does not Decrease the NH3 Compensation Point in Rice Leaves. Plant and Cell Physiology, 2014, 55, 1582-1591.	1.5	12
111	Analysis of factors related to varietal differences in the yield of rice (<i>Oryza sativa</i> L.) under Free-Air CO ₂ Enrichment (FACE) conditions. Plant Production Science, 2020, 23, 19-27.	0.9	12
112	Revision of estimates of climate change impacts on rice yield and quality in Japan by considering the combined effects of temperature and CO ₂ concentration. J Agricultural Meteorology, 2021, 77, 139-149.	0.8	12
113	Short-term high nighttime temperatures pose an emerging risk to rice grain failure. Agricultural and Forest Meteorology, 2022, 314, 108779.	1.9	11
114	CH4production potential in a paddy soil exposed to atmospheric CO2enrichment. Soil Science and Plant Nutrition, 2006, 52, 769-773.	0.8	10
115	Potential ammonia emission from flag leaves of paddy rice (Oryza sativa L. cv. Koshihikari). Agriculture, Ecosystems and Environment, 2011, 144, 117-123.	2.5	10
116	Application of a process-based biogeochemistry model, DNDC-Rice, to a rice field under free-air CO2 enrichment (FACE). J Agricultural Meteorology, 2013, 69, 173-190.	0.8	10
117	A Simplified Model for Estimating Nitrogen Mineralization in Paddy Soil Japanese Journal of Crop Science, 1994, 63, 496-501.	0.1	10
118	Temperature Difference between Meteorological Station and Nearby Farmland –Case Study for Kumagaya City in Japan–. Scientific Online Letters on the Atmosphere, 2014, 10, 45-49.	0.6	10
119	Amelioration of the reactive nitrogen flux calculation by a day/night separation in weekly mean air concentration measurements. Atmospheric Environment, 2013, 79, 462-471.	1.9	9
120	Emerging research topics in agricultural meteorology and assessment of climate change adaptation. J Agricultural Meteorology, 2018, 74, 54-59.	0.8	9
121	Effects of free-air CO ₂ enrichment on flower opening time in rice. Plant Production Science, 2019, 22, 367-373.	0.9	9
122	Winter nocturnal warming affects the freeze-thaw frequency, soil aggregate distribution, and the contents and decomposability of C and N in paddy fields. Science of the Total Environment, 2022, 802, 149870.	3.9	9
123	Monitoring canopy micrometeorology in diverse climates to improve the prediction of heat-induced spikelet sterility in rice under climate change. Agricultural and Forest Meteorology, 2022, 316, 108860.	1.9	9
124	Neutral rhizoplane pH of local rice and some predominant tree species in South and Central Kalimantans: A possible strategy of plant adaptation to acidic-soil. Tropics, 2005, 14, 139-147.	0.2	8
125	Design of Sphingomonad-Detecting Probes for a DNA Array, and Its Application to Investigate the Behavior, Distribution, and Source of RhizospherousSphingomonasand Other Sphingomonads Inhabiting an Acid Sulfate Soil Paddock in Kalimantan, Indonesia. Bioscience, Biotechnology and Biochemistry, 2007, 71, 343-351.	0.6	8
126	Free-air CO2 enrichment (FACE) net nitrogen fixation experiment at a paddy soil surface under submerged conditions. Nutrient Cycling in Agroecosystems, 2014, 98, 57-69.	1.1	8

#	Article	IF	CITATIONS
127	Inheritance analysis of anther dehiscence as a trait for the heat tolerance at flowering in japonica hybrid rice (Oryza sativa L.). Euphytica, 2016, 211, 311-320.	0.6	8

QTL mapping of dehiscence length at the basal part of thecae related to heat tolerance of rice (Oryza) Tj ETQq0 0 $O_{0.6}$ BT /Ovgrlock 10 T

129	Effects of free-air CO ₂ enrichment on heat-induced sterility and pollination in rice. Plant Production Science, 2019, 22, 374-381.	0.9	8
130	Frequent isolation of sphingomonads from local rice varieties and other weeds grown on acid sulfate soil in South Kalimantan, Indonesia. Tropics, 2006, 15, 391-395.	0.2	8
131	A traitâ€based model ensemble approach to design rice plant types for future climate. Global Change Biology, 2022, 28, 2689-2710.	4.2	8
132	The lowland paddy weed Monochoria vaginalis emits N2O but not CH4. Agriculture, Ecosystems and Environment, 2010, 137, 219-221.	2.5	7
133	Expected changes in future agro-climatological conditions in Northeast Thailand and their differences between general circulation models. Theoretical and Applied Climatology, 2011, 106, 383-401.	1.3	7
134	Evaluation of the most appropriate spatial resolution of input data for assessing the impact of climate change on rice productivity in Japan. J Agricultural Meteorology, 2020, 76, 61-68.	0.8	7
135	Responses of Eighteen Rice (<i>Oryza sativa</i> L.) Cultivars to Temperature Tested Using Two Types of Growth Chambers. Plant Production Science, 2013, 16, 217-225.	0.9	6
136	Dependence of pollination and fertilization in rice (Oryza sativa L.) on floret height within the canopy. Field Crops Research, 2020, 249, 107741.	2.3	6
137	Integration of Genomics with Crop Modeling for Predicting Rice Days to Flowering: A Multi-Model Analysis. Field Crops Research, 2022, 276, 108394.	2.3	6
138	Improvement of yielding ability in Japonica rice cultivars and its impact on regional yield increase in Kinki District, Japan. Agricultural Systems, 1991, 35, 173-187.	3.2	5
139	Rice Leaf Photosynthesis as a Function of Nitrogen Content and Crop Developmental Stage Japanese Journal of Crop Science, 1996, 65, 553-554.	0.1	5
140	Difference between Canopy Temperature and Air Temperature as a Criterion for Drought Avoidance in Crop Genotypes under Field Conditions in Japan. Japanese Journal of Crop Science, 2003, 72, 461-470.	0.1	5
141	Effects of nitrogen input and climate trends on provincial rice yields in China between 1961 and 2003: quantitative evaluation using a crop model. Paddy and Water Environment, 2015, 13, 529-543.	1.0	5
142	Nitrogen resorption in senescing leaf blades of rice exposed to free-air CO2 enrichment (FACE) under different N fertilization levels. Plant and Soil, 2017, 418, 231-240.	1.8	5
143	Taking account of water temperature effects on phenology improves the estimation of rice heading dates: Evidence from 758 field observations across Japan. J Agricultural Meteorology, 2017, 73, 84-91.	0.8	5
144	Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus. Food and Energy Security, 2020, 9, e186.	2.0	5

#	Article	IF	CITATIONS
145	Quantifying the Feedback Between Rice Architecture, Physiology, and Microclimate Under Current and Future CO 2 Conditions. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005452.	1.3	5
146	Estimation of water saturated areas in Northeast Thailand using a large-scale water balance model. J Agricultural Meteorology, 2010, 66, 91-101.	0.8	4
147	Characteristics of Atmosphere-rice Paddy Exchange of Gaseous and Particulate Reactive Nitrogen in Terms of Nitrogen Input to a Single-cropping Rice Paddy Area in Central Japan. Asian Journal of Atmospheric Environment, 2017, 11, 202-216.	0.4	4
148	Atmospheric CO2 Concentration and N Availability Affect the Balance of the Two Photosystems in Mature Leaves of Rice Plants Grown at a Free-Air CO2 Enrichment Site. Frontiers in Plant Science, 2020, 11, 786.	1.7	3
149	Factors determining the occurrence of floret sterility in rice in a hot and low-wind paddy field in Jianghan Basin, China. Field Crops Research, 2021, 267, 108161.	2.3	3
150	Stability of Phenotypic Variation of Root Length over Environmental Conditions in the Seedling Generation of Potato Japanese Journal of Crop Science, 2000, 69, 332-336.	0.1	3
151	Structure and Function of Rice Root System under FACE Condition. J Agricultural Meteorology, 2005, 60, 961-964.	0.8	3
152	Extreme High Yield of Tropical Rice Grown Without Fertilizer on Acid Sulfate Soil in South Kalimantan, Indonesia. Jurnal Tanah Tropika, 2018, 15, 33.	0.2	3
153	Changes in Vertical Distribution of Leaf Nitrogen with the Growth Stage and the Influence on Dry Matter Production in Rice. Plant Production Science, 1999, 2, 37-46.	0.9	2
154	Effect of foliar spray of kinetin on the enhancement of rice yield by elevated CO 2. Journal of Agronomy and Crop Science, 2021, 207, 535-543.	1.7	2
155	Heat-Mitigation Effects of Irrigated Rice-Paddy Fields Under Changing Atmospheric Carbon Dioxide Based on a Coupled Atmosphere and Crop Energy-Balance Model. Boundary-Layer Meteorology, 2021, 179, 447-476.	1.2	2
156	Soil nitrogen supply and nitrogen uptake for local rice grown in unfertilized acid sulfate soil in South Kalimantan. Tropics, 2006, 15, 349-354.	0.2	2
157	Fertilizer-derived nitrogen use of two varieties of single-crop paddy rice: a free-air carbon dioxide enrichment study using polymer-coated 15N-labeled urea. Soil Science and Plant Nutrition, 0, , 1-12.	0.8	2
158	Low N level increases the susceptibility of <scp>PSI</scp> to photoinhibition induced by short repetitive flashes in leaves of different rice varieties. Physiologia Plantarum, 2022, 174, e13644.	2.6	2
159	A strong negative trade-off between seed number and 100-seed weight stalls genetic yield gains in northern Japanese soybean cultivars in comparison with Midwestern US cultivars. Field Crops Research, 2022, 283, 108539.	2.3	2
160	Development of a Simplified Growth and Yield Prediction Model for Supporting the Management of Paddy Rice Fertilization for Commercial Rice Varieties in the Tohoku Region. Japanese Journal of Crop Science, 2021, 90, 430-443.	0.1	2
161	Features of the AFFRC model for evaluating the relationship between the water cycle and rice production. Paddy and Water Environment, 2008, 6, 15-23.	1.0	1
162	Rice quality analysis using the Crop Survey database of Japan for climate impact assessment. Climate in Biosphere, 2020, 20, 1-8.	0.1	1

#	Article	IF	CITATIONS
163	Seasonal Changes in Spectral Photon Flux Measured at Sapporo, Gifu and Naha. Seibutsu Kankyo Chosetsu [Environment Control in Biology, 2004, 42, 147-154.	0.2	1
164	CROWIS: A System for Sharing and Integrating Crop and Weather Data. Agricultural Information Research, 2007, 16, 124-131.	0.2	1
165	Effects of elevated atmospheric CO2 concentration on growth and photosynthesis in eddo at two different air temperatures. Plant Production Science, 2021, 24, 363-373.	0.9	1
166	Nitrogen Aspects of the Free-Air CO2 Enrichment (FACE) Study for Paddy Rice Ecosystems. , 2020, , 331-340.		1
167	Analysis of Cool-weather Damage of Rice in 1993 Based on Data of Municipal Basis in Hokkaido Japanese Journal of Crop Science, 1998, 67, 573-580.	0.1	0
168	Raising wheat yield ceiling. Nature Food, 0, , .	6.2	0