List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1677176/publications.pdf Version: 2024-02-01

Δετρ **Δ**ιεκ

#	Article	IF	CITATIONS
1	Addressing context dependence in ecology. Trends in Ecology and Evolution, 2022, 37, 158-170.	4.2	119
2	Environmental and socioeconomic correlates of extinction risk in endemic species. Diversity and Distributions, 2022, 28, 53-64.	1.9	16
3	Water availability, bedrock, disturbance by herbivores, and climate determine plant diversity in South-African savanna. Scientific Reports, 2022, 12, 338.	1.6	7
4	Alien flora of Oman: invasion status, taxonomic composition, habitats, origin, and pathways of introduction. Biological Invasions, 2022, 24, 955-970.	1.2	10
5	Correction: Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 2022, 30, 174-174.	2.1	1
6	Soil seed banks under a warming climate. , 2022, , 285-298.		4
7	Introduction history mediates naturalization and invasiveness of cultivated plants. Global Ecology and Biogeography, 2022, 31, 1104-1119.	2.7	14
8	Plant Invasions in Africa. , 2022, , 225-252.		9
9	Moving Toward Clobal Strategies for Managing Invasive Alien Species. , 2022, , 331-360.		4
10	European Plant Invasions. , 2022, , 151-165.		3
11	Determinants of invasion by single versus multiple plant species in temperate lowland forests. Biological Invasions, 2022, 24, 2513-2528.	1.2	7
12	Niche and geographical expansions of North American trees and tall shrubs in Europe. Journal of Biogeography, 2022, 49, 1151-1161.	1.4	3
13	The European Forest Plant Species List (EuForPlant): Concept and applications. Journal of Vegetation Science, 2022, 33, .	1.1	23
14	Long-term seed burial reveals differences in the seed-banking strategies of naturalized and invasive alien herbs. Scientific Reports, 2022, 12, .	1.6	3
15	AgriWeedClim database: A repository of vegetation plot data from Central European arable habitats over 100 years. Applied Vegetation Science, 2022, 25, .	0.9	4
16	Latitudinal patterns of alien plant invasions. Journal of Biogeography, 2021, 48, 253-262.	1.4	28
17	Source pools and disharmony of the world's island floras. Ecography, 2021, 44, 44-55.	2.1	30
18	Role of diversification rates and evolutionary history as a driver of plant naturalization success. New Phytologist, 2021, 229, 2998-3008.	3.5	19

#	Article	IF	CITATIONS
19	Impact of invasive and native dominants on species richness and diversity of plant communities. Preslia, 2021, 93, 181-201.	1.1	26
20	Regeneration of Phragmites australis from rhizome and culm fragments. Preslia, 2021, 93, 237-254.	1.1	8
21	Anthropogenic and environmental drivers shape diversity of naturalized plants across the Pacific. Diversity and Distributions, 2021, 27, 1120-1133.	1.9	8
22	Species–Area Relationships in Alien Species: Pattern and Process. , 2021, , 133-154.		20
23	The alien flora of Sudan and South Sudan: taxonomic and biogeographical composition. Biological Invasions, 2021, 23, 2033-2045.	1.2	12
24	Neophyte invasions in European grasslands. Journal of Vegetation Science, 2021, 32, e12994.	1.1	25
25	Invasion Culturomics and iEcology. Conservation Biology, 2021, 35, 447-451.	2.4	24
26	Alien plant invasion hotspots and invasion debt in European woodlands. Journal of Vegetation Science, 2021, 32, e13014.	1.1	19
27	Functional diversity changes in native and alien urban flora over three centuries. Biological Invasions, 2021, 23, 2337-2353.	1.2	4
28	Climate and socioâ€economic factors explain differences between observed and expected naturalization patterns of European plants around the world. Global Ecology and Biogeography, 2021, 30, 1514-1531.	2.7	8
29	Persistent soil seed banks promote naturalisation and invasiveness in flowering plants. Ecology Letters, 2021, 24, 1655-1667.	3.0	30
30	Dimensions of invasiveness: Links between local abundance, geographic range size, and habitat breadth in Europe's alien and native floras. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	47
31	Quantifying the potential impact of alien plants of Iran using the Generic Impact Scoring System (GISS) and Environmental Impact Classification for Alien Taxa (EICAT). Biological Invasions, 2021, 23, 2435-2449.	1.2	6
32	Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 2021, 29, 119-141.	2.1	98
33	Around the world in 500 years: Interâ€regional spread of alien species over recent centuries. Global Ecology and Biogeography, 2021, 30, 1621-1632.	2.7	29
34	Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species. Diversity and Distributions, 2021, 27, 2063-2076.	1.9	7
35	Phylogenetic structure of alien plant species pools from European donor habitats. Global Ecology and Biogeography, 2021, 30, 2354-2367.	2.7	7
36	Does the intensive grazing and aridity change the relations between the dominant shrub Artemisia kopetdaghensis and plants under its canopies?. Ecology and Evolution, 2021, 11, 14115-14124.	0.8	3

#	Article	IF	CITATIONS
37	Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 2021, 27, 970-982.	4.2	327
38	Mycorrhizal types influence island biogeography of plants. Communications Biology, 2021, 4, 1128.	2.0	12
39	Characteristics of the naturalized flora of Southern Africa largely reflect the nonâ€random introduction of alien species for cultivation. Ecography, 2021, 44, 1812-1825.	2.1	12
40	The invasive cactus Opuntia stricta creates fertility islands in African savannas and benefits from those created by native trees. Scientific Reports, 2021, 11, 20748.	1.6	7
41	Endemic macrophyte is more plastic than two cosmopolitan species in fluctuating water levels and nutrient-enriched conditions. Transactions of the Royal Society of South Australia, 2021, 145, 25-44.	0.1	0
42	The global loss of floristic uniqueness. Nature Communications, 2021, 12, 7290.	5.8	39
43	Spread ofImpatiens glanduliferafrom riparian habitats to forests and its associated impacts: insights from a new invasion. Weed Research, 2020, 60, 8-15.	0.8	14
44	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
45	Similar factors underlie tree abundance in forests in native and alien ranges. Global Ecology and Biogeography, 2020, 29, 281-294.	2.7	21
46	Need for routine tracking of biological invasions. Conservation Biology, 2020, 34, 1311-1314.	2.4	36
47	Robinia pseudoacacia-dominated vegetation types of Southern Europe: Species composition, history, distribution and management. Science of the Total Environment, 2020, 707, 134857.	3.9	41
48	Native distribution characteristics rather than functional traits explain preadaptation of invasive species to highâ€UVâ€B environments. Diversity and Distributions, 2020, 26, 1421-1438.	1.9	5
49	Drivers of future alien species impacts: An expertâ€based assessment. Global Change Biology, 2020, 26, 4880-4893.	4.2	145
50	Size Matters: Genome Size Influences Plant Tolerance Of Abiotic Stress In Native Versus Invasive Plants. Bulletin of the Ecological Society of America, 2020, 101, e01731.	0.2	1
51	Invasion costs, impacts, and human agency: response to Sagoff 2020. Conservation Biology, 2020, 34, 1579-1582.	2.4	26
52	Invasion biology and uncertainty in native range definitions: response to Pereyra 2019. Conservation Biology, 2020, 34, 1041-1043.	2.4	9
53	Urbanization and Carpobrotus edulis invasion alter the diversity and composition of soil bacterial communities in coastal areas. FEMS Microbiology Ecology, 2020, 96, .	1.3	12
54	Alien ectomycorrhizal plants differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in novel sites. ISME Journal, 2020, 14, 2336-2346.	4.4	19

#	Article	IF	CITATIONS
55	Alien flora across European coastal dunes. Applied Vegetation Science, 2020, 23, 317-327.	0.9	43
56	A conceptual map of invasion biology: Integrating hypotheses into a consensus network. Global Ecology and Biogeography, 2020, 29, 978-991.	2.7	150
57	Integrated Methods for Monitoring the Invasive Potential and Management of Heracleum mantegazzianum (giant hogweed) in Switzerland. Environmental Management, 2020, 65, 829-842.	1.2	6
58	Invasion syndromes: a systematic approach for predicting biological invasions and facilitating effective management. Biological Invasions, 2020, 22, 1801-1820.	1.2	83
59	A proposed unified framework to describe the management of biological invasions. Biological Invasions, 2020, 22, 2633-2645.	1.2	80
60	Effects of livestock grazing on plant species diversity vary along a climatic gradient in northeastern Iran. Applied Vegetation Science, 2020, 23, 551-561.	0.9	11
61	Lasting the distance: The survival of alien birds shipped to New Zealand in the 19th century. Ecology and Evolution, 2020, 10, 3944-3953.	0.8	8
62	Economic use of plants is key to their naturalization success. Nature Communications, 2020, 11, 3201.	5.8	79
63	Scientists' warning on invasive alien species. Biological Reviews, 2020, 95, 1511-1534.	4.7	928
64	Plant genome size influences stress tolerance of invasive and native plants via plasticity. Ecosphere, 2020, 11, e03145.	1.0	34
65	Assessing biological invasions in protected areas after 30Âyears: Revisiting nature reserves targeted by the 1980s SCOPE programme. Biological Conservation, 2020, 243, 108424.	1.9	46
66	Linking traits of invasive plants with ecosystem services and disservices. Ecosystem Services, 2020, 42, 101072.	2.3	56
67	Competition among native and invasive Phragmites australis populations: An experimental test of the effects of invasion status, genome size, and ploidy level. Ecology and Evolution, 2020, 10, 1106-1118.	0.8	16
68	Distinct Biogeographic Phenomena Require a Specific Terminology: A Reply to Wilson and Sagoff. BioScience, 2020, 70, 112-114.	2.2	5
69	Early successional ectomycorrhizal fungi are more likely to naturalize outside their native range than other ectomycorrhizal fungi. New Phytologist, 2020, 227, 1289-1293.	3.5	17
70	The role of species charisma in biological invasions. Frontiers in Ecology and the Environment, 2020, 18, 345-353.	1.9	81
71	Phylogenetic relatedness mediates persistence and density of soil seed banks. Journal of Ecology, 2020, 108, 2121-2131.	1.9	37
72	Effects of land-use change and related pressures on alien and native subsets of island communities. PLoS ONE, 2020, 15, e0227169.	1.1	13

#	Article	IF	CITATIONS
73	Two faces of parks. Preslia, 2020, 92, 353-373.	1.1	14
74	Independent introductions of hedgehogs to the North and South Island of New Zealand. New Zealand Journal of Ecology, 2020, 44, .	1.1	0
75	South Africa as a Donor of Naturalised and Invasive Plants to Other Parts of the World. , 2020, , 759-785.		10
76	Tall-statured grasses: a useful functional group for invasion science. Biological Invasions, 2019, 21, 37-58.	1.2	36
77	Effects of livestock grazing on soil, plant functional diversity, and ecological traits vary between regions with different climates in northeastern Iran. Ecology and Evolution, 2019, 9, 8225-8237.	0.8	31
78	Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB PLANTS, 2019, 11, plz051.	1.2	72
79	Impacts of dominant plant species on trait composition of communities: comparison between the native and invaded ranges. Ecosphere, 2019, 10, e02880.	1.0	15
80	Global Actions for Managing Cactus Invasions. Plants, 2019, 8, 421.	1.6	17
81	Research questions to facilitate the future development of European long-term ecosystem research infrastructures: A horizon scanning exercise. Journal of Environmental Management, 2019, 250, 109479.	3.8	13
82	A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience, 2019, 69, 908-919.	2.2	113
83	Domestic gardens play a dominant role in selecting alien species with adaptive strategies that facilitate naturalization. Global Ecology and Biogeography, 2019, 28, 628-639.	2.7	47
84	Contrasting patterns of naturalized plant richness in the Americas: Numbers are higher in the North but expected to rise sharply in the South. Global Ecology and Biogeography, 2019, 28, 779-783.	2.7	12
85	The role of fruit heteromorphism in the naturalization of Asteraceae. Annals of Botany, 2019, 123, 1043-1052.	1.4	11
86	Characteristics of the soil seed bank of invasive and non-invasive plants in their native and alien distribution range. Biological Invasions, 2019, 21, 2313-2332.	1.2	31
87	Mycorrhizal fungi influence global plant biogeography. Nature Ecology and Evolution, 2019, 3, 424-429.	3.4	74
88	Facultative mycorrhizal associations promote plant naturalization worldwide. Ecosphere, 2019, 10, e02937.	1.0	16
89	Autofertility and selfâ€compatibility moderately benefit island colonization of plants. Global Ecology and Biogeography, 2019, 28, 341-352.	2.7	17
90	The ins and outs of acclimatisation: imports versus translocations of skylarks and starlings in 19th century New Zealand. Biological Invasions, 2019, 21, 1395-1413.	1.2	3

#	Article	IF	CITATIONS
91	Twenty-five years of conferences on the Ecology and Management of Alien Plant invasions: the history of EMAPi 1992–2017. Biological Invasions, 2019, 21, 725-742.	1.2	7
92	Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.	1.9	19
93	Crypticity in Biological Invasions. Trends in Ecology and Evolution, 2019, 34, 291-302.	4.2	75
94	The Global Naturalized Alien Flora (Glo <scp>NAF</scp>) database. Ecology, 2019, 100, e02542.	1.5	189
95	Naturalized and invasive alien flora of Ghana. Biological Invasions, 2019, 21, 669-683.	1.2	24
96	Survival, dynamics of spread and invasive potential of species in perennial plantations. Biological Invasions, 2019, 21, 561-573.	1.2	7
97	Physiology of a plant invasion. Preslia, 2019, 91, 51-75.	1.1	25
98	The changing role of ornamental horticulture in alien plant invasions. Biological Reviews, 2018, 93, 1421-1437.	4.7	251
99	Invaders among locals: Alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. Journal of Ecology, 2018, 106, 2230-2241.	1.9	65
100	Invasive alien plants of Russia: insights from regional inventories. Biological Invasions, 2018, 20, 1931-1943.	1.2	51
101	Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2264-E2273.	3.3	416
102	Living in two worlds: Evolutionary mechanisms act differently in the native and introduced ranges of an invasive plant. Ecology and Evolution, 2018, 8, 2440-2452.	0.8	17
103	More than "100 worst―alien species in Europe. Biological Invasions, 2018, 20, 1611-1621.	1.2	200
104	Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology, 2018, 99, 79-90.	1.5	54
105	Dialects of an invasive songbird are preserved in its invaded but not native source range. Ecography, 2018, 41, 245-254.	2.1	29
106	Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions. Journal of Applied Ecology, 2018, 55, 92-98.	1.9	108
107	A prioritised list of invasive alien species to assist the effective implementation of <scp>EU</scp> legislation. Journal of Applied Ecology, 2018, 55, 539-547.	1.9	86
108	Naturalized alien flora of the Indian states: biogeographic patterns, taxonomic structure and drivers of species richness. Biological Invasions, 2018, 20, 1625-1638.	1.2	42

#	Article	IF	CITATIONS
109	Introducing "Alien Floras and Faunasâ€; a new series in Biological Invasions. Biological Invasions, 2018, 20, 1375-1376.	1.2	18
110	Widely distributed native and alien plant species differ in arbuscular mycorrhizal associations and related functional trait interactions. Ecography, 2018, 41, 1583-1593.	2.1	9
111	Breakdown of a geographic cline explains high performance of introduced populations of a weedy invader. Journal of Ecology, 2018, 106, 699-713.	1.9	13
112	Socioâ€economic impact classification of alien taxa (<scp>SEICAT</scp>). Methods in Ecology and Evolution, 2018, 9, 159-168.	2.2	244
113	Biodiversity assessments: Origin matters. PLoS Biology, 2018, 16, e2006686.	2.6	52
114	Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nature Communications, 2018, 9, 4631.	5.8	139
115	Drivers of species turnover vary with species commonness for native and alien plants with different residence times. Ecology, 2018, 99, 2763-2775.	1.5	42
116	Remoteness promotes biological invasions on islands worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9270-9275.	3.3	114
117	The role of adaptive strategies in plant naturalization. Ecology Letters, 2018, 21, 1380-1389.	3.0	69
118	Which Taxa Are Alien? Criteria, Applications, and Uncertainties. BioScience, 2018, 68, 496-509.	2.2	153
119	Plant diversity drives global patterns of insect invasions. Scientific Reports, 2018, 8, 12095.	1.6	50
120	European ornamental garden flora as an invasion debt under climate change. Journal of Applied Ecology, 2018, 55, 2386-2395.	1.9	45
121	Tens rule , 2018, , 124-132.		23
122	Invasive alien plant impacts on human health and well-being , 2018, , 16-33.		12
123	Plant dispersal strategies. Preslia, 2018, 90, 1-22.	1.1	46
124	GefĤrlich und nützlich zugleich: Strategien zum Management der invasiven Robinie. Schweizerische Zeitschrift Fur Forstwesen, 2018, 169, 77-85.	0.5	4
125	A vision for global monitoring of biological invasions. Biological Conservation, 2017, 213, 295-308.	1.9	178
126	Dominance has a biogeographical component: do plants tend to exert stronger impacts in their invaded rather than native range?. Journal of Biogeography, 2017, 44, 18-27.	1.4	28

#	Article	IF	CITATIONS
127	Distribution of invasive plants in urban environment is strongly spatially structured. Landscape Ecology, 2017, 32, 681-692.	1.9	48
128	Plant invasion science in protected areas: progress and priorities. Biological Invasions, 2017, 19, 1353-1378.	1.2	129
129	Floods affect the abundance of invasive <i>Impatiens glandulifera</i> and its spread from river corridors. Diversity and Distributions, 2017, 23, 342-354.	1.9	47
130	Displacement and Local Extinction of Native and Endemic Species. , 2017, , 157-175.		38
131	No saturation in the accumulation of alien species worldwide. Nature Communications, 2017, 8, 14435.	5.8	1,543
132	Biological Flora of the British Isles: <i>Phragmites australis</i> . Journal of Ecology, 2017, 105, 1123-1162.	1.9	96
133	Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecology and Management, 2017, 384, 287-302.	1.4	270
134	Will climate change increase hybridization risk between potential plant invaders and their congeners in Europe?. Diversity and Distributions, 2017, 23, 934-943.	1.9	19
135	Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology and Evolution, 2017, 1, .	3.4	315
136	Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends in Ecology and Evolution, 2017, 32, 464-474.	4.2	312
137	Early bird catches the worm: germination as a critical step in plant invasion. Biological Invasions, 2017, 19, 1055-1080.	1.2	127
138	British plants as aliens in New Zealand cities: residence time moderates their impact on the beta diversity of urban floras. Biological Invasions, 2017, 19, 3589-3599.	1.2	7
139	Naturalization of ornamental plant species in public green spaces and private gardens. Biological Invasions, 2017, 19, 3613-3627.	1.2	44
140	Invasion Science: Looking Forward Rather Than Revisiting Old Ground – A Reply to Zenni et al Trends in Ecology and Evolution, 2017, 32, 809-810.	4.2	3
141	Diversity, biogeography and the global flows of alien amphibians and reptiles. Diversity and Distributions, 2017, 23, 1313-1322.	1.9	87
142	Impacts of an invasive tree across trophic levels: Species richness, community composition and resident species' traits. Diversity and Distributions, 2017, 23, 997-1007.	1.9	47
143	Invasive herb Impatiens glandulifera has minimal impact on multiple components of temperate forest ecosystem function. Biological Invasions, 2017, 19, 3051-3066.	1.2	33
144	Protected areas offer refuge from invasive species spreading under climate change. Global Change Biology, 2017, 23, 5331-5343.	4.2	142

#	Article	IF	CITATIONS
145	Honoring Harold A. Mooney: Citizen of the world and catalyst for invasion science. Biological Invasions, 2017, 19, 2219-2224.	1.2	4
146	Alien plant invasions in European woodlands. Diversity and Distributions, 2017, 23, 969-981.	1.9	98
147	Boomâ€bust dynamics in biological invasions: towards an improved application of the concept. Ecology Letters, 2017, 20, 1337-1350.	3.0	143
148	Naturalization of European plants on other continents: The role of donor habitats. Proceedings of the United States of America, 2017, 114, 13756-13761.	3.3	57
149	Plant Invasions in the Czech Republic. Plant and Vegetation, 2017, , 339-399.	0.6	7
150	Clobal networks for invasion science: benefits, challenges and guidelines. Biological Invasions, 2017, 19, 1081-1096.	1.2	44
151	Blurring Alien Introduction Pathways Risks Losing the Focus on Invasive Species Policy. Conservation Letters, 2017, 10, 265-266.	2.8	16
152	Climate change will increase the naturalization risk from garden plants in Europe. Global Ecology and Biogeography, 2017, 26, 43-53.	2.7	87
153	Mycorrhizal status helps explain invasion success of alien plant species. Ecology, 2017, 98, 92-102.	1.5	77
154	Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring. Frontiers in Plant Science, 2017, 8, 887.	1.7	127
155	Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis. Frontiers in Plant Science, 2017, 8, 1833.	1.7	123
156	Ambrosia artemisiifolia in the Czech Republic. Preslia, 2017, 89, 1-16.	1.1	19
157	Naturalized alien flora of the world. Preslia, 2017, 89, 203-274.	1.1	350
158	Golden jackal (Canis aureus) in the Czech Republic: the first record of a live animal and its long-term persistence in the colonized habitat. ZooKeys, 2016, 641, 151-163.	0.5	17
159	Niche dynamics of alien species do not differ among sexual and apomictic flowering plants. New Phytologist, 2016, 209, 1313-1323.	3.5	38
160	The generic impact scoring system (GISS): a standardized tool to quantify the impacts of alien species. Environmental Monitoring and Assessment, 2016, 188, 315.	1.3	88
161	Weed Risk Assessments Are an Effective Component of Invasion Risk Management. Invasive Plant Science and Management, 2016, 9, 81-83.	0.5	12
162	Geographic structuring and transgenerational maternal effects shape germination in native, but not introduced, populations of a widespread plant invader. American Journal of Botany, 2016, 103, 837-844.	0.8	13

#	Article	IF	CITATIONS
163	Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Global Ecology and Biogeography, 2016, 25, 1500-1509.	2.7	60
164	Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interactions with herbivores?. Biological Invasions, 2016, 18, 2531-2549.	1.2	44
165	Scoring environmental and socioeconomic impacts of alien plants invasive in Europe. Biological Invasions, 2016, 18, 3697-3711.	1.2	71
166	Plants capable of selfing are more likely to become naturalized. Nature Communications, 2016, 7, 13313.	5.8	91
167	Phragmites australis as a model organism for studying plant invasions. Biological Invasions, 2016, 18, 2421-2431.	1.2	81
168	Juvenile biological traits of Impatiens species are more strongly associated with naturalization in temperate climate than their adult traits. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 20, 1-10.	1.1	9
169	Measuring size and composition of species pools: a comparison of dark diversity estimates. Ecology and Evolution, 2016, 6, 4088-4101.	0.8	31
170	On the island biogeography of aliens: a global analysis of the richness of plant and bird species on oceanic islands. Global Ecology and Biogeography, 2016, 25, 859-868.	2.7	67
171	The Legacy of Plant Invasions: Changes in the Soil Seed Bank of Invaded Plant Communities. BioScience, 2016, 66, 40-53.	2.2	104
172	Clobal compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways. Biological Invasions, 2016, 18, 893-905.	1.2	63
173	Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200Âyears. Biological Invasions, 2016, 18, 907-920.	1.2	114
174	Better management of alien species. Nature, 2016, 531, 173-173.	13.7	14
175	Framework and guidelines for implementing the proposed <scp>IUCN</scp> Environmental Impact Classification for Alien Taxa (<scp>EICAT</scp>). Diversity and Distributions, 2015, 21, 1360-1363.	1.9	184
176	Global Invader Impact Network (<scp>GIIN</scp>): toward standardized evaluation of the ecological impacts of invasive plants. Ecology and Evolution, 2015, 5, 2878-2889.	0.8	54
177	Competition among native and invasive Impatiens species: the roles of environmental factors, population density and life stage. AoB PLANTS, 2015, 7, .	1.2	50
178	Phylogenetic structure of plant species pools reflects habitat age on the geological time scale. Journal of Vegetation Science, 2015, 26, 1080-1089.	1.1	43
179	The compositional similarity of urban forests among the world's cities is scale dependent. Global Ecology and Biogeography, 2015, 24, 1413-1423.	2.7	42
180	Global trade will accelerate plant invasions in emerging economies under climate change. Global Change Biology, 2015, 21, 4128-4140.	4.2	301

#	Article	IF	CITATIONS
181	Invasive Insects Differ from Non-Invasive in Their Thermal Requirements. PLoS ONE, 2015, 10, e0131072.	1.1	39
182	Challenging the view that invasive non-native plants are not a significant threat to the floristic diversity of Great Britain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2988-9.	3.3	32
183	Effect of temperature and nutrients on the growth and development of seedlings of an invasive plant. AoB PLANTS, 2015, 7, .	1.2	22
184	Delayed biodiversity change: no time to waste. Trends in Ecology and Evolution, 2015, 30, 375-378.	4.2	92
185	Nativeâ€range habitats of invasive plants: are they similar to invadedâ€range habitats and do they differ according to the geographical direction of invasion?. Diversity and Distributions, 2015, 21, 312-321.	1.9	43
186	Explaining the variation in impacts of nonâ€native plants on localâ€scale species richness: the role of phylogenetic relatedness. Global Ecology and Biogeography, 2015, 24, 139-146.	2.7	55
187	Ecological Impacts of Alien Species: Quantification, Scope, Caveats, and Recommendations. BioScience, 2015, 65, 55-63.	2.2	301
188	Crossing Frontiers in Tackling Pathways of Biological Invasions. BioScience, 2015, 65, 769-782.	2.2	202
189	Reply to Proença et al.: Sown biodiverse pastures are not a universal solution to invasion risk. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1696.	3.3	1
190	Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Global Ecology and Biogeography, 2015, 24, 786-794.	2.7	66
191	Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Diversity and Distributions, 2015, 21, 534-547.	1.9	112
192	Comparing impacts of alien plants and animals in <scp>E</scp> urope using a standard scoring system. Journal of Applied Ecology, 2015, 52, 552-561.	1.9	116
193	The hidden side of plant invasions: the role of genome size. New Phytologist, 2015, 205, 994-1007.	3.5	99
194	Global exchange and accumulation of non-native plants. Nature, 2015, 525, 100-103.	13.7	746
195	Native and exotic plant species respond differently to wildfire and prescribed fire as revealed by metaâ€analysis. Journal of Vegetation Science, 2015, 26, 102-113.	1.1	65
196	Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology, 2015, 96, 762-774.	1.5	166
197	Getting the Right Traits: Reproductive and Dispersal Characteristics Predict the Invasiveness of Herbaceous Plant Species. PLoS ONE, 2015, 10, e0123634.	1.1	88
198	Geographical Constraints Are Stronger than Invasion Patterns for European Urban Floras. PLoS ONE, 2014, 9, e85661.	1.1	22

#	Article	IF	CITATIONS
199	A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLoS Biology, 2014, 12, e1001850.	2.6	648
200	Habitat requirements, short-term population dynamics and coexistence of native and invasive Impatiens species: a field study. Biological Invasions, 2014, 16, 177-190.	1.2	39
201	Greater Focus Needed on Alien Plant Impacts in Protected Areas. Conservation Letters, 2014, 7, 459-466.	2.8	68
202	A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133330.	1.2	985
203	Beta diversity of urban floras among <scp>E</scp> uropean and nonâ€ <scp>E</scp> uropean cities. Global Ecology and Biogeography, 2014, 23, 769-779.	2.7	90
204	Pragmatism required to assess impacts of invasive plants. Frontiers in Ecology and the Environment, 2014, 12, 153-154.	1.9	6
205	Impact of invasions by alien plants on soil seed bank communities: Emerging patterns. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 132-142.	1.1	77
206	Vegetation succession in restoration of disturbed sites in Central Europe: the direction of succession and species richness across 19 seres. Applied Vegetation Science, 2014, 17, 193-200.	0.9	123
207	Long-term impact of Heracleum mantegazzianum invasion on soil chemical and biological characteristics. Soil Biology and Biochemistry, 2014, 68, 270-278.	4.2	34
208	Defining the Impact of Nonâ€Native Species. Conservation Biology, 2014, 28, 1188-1194.	2.4	308
209	Temperate trees and shrubs as global invaders: the relationship between invasiveness and native distribution depends on biological traits. Biological Invasions, 2014, 16, 577-589.	1.2	43
210	New pasture plants intensify invasive species risk. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16622-16627.	3.3	85
211	Habitat invasion research: where vegetation science and invasion ecology meet. Journal of Vegetation Science, 2014, 25, 1181-1187.	1.1	29
212	Making waves about spreading weeds. Science, 2014, 344, 1236-1236.	6.0	4
213	Role of substrate and landscape context in early succession: An experimental approach. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 174-179.	1.1	35
214	Exotic and Invasive Species. , 2014, , 201-209.		0
215	Invasiveness Does Not Predict Impact: Response of Native Land Snail Communities to Plant Invasions in Riparian Habitats. PLoS ONE, 2014, 9, e108296.	1.1	17
216	The impact of an invasive plant changes over time. Ecology Letters, 2013, 16, 1277-1284.	3.0	181

#	Article	IF	CITATIONS
217	Integrative invasion science: model systems, multiâ€site studies, focused metaâ€analysis and invasion syndromes. New Phytologist, 2013, 200, 615-633.	3.5	219
218	Remote sensing as a tool for monitoring plant invasions: Testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed). International Journal of Applied Earth Observation and Geoinformation, 2013, 25, 55-65.	1.4	87
219	Impacts of biological invasions: what's what and the way forward. Trends in Ecology and Evolution, 2013, 28, 58-66.	4.2	2,304
220	Where do they come from and where do they go? <scp>E</scp> uropean natural habitats as donors of invasive alien plants globally. Diversity and Distributions, 2013, 19, 199-214.	1.9	52
221	Bias and error in understanding plant invasion impacts. Trends in Ecology and Evolution, 2013, 28, 212-218.	4.2	352
222	Plant Invasions. , 2013, , 90-102.		4
223	Constraints to native plant species establishment in coastal dune communities invaded by Carpobrotus edulis: Implications for restoration. Biological Conservation, 2013, 164, 1-9.	1.9	76
224	Globalization Effects on Common Plant Species. , 2013, , 700-706.		14
225	Do invasive species perform better in their new ranges?. Ecology, 2013, 94, 985-994.	1.5	210
226	Hitting the right target: taxonomic challenges for, and of, plant invasions. AoB PLANTS, 2013, 5, plt042-plt042.	1.2	87
227	Increasing functional modularity with residence time in the co-distribution of native and introduced vascular plants. Nature Communications, 2013, 4, 2454.	5.8	32
228	Europe's other debt crisis caused by the long legacy of future extinctions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7342-7347.	3.3	102
229	Effect of Intra- and Interspecific Competition on the Performance of Native and Invasive Species of Impatiens under Varying Levels of Shade and Moisture. PLoS ONE, 2013, 8, e62842.	1.1	55
230	Plant Invasions of Protected Areas in Europe: An Old Continent Facing New Problems. , 2013, , 209-240.		27
231	The Bottom Line: Impacts of Alien Plant Invasions in Protected Areas. , 2013, , 19-41.		25
232	Manipulating Alien Plant Species Propagule Pressure as a Prevention Strategy for Protected Areas. , 2013, , 473-486.		5
233	Invasive Alien Plants in Protected Areas: Threats, Opportunities, and the Way Forward. , 2013, , 621-639.		10
234	Biosecurity on Thin Ice in Antarctica. Science, 2012, 336, 1102-1104.	6.0	7

#	Article	IF	CITATIONS
235	The first steps towards unifying concepts in invasion ecology were made one hundred years ago: revisiting the work of the <scp>S</scp> wiss botanist <scp>A</scp> lbert <scp>T</scp> hellung. Diversity and Distributions, 2012, 18, 1243-1252.	1.9	36
236	Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytologist, 2012, 196, 383-396.	3.5	318
237	The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany, 2012, 109, 19-45.	1.4	707
238	Seedling traits, plasticity and local differentiation as strategies of invasive species of Impatiens in central Europe. Annals of Botany, 2012, 110, 1429-1438.	1.4	56
239	Taxonomic bias and lack of crossâ€ŧaxonomic studies in invasion biology. Frontiers in Ecology and the Environment, 2012, 10, 349-350.	1.9	36
240	Which Factors Affect the Success or Failure of Eradication Campaigns against Alien Species?. PLoS ONE, 2012, 7, e48157.	1.1	112
241	Effects of Soil Characteristics, Allelopathy and Frugivory on Establishment of the Invasive Plant Carpobrotus edulis and a Co-Occuring Native, Malcolmia littorea. PLoS ONE, 2012, 7, e53166.	1.1	54
242	When are eradication campaigns successful? A test of common assumptions. Biological Invasions, 2012, 14, 1365-1378.	1.2	132
243	Projecting trends in plant invasions in Europe under different scenarios of future landâ€use change. Global Ecology and Biogeography, 2012, 21, 75-87.	2.7	89
244	Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Global Change Biology, 2012, 18, 44-62.	4.2	212
245	A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment. Global Change Biology, 2012, 18, 1725-1737.	4.2	1,026
246	Low persistence of a monocarpic invasive plant in historical sites biases our perception of its actual distribution. Journal of Biogeography, 2012, 39, 1293-1302.	1.4	18
247	New protocols to assess the environmental impact of pests in the EPPO decisionâ€support scheme for pest risk analysis*. EPPO Bulletin, 2012, 42, 21-27.	0.6	36
248	Phylogenetic beta diversity of native and alien species in European urban floras. Global Ecology and Biogeography, 2012, 21, 751-759.	2.7	34
249	Conservation in a city: Do the same principles apply to different taxa?. Biological Conservation, 2011, 144, 490-499.	1.9	46
250	Germination dynamics and seedling frost resistance of invasive and native Impatiens species reflect local climatic conditions. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 173-180.	1.1	40
251	A proposed unified framework for biological invasions. Trends in Ecology and Evolution, 2011, 26, 333-339.	4.2	1,762
252	Mechanisms of Plant Invasions of North American and European Grasslands. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 133-153.	3.8	84

#	Article	IF	CITATIONS
253	Alien Plants Introduced by Different Pathways Differ in Invasion Success: Unintentional Introductions as a Threat to Natural Areas. PLoS ONE, 2011, 6, e24890.	1.1	137
254	Reply to Keller and Springborn: No doubt about invasion debt. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E221-E221.	3.3	4
255	Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 2011, 14, 702-708.	3.0	2,215
256	The role of longâ€distance seed dispersal in the local population dynamics of an invasive plant species. Diversity and Distributions, 2011, 17, 725-738.	1.9	43
257	Widespread plant species: natives versus aliens in our changing world. Biological Invasions, 2011, 13, 1931-1944.	1.2	70
258	The Association of Dispersal and Persistence Traits of Plants with Different Stages of Succession in Central European Man-Made Habitats. Folia Geobotanica, 2011, 46, 289-302.	0.4	62
259	Successful invaders co-opt pollinators of native flora and accumulate insect pollinators with increasing residence time. Ecological Monographs, 2011, 81, 277-293.	2.4	83
260	Recognizing Conservation Success. Science, 2011, 332, 419-419.	6.0	27
261	Colonization of high altitudes by alien plants over the last two centuries. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 439-440.	3.3	70
262	Socioeconomic legacy yields an invasion debt. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 203-207.	3.3	442
263	Predicting Incursion of Plant Invaders into Kruger National Park, South Africa: The Interplay of General Drivers and Species-Specific Factors. PLoS ONE, 2011, 6, e28711.	1.1	21
264	Alien plant invasions in tropical and sub-tropical savannas: patterns, processes and prospects. Biological Invasions, 2010, 12, 3913-3933.	1.2	93
265	Plant invasions: theoretical and practical challenges. Biological Invasions, 2010, 12, 3907-3911.	1.2	13
266	Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 2010, 85, 777-795.	4.7	259
267	Protected-Area Boundaries as Filters of Plant Invasions. Conservation Biology, 2010, 25, no-no.	2.4	88
268	Spreading to a limit: the time required for a neophyte to reach its maximum range. Diversity and Distributions, 2010, 16, 310-311.	1.9	39
269	Controls on pathogen species richness in plants' introduced and native ranges: roles of residence time, range size and host traits. Ecology Letters, 2010, 13, 1525-1535.	3.0	150
270	Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Global Ecology and Biogeography, 2010, 19, 317-331.	2.7	154

#	Article	IF	CITATIONS
271	Disentangling the role of environmental and human pressures on biological invasions across Europe. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12157-12162.	3.3	470
272	Invasive Species, Environmental Change and Management, and Health. Annual Review of Environment and Resources, 2010, 35, 25-55.	5.6	936
273	How well do we understand the impacts of alien species on ecosystem services? A panâ€European, crossâ€ŧaxa assessment. Frontiers in Ecology and the Environment, 2010, 8, 135-144.	1.9	870
274	Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology, 2009, 90, 2734-2744.	1.5	203
275	Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21721-21725.	3.3	305
276	Synergy between pathogen release and resource availability in plant invasion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7899-7904.	3.3	210
277	Response—A Standardized Response to Biological Invasions. Science, 2009, 325, 146-147.	6.0	1
278	PRATIQUE: a research project to enhance pest risk analysis techniques in the European Union. EPPO Bulletin, 2009, 39, 87-93.	0.6	52
279	Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology, 2009, 97, 393-403.	1.9	826
280	Phyloecology of urban alien floras. Journal of Ecology, 2009, 97, 1243-1251.	1.9	83
281	Invasion success of alien plants: do habitat affinities in the native distribution range matter?. Global Ecology and Biogeography, 2009, 18, 372-382.	2.7	60
282	European map of alien plant invasions based on the quantitative assessment across habitats. Diversity and Distributions, 2009, 15, 98-107.	1.9	205
283	The distribution of range sizes of native and alien plants in four European countries and the effects of residence time. Diversity and Distributions, 2009, 15, 158-166.	1.9	107
284	The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Diversity and Distributions, 2009, 15, 891-903.	1.9	246
285	Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 2009, 24, 686-693.	4.2	1,031
286	Glossary of the Main Technical Terms Used in the Handbook. , 2009, , 375-379.		19
287	Alien Vascular Plants of Europe. , 2009, , 43-61.		97
288	Will Threat of Biological Invasions Unite the European Union?. Science, 2009, 324, 40-41.	6.0	279

#	Article	IF	CITATIONS
289	Extraâ€regional residence time as a correlate of plant invasiveness: European archaeophytes in North America. Ecology, 2009, 90, 2589-2597.	1.5	33
290	Traits Associated with Invasiveness in Alien Plants: Where Do we Stand?. , 2008, , 97-125.		615
291	Comparing the rate of invasion by <i>Heracleum mantegazzianum</i> at continental, regional, and local scales. Diversity and Distributions, 2008, 14, 355-363.	1.9	46
292	Alien plants in Czech village flora: An analysis of species numbers. Feddes Repertorium, 2008, 109, 139-146.	0.2	9
293	Fifty years of invasion ecology – the legacy of Charles Elton. Diversity and Distributions, 2008, 14, 161-168.	1.9	254
294	Distance decay of similarity among European urban floras: the impact of anthropogenic activities on β diversity. Global Ecology and Biogeography, 2008, 17, 363-371.	2.7	90
295	Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. Journal of Applied Ecology, 2008, 45, 448-458.	1.9	450
296	Grasping at the routes of biological invasions: a framework for integrating pathways into policy. Journal of Applied Ecology, 2008, 45, 403-414.	1.9	784
297	Invasive Plants. , 2008, , 2011-2020.		13
298	SEPARATING HABITAT INVASIBILITY BY ALIEN PLANTS FROM THE ACTUAL LEVEL OF INVASION. Ecology, 2008, 89, 1541-1553.	1.5	330
299	Geographical and taxonomic biases in invasion ecology. Trends in Ecology and Evolution, 2008, 23, 237-244.	4.2	610
300	Correlates of naturalization and occupancy of introduced ornamentals in Germany. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 10, 241-250.	1.1	73
301	Invasive species of <i>Heracleum</i> in Europe: an insight into genetic relationships and invasion history. Diversity and Distributions, 2007, 13, 99-114.	1.9	80
302	Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Diversity and Distributions, 2007, 13, 126-139.	1.9	685
303	Compositional similarity among urban floras within and across continents: biogeographical consequences of humanâ€mediated biotic interchange. Global Change Biology, 2007, 13, 913-921.	4.2	98
304	Climate and pH as determinants of vegetation succession in Central European manâ€made habitats. Journal of Vegetation Science, 2007, 18, 701-710.	1.1	61
305	Timing and extent of tissue removal affect reproduction characteristics of an invasive species HeracleumÂmantegazzianum. Biological Invasions, 2007, 9, 335-351.	1.2	15
306	A simulation model of plant invasion: long-distance dispersal determines the pattern of spread. Biological Invasions, 2007, 9, 383-395.	1.2	38

#	Article	IF	CITATIONS
307	Seed germination, dispersal and seed bank in <i>Heracleum mantegazzianum</i> , 2007, , 74-91.		16
308	Master of all traits: can we successfully fight giant hogweed?. , 2007, , 297-312.		9
309	Compositional similarity among urban floras within and across continents: biogeographical consequences of human-mediated biotic interchange. Clobal Change Biology, 2007, .	4.2	Ο
310	Plant invasions: merging the concepts of species invasiveness and community invasibility. Progress in Physical Geography, 2006, 30, 409-431.	1.4	883
311	What is the impact of Impatiens glandulifera on species diversity of invaded riparian vegetation?. Biological Conservation, 2006, 132, 143-152.	1.9	201
312	Empirical and virtual investigation of the population dynamics of an alien plant under the constraints of local carrying capacity: Heracleum mantegazzianum in the Czech Republic. Perspectives in Plant Ecology, Evolution and Systematics, 2006, 7, 253-262.	1.1	24
313	Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspectives in Plant Ecology, Evolution and Systematics, 2006, 8, 69-81.	1.1	170
314	Invasiveness of Oenothera congeners alien to Europe: Jack of all trades, master of invasion?. Perspectives in Plant Ecology, Evolution and Systematics, 2006, 8, 83-96.	1.1	19
315	Determinants of native and alien species richness in the urban flora of Rome. Diversity and Distributions, 2006, 12, 490-501.	1.9	121
316	Planting History and Propagule Pressure as Predictors of Invasion by Woody Species in a Temperate Region. Conservation Biology, 2006, 20, 1487-1498.	2.4	110
317	The biogeography of naturalization in alien plants. Journal of Biogeography, 2006, 33, 2040-2050.	1.4	196
318	Predicting invasions by woody species in a temperate zone: a test of three risk assessment schemes in the Czech Republic (Central Europe). Diversity and Distributions, 2006, 12, 319-327.	1.9	118
319	Classification of weed vegetation of arable land in the Czech Republic and Slovakia. Folia Geobotanica, 2006, 41, 259-273.	0.4	28
320	Population age structure and reproductive behavior of the monocarpic perennial <i>Heracleum mantegazzianum</i> (Apiaceae) in its native and invaded distribution ranges. American Journal of Botany, 2006, 93, 1018-1028.	0.8	52
321	Alarm: Assessing Large-scale environmental Risks for biodiversity with tested Methods. Gaia, 2005, 14, 69-72.	0.3	160
322	Effects of abiotic factors on species richness and cover in Central European weed communities. Agriculture, Ecosystems and Environment, 2005, 109, 1-8.	2.5	61
323	Aerial photographs as a tool for assessing the regional dynamics of the invasive plant speciesHeracleum mantegazzianum. Journal of Applied Ecology, 2005, 42, 1042-1053.	1.9	96
324	Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 2005, 11, 2234-2250.	4.2	742

#	Article	IF	CITATIONS
325	Isoenzyme diversity in Reynoutria (Polygonaceae) taxa: escape from sterility by hybridization. Plant Systematics and Evolution, 2005, 253, 219-230.	0.3	57
326	Survival rates in the Czech Republic of introduced plants known as wool aliens. Biological Invasions, 2005, 7, 567-576.	1.2	5
327	Seed bank of an invasive alien, Heracleum mantegazzianum, and its seasonal dynamics. Seed Science Research, 2005, 15, 239-248.	0.8	53
328	ALIEN PLANTS IN TEMPERATE WEED COMMUNITIES: PREHISTORIC AND RECENT INVADERS OCCUPY DIFFERENT HABITATS. Ecology, 2005, 86, 772-785.	1.5	128
329	On the rates and patterns of spread of alien plants in the Czech Republic, Britain, and Ireland. Ecoscience, 2005, 12, 424-433.	0.6	76
330	Spatio-temporal dynamics of plant invasions: Linking pattern to process. Ecoscience, 2005, 12, 302-315.	0.6	254
331	Vegetation change: a reunifying concept in plant ecology. Perspectives in Plant Ecology, Evolution and Systematics, 2005, 7, 69-76.	1.1	50
332	Effects of fruit position on fruit mass and seed germination in the alien species Heracleum mantegazzianum (Apiaceae) and the implications for its invasion. Acta Oecologica, 2005, 28, 1-10.	0.5	51
333	Residence time determines the distribution of alien plants. , 2005, , 77-96.		119
334	Predicting and explaining plant invasions through analysis of source area floras: some critical considerations. Diversity and Distributions, 2004, 10, 179-187.	1.9	149
335	The most complete global overview of invasive species in natural areas. Diversity and Distributions, 2004, 10, 505-506.	1.9	9
336	Weed vegetation of arable land in Central Europe: Gradients of diversity and species composition. Journal of Vegetation Science, 2004, 15, 415-422.	1.1	180
337	Trends in species diversity and composition of urban vegetation over three decades. Journal of Vegetation Science, 2004, 15, 781-788.	1.1	107
338	Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon, 2004, 53, 131-143.	0.4	978
339	Trends in species diversity and composition of urban vegetation over three decades. Journal of Vegetation Science, 2004, 15, 781.	1.1	38
340	Weed vegetation of arable land in Central Europe: Gradients of diversity and species composition. , 2004, 15, 415.		27
341	Experimental study of vegetative regeneration in four invasive Reynoutria taxa (Polygonaceae). Plant Ecology, 2003, 166, 1-11.	0.7	96
342	Research into Plant Invasions in a Crossroads Region: History and Focus. Biological Invasions, 2003, 5, 337-348.	1.2	24

#	Article	IF	CITATIONS
343	Czech alien flora and the historical pattern of its formation: what came first to Central Europe?. Oecologia, 2003, 135, 122-130.	0.9	166
344	Diversity of native and alien plant species on rubbish dumps: effects of dump age, environmental factors and toxicity. Diversity and Distributions, 2003, 9, 177-189.	1.9	25
345	Inclusion of Native and Alien Species in Temperate Nature Reserves: an Historical Study from Central Europe. Conservation Biology, 2003, 17, 1414-1424.	2.4	70
346	Changes in composition and structure of urban flora over 120 years: a case study of the city of PlzeÅ^. Flora: Morphology, Distribution, Functional Ecology of Plants, 2003, 198, 366-376.	0.6	153
347	Variation in DNAâ€ploidy Levels of Reynoutria Taxa in the Czech Republic. Annals of Botany, 2003, 92, 265-272.	1.4	63
348	Vegetative regeneration in invasive <i>Reynoutria</i> (Polygonaceae) taxa: the determinant of invasibility at the genotype level. American Journal of Botany, 2003, 90, 1487-1495.	0.8	106
349	Patterns of invasion in temperate nature reserves. Biological Conservation, 2002, 104, 13-24.	1.9	223
350	Plant species richness of nature reserves: the interplay of area, climate and habitat in a central European landscape. Global Ecology and Biogeography, 2002, 11, 279-289.	2.7	51
351	Past and future of predictions in plant invasions: a field test by time. Diversity and Distributions, 2001, 7, 145-151.	1.9	31
352	Invasion history of Oenothera congeners in Europe: a comparative study of spreading rates in the last 200 years. Journal of Biogeography, 2001, 28, 597-609.	1.4	76
353	Fruit dispersal and seed banks in Atriplex sagittata : the role of heterocarpy. Journal of Ecology, 2001, 89, 159-165.	1.9	61
354	The effects of light quality, nitrate concentration and presence of bracteoles on germination of different fruit types in the heterocarpousAtriplex sagittata. Journal of Ecology, 2001, 89, 149-158.	1.9	55
355	Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecological Engineering, 2001, 17, 55-62.	1.6	288
356	The role of vegetation succession in ecosystem restoration: Introduction. Applied Vegetation Science, 2001, 4, 1-4.	0.9	11
357	Spontaneous vegetation succession in humanâ€disturbed habitats: A pattern across seres. Applied Vegetation Science, 2001, 4, 83-88.	0.9	103
358	The role of spontaneous vegetation succession in ecosystem restoration: A perspective. Applied Vegetation Science, 2001, 4, 111-114.	0.9	154
359	Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions, 2000, 6, 93-107.	1.9	2,724
360	Establishment and survival of three invasive taxa of the genusReynoutria (Polygonaceae) in mesic mown meadows: A field experimental study Folia Geobotanica, 2000, 35, 27-42	0.4	26

#	Article	IF	CITATIONS
361	Prediction of Vegetation Succession in Humanâ€Disturbed Habitats Using an Expert System. Restoration Ecology, 1999, 7, 15-23.	1.4	71
362	Effects of plant density and nutrient levels on fruit polymorphism in Atriplex sagittata. Oecologia, 1999, 119, 63-72.	0.9	57
363	How do species dominating in succession differ from others?. Journal of Vegetation Science, 1999, 10, 383-392.	1.1	104
364	How does density and nutrient stress affect allometry and fruit production in the heterocarpic species <i>Atriple× sagittata</i> (Chenopodiaceae)?. Canadian Journal of Botany, 1999, 77, 1106-1119.	1.2	20
365	Alien and native species in Central European urban floras: a quantitative comparison. Journal of Biogeography, 1998, 25, 155-163.	1.4	390
366	Branching and competitive hierarchies in populations of <i>Galium aparine</i> . Canadian Journal of Botany, 1998, 76, 63-74.	1.2	2
367	Changes in Species Traits during Succession: A Search for Pattern. Oikos, 1997, 79, 201.	1.2	149
368	Zonneveld, I.S.: Land Ecology. Biologia Plantarum, 1997, 39, 530-530.	1.9	0
369	Hilbig W.: The Vegetation of Mongolia. Biologia Plantarum, 1997, 39, 386-386.	1.9	0
370	Forest planting as a way of species dispersal. Forest Ecology and Management, 1995, 76, 191-195.	1.4	12
371	Invasion dynamics of Impatiens glandulifera — A century of spreading reconstructed. Biological Conservation, 1995, 74, 41-48.	1.9	150
372	Invasion byHeracleum mantegazzianumin different habitats in the Czech Republic. Journal of Vegetation Science, 1995, 6, 711-718.	1.1	143
373	Effect of soil characteristics on succession in sites reclaimed after acid rain deforestation. Ecological Engineering, 1994, 3, 39-47.	1.6	6
374	Clonal plants—What is their role in succession?. Folia Geobotanica Et Phytotaxonomica, 1994, 29, 307-320.	0.4	88
375	Spontaneous Establishment of Woody Plants in Central European Derelict Sites and their Potential for Reclamation. Restoration Ecology, 1994, 2, 190-197.	1.4	56
376	Factors affecting the diversity of flora and vegetation in central European settlements. Plant Ecology, 1993, 106, 89-100.	1.2	115
377	Plant Invasions and the Role of Riparian Habitats: A Comparison of Four Species Alien to Central Europe. Journal of Biogeography, 1993, 20, 413.	1.4	293
378	On the Rate of Succession. Oikos, 1993, 66, 343.	1.2	129

#	Article	IF	CITATIONS
379	Dominant species exchange during succession in reclaimed habitats: a case study from areas deforested by air pollution. Forest Ecology and Management, 1992, 54, 27-44.	1.4	43
380	Seasonal changes in response ofSenecio ovatus to grazing by the chrysomelid beetleChrysomela speciosissima. Oecologia, 1992, 91, 596-628.	0.9	15
381	Die Siedlungsvegetation des Böhmischen Karsts. 2. Ökologische Charakteristik. Folia Geobotanica Et Phytotaxonomica, 1992, 27, 113-135.	0.4	1
382	Response of a weed community to nitrogen fertilization: a multivariate analysis. Journal of Vegetation Science, 1991, 2, 237-244.	1.1	132
383	Die Siedlungsvegetation des Böhmischen Karsts. 1. Syntaxonomie. Folia Geobotanica Et Phytotaxonomica, 1991, 26, 225-261.	0.4	7
384	Heracleum mantegazzianum in the Czech Republic: Dynamics of spreading from the historical perspective. Folia Geobotanica Et Phytotaxonomica, 1991, 26, 439-454.	0.4	80
385	Sprout demography and intraclonal competition inLycium barbarum, a clonal shrub, during an early phase of revegeeation. Folia Geobotanica Et Phytotaxonomica, 1991, 26, 141-169.	0.4	4
386	Veranderungen der Vegetation durch experimentelle Erdgasbehandlung. Weed Research, 1989, 29, 193-204.	0.8	22
387	Analyse der Unkrautvegetation eines Gerstenfeldes mit Berücksichtigung des Deckungsgrades und der Wuchshöhe des Gerstenbestandes. Folia Geobotanica Et Phytotaxonomica, 1987, 22, 225-239.	0.4	3
388	Support for major hypotheses in invasion biology is uneven and declining. NeoBiota, 0, 14, 1-20.	1.0	278
389	Scientific and Normative Foundations for the Valuation of Alien-Species Impacts: Thirteen Core Principles. BioScience, 0, , biw160.	2.2	24
390	Timing is everything: does early and late germination favor invasions by herbaceous alien plants?. Journal of Plant Ecology, 0, , rtw105.	1.2	43
391	Historical dynamics of Heracleum mantegazzianum invasion at regional and local scales , 0, , 42-54.		10
392	Reproductive ecology of Heracleum mantegazzianum , 0, , 55-73.		14
393	Population dynamics of Heracleum mantegazzianum , 0, , 92-111.		10
394	Alien plants in urban nature reserves: from red-list species to future invaders?. NeoBiota, 0, 10, 27-46.	1.0	28
395	Knowing what we count: a comment on Guo. NeoBiota, 0, 10, 81-88.	1.0	4
396	Correlations between global and regional measures ofÂinvasiveness vary with region size. NeoBiota, 0, 16, 59-80.	1.0	9

#	Article	IF	CITATIONS
397	The Global Garlic Mustard Field Survey (GGMFS): challenges and opportunities of a unique, large-scale collaboration for invasion biology. NeoBiota, 0, 21, 29-47.	1.0	19
398	Quantifying the invasiveness of species. NeoBiota, 0, 21, 7-27.	1.0	63
399	How the Yellowhammer became a Kiwi: the history of an alien bird invasion revealed. NeoBiota, 0, 24, 1-31.	1.0	13
400	Black, Grey and Watch Lists of alien species in the Czech Republic based on environmental impacts and management strategy. NeoBiota, 0, 28, 1-37.	1.0	77
401	EMAPi 2015: Highlighting links between science and management of alien plant invasions. NeoBiota, 0, 30, 1-3.	1.0	5
402	Biological invasions and natural colonisations are different – the need for invasion science. NeoBiota, 0, 31, 87-98.	1.0	41
403	Troubling travellers: are ecologically harmful alien species associated with particular introduction pathways?. NeoBiota, 0, 32, 1-20.	1.0	58
404	Taxonomic perils and pitfalls of dataset assembly in ecology: a case study of the naturalized Asteraceae in Australia. NeoBiota, 0, 34, 1-20.	1.0	7
405	Towards site-specific management of invasive alien trees based on the assessment of their impacts: the case of Robinia pseudoacacia. NeoBiota, 0, 35, 1-34.	1.0	35
406	Alien flora of Turkey: checklist, taxonomic composition and ecological attributes. NeoBiota, 0, 35, 61-85.	1.0	57
407	Impact of alien plants in Turkey assessed by the Generic Impact Scoring System. NeoBiota, 0, 39, 31-51.	1.0	18
408	Seed-bank dynamics of native and invasive Impatiens species during a five-year field experiment under various environmental conditions. NeoBiota, 0, 50, 75-95.	1.0	21
409	Composition patterns of ornamental flora in the Czech Republic. NeoBiota, 0, 52, 87-109.	1.0	8
410	Invasive alien species add to the uncertain future of protected areas. NeoBiota, 0, 57, 1-5.	1.0	11
411	Trait–environment relationships of plant species at different stages of the introduction process. NeoBiota, 0, 58, 55-74.	1.0	20
412	Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota, 0, 61, 65-116.	1.0	72
413	MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota, 0, 62, 407-461.	1.0	66
414	Potential phytotoxic and shading effects of invasive Fallopia (Polygonaceae) taxa on the germination of native dominant species. NeoBiota, 0, 9, 31-47.	1.0	36

#	Article	lF	CITATIONS
415	Open minded and open access: introducing NeoBiota, a new peer-reviewed journal of biological invasions. NeoBiota, 0, 9, 1-12.	1.0	9
416	Open minded and open access: introducing NeoBiota, a new peer-reviewed journal of biological invasions. NeoBiota, 0, 9, 1-12.	1.0	1
417	Seven years of NeoBiota $\hat{a} \in $ the times, were they a changin $\hat{a} \in \mathbb{M}$?. NeoBiota, 0, 36, 57-69.	1.0	0
418	Into the great wide open: do alien plants spread from rivers to dry savanna in the Kruger National Park?. NeoBiota, 0, 60, 61-77.	1.0	6
419	Is invasion science moving towards agreed standards? The influence of selected frameworks. NeoBiota, 0, 62, 569-590.	1.0	12
420	Changes in assemblages of native and alien plants in perennial plantations: prairie species stabilize the community composition. NeoBiota, 0, 63, 39-56.	1.0	2
421	Introducing the Combined Atlas Framework for largeâ€scale webâ€based data visualization – The GloNAF Atlas of Plant Invasion. Methods in Ecology and Evolution, 0, , .	2.2	0
422	Introduction and invasion of common myna (Acridotheres tristis) in Kruger National Park, South Africa: still time for action?. Biological Invasions, 0, , .	1.2	1