Salvatore Cisternino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1677131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression, Up-Regulation, and Transport Activity of the Multidrug-Resistance Protein Abcg2 at the Mouse Blood-Brain Barrier. Cancer Research, 2004, 64, 3296-3301.	0.4	297
2	Deletion of Astroglial Connexins Weakens the Blood–Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1457-1467.	2.4	185
3	A functional in vitro model of rat blood–brain barrier for molecular analysis of efflux transporters. Brain Research, 2007, 1150, 1-13.	1.1	140
4	Evidence for an active transport of morphine-6-β-d-glucuronide but not P-glycoprotein-mediated at the blood-brain barrier. Journal of Neurochemistry, 2003, 86, 1564-1567.	2.1	129
5	Nonlinear accumulation in the brain of the new taxoid TXD258 following saturation of P-glycoprotein at the blood-brain barrier in mice and rats. British Journal of Pharmacology, 2003, 138, 1367-1375.	2.7	105
6	ABCG2- and ABCG4-Mediated Efflux of Amyloid-β Peptide 1-40 at the Mouse Blood-Brain Barrier. Journal of Alzheimer's Disease, 2012, 30, 155-166.	1.2	95
7	Opioids and the Blood-Brain Barrier: A Dynamic Interaction with Consequences on Drug Disposition in Brain. Current Neuropharmacology, 2017, 15, 1156-1173.	1.4	83
8	Screening of multidrug-resistance sensitive drugs by in situ brain perfusion in P-glycoprotein-deficient mice. Pharmaceutical Research, 2001, 18, 183-190.	1.7	73
9	Heterogeneity in the Rat Brain Vasculature Revealed by Quantitative Confocal Analysis of Endothelial Barrier Antigen and P-Glycoprotein Expression. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 81-92.	2.4	66
10	Clonidine Transport at the Mouse Blood—Brain Barrier by a New H ⁺ Antiporter that Interacts with Addictive Drugs. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1293-1304.	2.4	63
11	Opioid Transport by ATP-Binding Cassette Transporters at the Blood-Brain Barrier: Implications for Neuropsychopharmacology. Current Pharmaceutical Design, 2011, 17, 2829-2842.	0.9	63
12	Apparent lack of Mrp1-mediated efflux at the luminal side of mouse blood-brain barrier endothelial cells. Pharmaceutical Research, 2003, 20, 904-909.	1.7	61
13	Effect of chronic exposure to morphine on the rat blood–brain barrier: focus on the Pâ€glycoprotein. Journal of Neurochemistry, 2008, 107, 647-657.	2.1	60
14	Respiratory toxicity of buprenorphine results from the blockage of P-glycoprotein-mediated efflux of norbuprenorphine at the blood–brain barrier in mice. Critical Care Medicine, 2012, 40, 3215-3223.	0.4	58
15	Immune Quiescence of the Brain Is Set by Astroglial Connexin 43. Journal of Neuroscience, 2015, 35, 4427-4439.	1.7	55
16	Isolation and differential transcriptome of vascular smooth muscle cells and mid-capillary pericytes from the rat brain. Scientific Reports, 2018, 8, 12272.	1.6	55
17	Blood–brain and retinal barriers show dissimilar ABC transporter impacts and concealed effect of Pâ€glycoprotein on a novel verapamil influx carrier. British Journal of Pharmacology, 2016, 173, 497-510.	2.7	50
18	Effects of Selected OATP and/or ABC Transporter Inhibitors on the Brain and Whole-Body Distribution of Glyburide. AAPS Journal, 2013, 15, 1082-1090.	2.2	49

#	Article	IF	CITATIONS
19	Cannabidiol Increases Proliferation, Migration, Tubulogenesis, and Integrity of Human Brain Endothelial Cells through TRPV2 Activation. Molecular Pharmaceutics, 2019, 16, 1312-1326.	2.3	44
20	Transport of Selected PET Radiotracers by Human P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2): An In Vitro Screening. Journal of Nuclear Medicine, 2011, 52, 415-423.	2.8	43
21	Functionalized PLA-PEG nanoparticles targeting intestinal transporter PepT1 for oral delivery of acyclovir. International Journal of Pharmaceutics, 2017, 529, 357-370.	2.6	43
22	<i>In Situ</i> Mouse Carotid Perfusion Model: Glucose and Cholesterol Transport in the Eye and Brain. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1449-1459.	2.4	42
23	Does modulation of organic cation transporters improve pralidoxime activity in an animal model of organophosphate poisoning?*. Critical Care Medicine, 2011, 39, 803-811.	0.4	41
24	Coexistence of Passive and Proton Antiporter-Mediated Processes in Nicotine Transport at the Mouse Blood–Brain Barrier. AAPS Journal, 2013, 15, 299-307.	2.2	41
25	Carrier-Mediated Cocaine Transport at the Blood-Brain Barrier as a Putative Mechanism in Addiction Liability. International Journal of Neuropsychopharmacology, 2015, 18, pyu001-pyu001.	1.0	39
26	[18F]FEPPA a TSPO Radioligand: Optimized Radiosynthesis and Evaluation as a PET Radiotracer for Brain Inflammation in a Peripheral LPS-Injected Mouse Model. Molecules, 2018, 23, 1375.	1.7	38
27	The Sarcoglycan complex is expressed in the cerebrovascular system and is specifically regulated by astroglial Cx30 channels. Frontiers in Cellular Neuroscience, 2015, 9, 9.	1.8	35
28	Transport of Biogenic Amine Neurotransmitters at the Mouse Blood–Retina and Blood–Brain Barriers by Uptake1 and Uptake2. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1989-2001.	2.4	34
29	Immunoregulation at the gliovascular unit in the healthy brain: A focus on Connexin 43. Brain, Behavior, and Immunity, 2016, 56, 1-9.	2.0	33
30	In Situ Transport of Vinblastine and Selected P-glycoprotein Substrates: Implications for Drug-Drug Interactions at the Mouse Blood-Brain Barrier. Pharmaceutical Research, 2004, 21, 1382-1389.	1.7	31
31	Impact of P-glycoprotein at the blood-brain barrier on the uptake of heroin and its main metabolites: behavioral effects and consequences on the transcriptional responses and reinforcing properties. Psychopharmacology, 2014, 231, 3139-3149.	1.5	30
32	In vivo saturation of the transport of vinblastine and colchicine by P-glycoprotein at the rat blood-brain barrier. Pharmaceutical Research, 2003, 20, 1607-1611.	1.7	29
33	Pharmacophoreâ€based discovery of inhibitors of a novel drug/proton antiporter in human brain endothelial hCMEC/D3 cell line. British Journal of Pharmacology, 2015, 172, 4888-4904.	2.7	28
34	Discrepancies in the P-glycoprotein-Mediated Transport of 18F-MPPF: A Pharmacokinetic Study in Mice and Non-human Primates. Pharmaceutical Research, 2012, 29, 2468-2476.	1.7	27
35	A polyspecific drug/proton antiporter mediates diphenhydramine and clonidine transport at the mouse bloodâ€retinal barrier. British Journal of Pharmacology, 2015, 172, 4714-4725.	2.7	23
36	Assessment of P-Glycoprotein Transport Activity at the Human Blood–Retina Barrier with (<i>R</i>)â€ ¹¹ C-Verapamil PET. Journal of Nuclear Medicine, 2017, 58, 678-681.	2.8	23

#	Article	IF	CITATIONS
37	Stability of Bortezomib 1-mg/mL Solution in Plastic Syringe and Glass Vial. Annals of Pharmacotherapy, 2005, 39, 1462-1466.	0.9	22
38	Effect of Subchronic Intravenous Morphine Infusion and Naloxone-Precipitated Morphine Withdrawal on P-gp and Bcrp at the Rat Blood–Brain Barrier. Journal of Pharmaceutical Sciences, 2016, 105, 350-358.	1.6	22
39	Peptide-vector strategy bypasses P-glycoprotein efflux, and enhances brain transport and solubility of paclitaxel. Anti-Cancer Drugs, 2004, 15, 947-954.	0.7	21
40	An Interspecies Molecular and Functional Study of Organic Cation Transporters at the Blood-Brain Barrier: From Rodents to Humans. Pharmaceutics, 2020, 12, 308.	2.0	20
41	Changes in dipole membrane potential at the mouse blood–brain barrier enhance the transport of ^{99m} Technetium Sestamibi more than inhibiting Abcb1, Abcc1, or Abcg2. Journal of Neurochemistry, 2009, 108, 767-775.	2.1	19
42	Sodium Transporters Are Involved in Lithium Influx in Brain Endothelial Cells. Molecular Pharmaceutics, 2018, 15, 2528-2538.	2.3	19
43	Megalencephalic leukoencephalopathy with subcortical cysts is a developmental disorder of the gliovascular unit. ELife, 2021, 10, .	2.8	19
44	Validation of a simple HPLC-UV method for rifampicin determination in plasma: Application to the study of rifampicin arteriovenous concentration gradient. Journal of Pharmaceutical and Biomedical Analysis, 2016, 123, 173-178.	1.4	18
45	Characterization of the Blood–Brain Barrier Integrity and the Brain Transport of SN-38 in an Orthotopic Xenograft Rat Model of Diffuse Intrinsic Pontine Glioma. Pharmaceutics, 2020, 12, 399.	2.0	18
46	Acute Morphine Exposure Increases the Brain Distribution of [¹⁸ F]DPA-714, a PET Biomarker of Glial Activation in Nonhuman Primates. International Journal of Neuropsychopharmacology, 2017, 20, pyw077.	1.0	16
47	Structureâ ~ Activity Relationships in Platelet-Activating Factor. 12. Synthesis and Biological Evaluation of Platelet-Activating Factor Antagonists with Anti-HIV-1 Activity. Journal of Medicinal Chemistry, 2004, 47, 6410-6419.	2.9	15
48	Diphenhydramine as a selective probe to study H ⁺ -antiporter function at the blood–brain barrier: Application to [¹¹ C]diphenhydramine positron emission tomography imaging. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2185-2195.	2.4	15
49	Gender and strain contributions to the variability of buprenorphine-related respiratory toxicity in mice. Toxicology, 2013, 305, 99-108.	2.0	14
50	Optimization and <i>in Vivo</i> Validation of Peptide Vectors Targeting the LDL Receptor. Molecular Pharmaceutics, 2016, 13, 4094-4105.	2.3	14
51	Imaging Probes and Modalities for the Study of Solute Carrier O (SLCO)-Transport Function InÂVivo. Journal of Pharmaceutical Sciences, 2017, 106, 2335-2344.	1.6	14
52	Evaluation of TSPO PET imaging, a marker of glial activation, to study the neuroimmune footprints of morphine exposure and withdrawal. Drug and Alcohol Dependence, 2017, 170, 43-50.	1.6	13
53	Stability of fludrocortisone acetate solutions prepared from tablets and powder. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 55, 209-213.	2.0	12
54	Positron Emission Tomography Imaging Reveals an Importance of Saturable Liver Uptake Transport for the Pharmacokinetics of Metoclopramide. Contrast Media and Molecular Imaging, 2018, 2018, 1-8.	0.4	12

SALVATORE CISTERNINO

#	Article	IF	CITATIONS
55	Improvement of epidermal covering on AEC patients with severe skin erosions by PRIMA-1MET/APR-246. Cell Death and Disease, 2020, 11, 30.	2.7	12
56	Stability of oxaliplatin in infusion bags containing 5% dextrose injection. American Journal of Health-System Pharmacy, 2007, 64, 1950-1954.	0.5	11
57	Ibogaine labeling with 99mTc-tricarbonyl: Synthesis and transport at the mouse blood–brain barrier. Journal of Pharmaceutical Sciences, 2009, 98, 4650-4660.	1.6	11
58	Assessment of practices for suspended oral drugs by tablet crushing in pediatric units. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 157, 175-182.	2.0	11
59	Molecular and Functional Study of Transient Receptor Potential Vanilloid 1-4 at the Rat and Human Blood–Brain Barrier Reveals Interspecies Differences. Frontiers in Cell and Developmental Biology, 2020, 8, 578514.	1.8	11
60	[11C]befloxatone brain kinetics is not influenced by Bcrp function at the blood–brain barrier: A PET study using Bcrp TGEM knockout rats. European Journal of Pharmaceutical Sciences, 2013, 50, 520-525.	1.9	10
61	Voriconazole topical cream formulation: evidence for stability and antifungal activity. International Journal of Antimicrobial Agents, 2020, 56, 106083.	1.1	10
62	Astroglial Connexin 43 Deficiency Protects against LPS-Induced Neuroinflammation: A TSPO Brain µPET Study with [18F]FEPPA. Cells, 2020, 9, 389.	1.8	9
63	Maternal ABVD chemotherapy for Hodgkin lymphoma in a dichorionic diamniotic pregnancy: a case report. BMC Pregnancy and Childbirth, 2020, 20, 231.	0.9	9
64	External contamination of antineoplastic drug vials: an occupational risk to consider. European Journal of Hospital Pharmacy, 2022, 29, 284-286.	0.5	9
65	Stability of voriconazole injection in 0.9% sodium chloride and 5% dextrose injections. American Journal of Health-System Pharmacy, 2006, 63, 1423-1426.	0.5	8
66	Safety of intrathecal route: focus to methylprednisolone acetate (Depo-Medrol) use. European Spine Journal, 2019, 28, 21-30.	1.0	8
67	Formulation and Stability of Ataluren Eye Drop Oily Solution for Aniridia. Pharmaceutics, 2021, 13, 7.	2.0	8
68	Determination of cisapride and norcisapride in human plasma using high-performance liquid chromatography with ultraviolet detection. Biomedical Applications, 1998, 714, 395-398.	1.7	7
69	Intravenous infusion for the controlled exposure to the dual ABCB1 and ABCG2 inhibitor elacridar in nonhuman primates. Drug Delivery and Translational Research, 2018, 8, 536-542.	3.0	7
70	The role of brain barriers in the neurokinetics and pharmacodynamics of lithium. Pharmacological Research, 2021, 166, 105480.	3.1	7
71	Influence of P-Glycoprotein Inhibition or Deficiency at the Blood–Brain Barrier on 18F-2-Fluoro-2-Deoxy-d-glucose (18F-FDG) Brain Kinetics. AAPS Journal, 2015, 17, 652-659.	2.2	6
72	Stability study of oral pediatric idebenone suspensions. Pharmaceutical Development and Technology, 2017, 22, 296-299.	1.1	6

SALVATORE CISTERNINO

#	Article	IF	CITATIONS
73	Pharmacophore-Based Discovery of Substrates of a Novel Drug/Proton-Antiporter in the Human Brain Endothelial hCMEC/D3 Cell Line. Pharmaceutics, 2022, 14, 255.	2.0	6
74	Treatment of Painful Palmoplantar Keratoderma Related to Pachyonychia Congenita Using EGFR Inhibitors. Biomedicines, 2022, 10, 841.	1.4	6
75	Treatment of Congenital Afibrinogenemia in a Premature Neonate. Annals of Pharmacotherapy, 2008, 42, 1145-1146.	0.9	5
76	A virtual centralized cytotoxic preparation unit simulation to evaluate the pharmacy staff knowledge. Journal of Oncology Pharmacy Practice, 2019, 25, 1187-1194.	0.5	5
77	Stability-Indicating Assay for the Determination of Pentobarbital Sodium in Liquid Formulations. International Journal of Analytical Chemistry, 2015, 2015, 1-6.	0.4	4
78	Stability-Indicating HPLC Assay for Determination of Idebenone in Pharmaceutical Forms. Journal of Analytical Methods in Chemistry, 2015, 2015, 1-5.	0.7	4
79	High brain distribution of a new central nervous system drug candidate despite its P-glycoprotein-mediated efflux at the mouse blood-brain barrier. European Journal of Pharmaceutical Sciences, 2018, 117, 68-79.	1.9	4
80	Retinal and choroidal cancers: Blood-retinal barriers considerations in ocular chemotherapy. , 2020, , 303-335.		4
81	Stability of levamisole oral solutions prepared from tablets and powder. Journal of Pharmacy and Pharmaceutical Sciences, 2005, 8, 322-5.	0.9	4
82	Massive tramadol ingestion resulting in fatal brain injury – a pharmacokinetic study with discussion on the involved mechanisms of toxicity. Clinical Toxicology, 2022, , 1-4.	0.8	4
83	A Rapid Stability-Indicating RP-HPLC Method for the Determination of Betaxolol Hydrochloride in Pharmaceutical Tablets. Analytical Chemistry Insights, 2013, 8, ACI.S11256.	2.7	3
84	Stability of Pentobarbital in Water and Oral Pediatric Suspensions. Annals of Pharmacotherapy, 2016, 50, 245-246.	0.9	3
85	Stability of warfarin sodium flavoured preservative-free oral liquid formulations. European Journal of Hospital Pharmacy, 2018, 25, e98-e101.	0.5	3
86	Occupational risks evaluation in a centralized antineoplastic agent preparation unit. SAGE Open Medicine, 2019, 7, 205031211986697.	0.7	3
87	Ruxolitinib photodegradation mechanisms by theoretical and experimental chemistry. Journal of Pharmaceutical and Biomedical Analysis, 2021, 197, 113983.	1.4	3
88	Modifications of physical and functional integrity of the blood-brain barrier in an inducible mouse model of neurodegeneration. Neuropharmacology, 2021, 191, 108588.	2.0	3
89	Management of sirolimus treatment for tumours associated with Kasabach–Merritt phenomenon. Journal of the European Academy of Dermatology and Venereology, 2022, 36, .	1.3	3
90	Stability of Hydrocortisone Preservative-Free Oral Solutions. Journal of Pediatric Pharmacology and Therapeutics, 2015, 20, 197-202.	0.3	2

SALVATORE CISTERNINO

#	Article	IF	CITATIONS
91	Stability of suxamethonium in pharmaceutical solution for injection by validated stability-indicating chromatographic method. Journal of Clinical Anesthesia, 2016, 35, 551-559.	0.7	2
92	Stability of Pentobarbital Hydrogel for Rectal Administration in Pediatric Procedural Sedation. Hospital Pharmacy, 2021, 56, 332-337.	0.4	2
93	Transient Receptor Potential Vanilloid in the Brain Gliovascular Unit: Prospective Targets in Therapy. Pharmaceutics, 2021, 13, 334.	2.0	2
94	Stability of 10-mg/mL and 50-mg/mL ketamine oral solutions. American Journal of Health-System Pharmacy, 2021, 78, 825-831.	0.5	2
95	Stability of doxorubicin combined with RadioselectanR, a contrast agent, for chemoembolization. Journal of Clinical Pharmacy and Therapeutics, 2005, 30, 255-258.	0.7	1
96	Stability of Betaxolol Suspensions in Oral Syringes and Glass Bottles. Annals of Pharmacotherapy, 2013, 47, 1237-1238.	0.9	1
97	Stability-Indicating High-Performance Liquid Chromatography Assay for the Determination of Sulthiame in Pharmaceutical Dosage Forms. Analytical Chemistry Insights, 2016, 11, ACI.S38656.	2.7	1
98	Formulation and stability study of hydroxychloroquine sulfate oral suspensions. Pharmaceutical Development and Technology, 2021, 26, 328-334.	1.1	1
99	Stability of pemetrexed diarginine concentrates for solution in vials and diluted in 0.9% sodium chloride and dextrose 5% polyolefin infusion bags. European Journal of Hospital Pharmacy, 2022, 29, 353-358.	0.5	1
100	Stability and Formulation of Erlotinib in Skin Creams. Molecules, 2022, 27, 1070.	1.7	1
101	Stability of Extemporaneously Prepared Hydroxycarbamide Oral Suspensions. International Journal of Pharmaceutical Compounding, 2017, 21, 160-163.	0.0	1
102	Physicochemical Stability Study of Oral Suspension Containing Ruxolitinib in Children with Steroid-Refractory Acute Graft-Versus-Host Disease. Scientific World Journal, The, 2022, 2022, 1-6.	0.8	1
103	Buprenorphine and norbuprenorphine-related respiratory effects in mice: Role of p-glycoprotein transporter. Toxicology Letters, 2011, 205, S184.	0.4	Ο