Huiyu Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1677420/publications.pdf

Version: 2024-02-01

687363 713466 480 29 13 21 citations h-index g-index papers 29 29 29 321 docs citations all docs times ranked citing authors

#	Article	IF	Citations
1	Dynamic modeling of a 3-D 4-directional braided composite beam with a central rigid body. Mechanics of Advanced Materials and Structures, 2023, 30, 3215-3224.	2.6	O
2	4D printed programmable auxetic metamaterials with shape memory effects. Composite Structures, 2022, 279, 114791.	5.8	28
3	Electro-thermo-mechanical modeling of shape memory polymers filled with nano-carbon powder. Journal of Intelligent Material Systems and Structures, 2022, 33, 1731-1742.	2.5	2
4	A hygro-thermo-mechanical constitutive model for shape memory polymers filled with nano-carbon powder. International Journal of Smart and Nano Materials, 2021, 12, 286-306.	4.2	16
5	Modeling the one-way and two-way shape memory effects of semi-crystalline polymers. Smart Materials and Structures, 2021, 30, 095020.	3.5	12
6	Modeling the thermomechanical behaviors of short fiber reinforced shape memory polymer composites. International Journal of Mechanical Sciences, 2020, 166, 105212.	6.7	27
7	Modeling the thermomechanical behavior of carbon fiber–reinforced shape memory polymer composites under the finite deformation. Journal of Intelligent Material Systems and Structures, 2020, 31, 503-514.	2.5	4
8	Modeling the thermoviscoelasticity of transversely isotropic shape memory polymer composites. Smart Materials and Structures, 2020, 29, 025012.	3.5	9
9	A hygro-thermo-mechanical constitutive model for hygrothermally activated shape memory polymers under finite deformations. Mechanics of Materials, 2020, 150, 103594.	3.2	16
10	Modeling the laminated carbon fiber reinforced shape memory polymer composites by using a refined plate theory. Smart Materials and Structures, 2020, 29, 095005.	3. 5	7
11	Application of fractional calculus methods to viscoelastic behaviours of solid propellants. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190291.	3.4	12
12	A nonlinear strain-rate dependent constitutive model for uncured rubber materials under large deformation. Journal of Mechanics, 2020, 37, 118-125.	1.4	2
13	Modeling the shape memory and strength properties of fiber-reinforced shape memory polymer composite laminates. Smart Materials and Structures, 2019, 28, 105011.	3.5	4
14	Modeling the thermomechanical behaviors of particle reinforced shape memory polymer composites. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	11
15	Modeling the thermomechanical behaviors of shape memory polymers and their nanocomposites by a network transition theory. Smart Materials and Structures, 2019, 28, 065018.	3.5	12
16	Thermomechanical constitutive modeling of fiber reinforced shape memory polymer composites based on thermodynamics with internal state variables. Mechanics of Materials, 2019, 130, 9-19.	3.2	48
17	Thermo-mechanical modeling of woven fabric reinforced shape memory polymer composites. Mechanics of Advanced Materials and Structures, 2019, 26, 1042-1052.	2.6	15
18	A multi-branch thermoviscoelastic model based on fractional derivatives for free recovery behaviors of shape memory polymers. Mechanics of Materials, 2018, 120, 34-42.	3.2	27

#	Article	IF	Citations
19	A 1D thermomechanical network transition constitutive model coupled with multiple structural relaxation for shape memory polymers. Smart Materials and Structures, 2018, 27, 035024.	3.5	6
20	A thermoviscoelastic model incorporated with uncoupled structural and stress relaxation mechanisms for amorphous shape memory polymers. Mechanics of Materials, 2018, 124, 18-25.	3.2	29
21	Modeling the strain rate-, hold time-, and temperature-dependent cyclic behaviors of amorphous shape memory polymers. Smart Materials and Structures, 2018, 27, 075050.	3.5	13
22	A constitutive model for amorphous shape memory polymers based on thermodynamics with internal state variables. Mechanics of Materials, 2017, 111, 1-14.	3.2	40
23	A unified modeling approach for amorphous shape memory polymers and shape memory polymer based syntactic foam. Polymers for Advanced Technologies, 2016, 27, 1237-1245.	3.2	12
24	A phenomenological constitutive model for shape memory polyurethanes. Journal of Intelligent Material Systems and Structures, 2015, 26, 517-526.	2.5	13
25	A finite deformation constitutive model for thermally activated amorphous shape memory polymers. Journal of Intelligent Material Systems and Structures, 2015, 26, 1530-1538.	2.5	15
26	Prediction on viscoelastic properties of three-dimensionally braided composites by multi-scale model. Journal of Materials Science, 2013, 48, 6499-6508.	3.7	23
27	Thermo-viscoelastic analysis of three-dimensionally braided composites. Composite Structures, 2013, 98, 47-52.	5.8	17
28	Micromechanics of braided composites via multivariable FEM. Computers and Structures, 2003, 81, 2021-2027.	4.4	60
29	A 1D physically based constitutive model for two-way shape memory effects in semicrystalline networks. Mechanics of Advanced Materials and Structures, 0, , 1-15.	2.6	O