Wei Yong-Sheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1677614/publications.pdf

Version: 2024-02-01

393982 414034 3,511 34 19 citations g-index h-index papers

36 36 36 4287 docs citations times ranked citing authors all docs

32

#	Article	IF	CITATIONS
1	Micro/Nanoâ€Scaled Metalâ€Organic Frameworks and Their Derivatives for Energy Applications. Advanced Energy Materials, 2022, 12, 2003970.	10.2	64
2	One-Step Synthesis of Ultrathin Carbon Nanoribbons from Metal–Organic Framework Nanorods for Oxygen Reduction and Zinc–Air Batteries. CCS Chemistry, 2022, 4, 194-204.	4.6	15
3	Photoluminescent coordination polymer bulk glasses and laser-induced crystallization. Chemical Science, 2022, 13, 3281-3287.	3.7	15
4	Soluble porous carbon cage-encapsulated highly active metal nanoparticle catalysts. Journal of Materials Chemistry A, 2021, 9, 13670-13677.	5.2	13
5	Ordered Macroporous Superstructure of Nitrogenâ€Doped Nanoporous Carbon Implanted with Ultrafine Ru Nanoclusters for Efficient pHâ€Universal Hydrogen Evolution Reaction. Advanced Materials, 2021, 33, e2006965.	11.1	213
6	Singleâ€Atom Catalysts Derived from Metal–Organic Frameworks for Electrochemical Applications. Small, 2021, 17, e2004809.	5.2	139
7	Revealing Active Function of Multicomponent Electrocatalysts from In Situ Nickel Redox for Oxygen Evolution. Journal of Physical Chemistry C, 2021, 125, 16420-16427.	1.5	5
8	Synthetic Strategy for Incorporating Carboxylate Ligands into Coordination Polymers under a Solvent-Free Reaction. Crystal Growth and Design, 2021, 21, 6031-6036.	1.4	3
9	A Zinc–Dualâ€Halogen Battery with a Molten Hydrate Electrolyte. Advanced Materials, 2020, 32, e2004553.	11.1	47
10	Multiple catalytic sites in MOF-based hybrid catalysts for organic reactions. Organic and Biomolecular Chemistry, 2020, 18, 8508-8525.	1.5	11
11	Frontispiz: Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie, 2020, 132, .	1.6	O
12	Frontispiece: Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
13	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie - International Edition, 2020, 59, 16013-16022.	7.2	151
14	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie, 2020, 132, 16147-16156.	1.6	19
15	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	23.0	692
16	A Honeycomb‣ike Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. Angewandte Chemie - International Edition, 2020, 59, 19627-19632.	7.2	100
17	A Honeycomb‣ike Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. Angewandte Chemie, 2020, 132, 19795-19800.	1.6	7
18	A Single-Crystal Open-Capsule Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 7906-7916.	6.6	179

#	Article	IF	CITATIONS
19	Remoulding a MOF's pores by auxiliary ligand introduction for stability improvement and highly selective CO ₂ -capture. Chemical Communications, 2018, 54, 12029-12032.	2.2	23
20	Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nature Chemistry, 2017, 9, 689-697.	6.6	790
21	Unique Proton Dynamics in an Efficient MOF-Based Proton Conductor. Journal of the American Chemical Society, 2017, 139, 3505-3512.	6.6	283
22	Facile Synthesis of a Heteroatoms′ Quaternaryâ€Doped Porous Carbon as an Efficient and Stable Metalâ€Free Catalyst for Oxygen Reduction. ChemistrySelect, 2017, 2, 6129-6134.	0.7	5
23	Windmill Co ₄ {Co ₄ (μ ₄ â€O)} with 16 Divergent Branches Forming a Family of Metal–Organic Frameworks: Organic Metrics Control Topology, Gas Sorption, and Magnetism. Chemistry - A European Journal, 2016, 22, 12088-12094.	1.7	34
24	Unique (3,9)-connected porous coordination polymers constructed by tripodal ligands with bent arms. CrystEngComm, 2016, 18, 4115-4120.	1.3	16
25	Synthesis and stabilization of a hypothetical porous framework based on a classic flexible metal carboxylate cluster. Dalton Transactions, 2016, 45, 4269-4273.	1.6	17
26	Porous Coordination Polymers: Unveiling the Mechanism of Waterâ€Triggered Diplex Transformation and Correlating the Changes in Structures and Separation Properties (Adv. Funct. Mater. 41/2015). Advanced Functional Materials, 2015, 25, 6556-6556.	7.8	0
27	Unveiling the Mechanism of Waterâ€Triggered Diplex Transformation and Correlating the Changes in Structures and Separation Properties. Advanced Functional Materials, 2015, 25, 6448-6457.	7.8	41
28	Metal cluster-based functional porous coordination polymers. Coordination Chemistry Reviews, 2015, 293-294, 263-278.	9.5	234
29	Coordination templated [2+2+2] cyclotrimerization in a porous coordination framework. Nature Communications, 2015, 6, 8348.	5.8	101
30	Grafting alkylamine in UiO-66 by charge-assisted coordination bonds for carbon dioxide capture from high-humidity flue gas. Journal of Materials Chemistry A, 2015, 3, 21849-21855.	5.2	83
31	Metal-ion controlled solid-state reactivity and photoluminescence in two isomorphous coordination polymers. Inorganic Chemistry Frontiers, 2014, 1, 172.	3.0	15
32	A flexible, porous, cluster-based Zn-pyrazolate-dicarboxylate framework showing selective adsorption properties. New Journal of Chemistry, 2014, 38, 2002-2007.	1.4	7
33	New porous coordination polymers based on expanded pyridyl-dicarboxylate ligands and a paddle-wheel cluster. CrystEngComm, 2014, 16, 6325-6330.	1.3	25
34	Turning on the flexibility of isoreticular porous coordination frameworks for drastically tunable framework breathing and thermal expansion. Chemical Science, 2013, 4, 1539.	3.7	163