Ãngel Matute-Llorente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1677044/publications.pdf

Version: 2024-02-01

43 papers 567

687335 13 h-index 21 g-index

48 all docs 48 docs citations

48 times ranked

735 citing authors

#	Article	IF	Citations
1	Active Video Games Improve Muscular Fitness and Motor Skills in Children with Overweight or Obesity. International Journal of Environmental Research and Public Health, 2022, 19, 2642.	2.6	12
2	Effect of an Active Video Game Intervention Combined With Multicomponent Exercise for Cardiorespiratory Fitness in Children With Overweight and Obesity: Randomized Controlled Trial. JMIR Serious Games, 2022, 10, e33782.	3.1	2
3	Effects of Active Video Games on Health-Related Physical Fitness and Motor Competence in Children and Adolescents With Overweight or Obesity: Systematic Review and Meta-Analysis. JMIR Serious Games, 2021, 9, e29981.	3.1	11
4	Impact of the Home Confinement Related to COVID-19 on the Device-Assessed Physical Activity and Sedentary Patterns of Spanish Older Adults. BioMed Research International, 2021, 2021, 1-8.	1.9	11
5	25-Hydroxyvitamin D and Cardiorespiratory Fitness in Prepubertal Overweight and Obese Children. Nutrients, 2021, 13, 1597.	4.1	3
6	The Effects of Active Video Games on Health-Related Physical Fitness and Motor Competence in Children and Adolescents with Healthy Weight: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 2021, 18, 6965.	2.6	6
7	Targeted Gene Sequencing, Bone Health, and Body Composition in Cornelia de Lange Syndrome. Applied Sciences (Switzerland), 2021, 11, 710.	2.5	2
8	Does Acute Caffeine Supplementation Improve Physical Performance in Female Team-Sport Athletes? Evidence from a Systematic Review and Meta-Analysis. Nutrients, 2021, 13, 3663.	4.1	20
9	Adaptation of Proximal Femur to Mechanical Loading in Young Adults: Standard Vs Localized Regions Evaluated by DXA. Journal of Clinical Densitometry, 2020, 23, 73-81.	1.2	O
10	Injuries of a Spanish top-level sample of football referees. A retrospective study. Apunts Sports Medicine, 2020, 55, 146-152.	0.8	2
11	Assessment of Active Video Games' Energy Expenditure in Children with Overweight and Obesity and Differences by Gender. International Journal of Environmental Research and Public Health, 2020, 17, 6714.	2.6	18
12	Nonspecific Resistance Training and Swimming Performance. Journal of Strength and Conditioning Research, 2020, Publish Ahead of Print, .	2.1	5
13	Association Between Physical Fitness and Bone Strength and Structure in 3- to 5-Year-Old Children. Sports Health, 2020, 12, 431-440.	2.7	17
14	Effects of whole-body vibration training on bone density and turnover markers in adolescent swimmers. Journal of Pediatric Endocrinology and Metabolism, 2020, 33, 623-630.	0.9	5
15	Influence of different playing surfaces on bone mass accretion in male adolescent football players: A one-season study. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2019, 233, 536-547.	0.7	O
16	Swim-Specific Resistance Training: A Systematic Review. Journal of Strength and Conditioning Research, 2019, 33, 2875-2881.	2.1	20
17	Is Playing Soccer More Osteogenic for Females Before the Pubertal Spurt?. Journal of Human Kinetics, 2019, 67, 153-161.	1.5	3
18	Plantar pressures in male adolescent soccer players and its associations with bone geometry and strength. Journal of Sports Medicine and Physical Fitness, 2019, 59, 1716-1723.	0.7	0

#	Article	IF	CITATIONS
19	Effects of Whole Body Vibration on Tibia Strength and Structure of Competitive Adolescent Swimmers: A Randomized Controlled Trial. PM and R, 2018, 10, 889-897.	1.6	5
20	Is Vibration Training Good for Your Bones? An Overview of Systematic Reviews. BioMed Research International, 2018, 2018, 1-16.	1.9	16
21	Bone geometry in young male and female football players: a peripheral quantitative computed tomography (pQCT) study. Archives of Osteoporosis, 2018, 13, 57.	2.4	7
22	Percentage of body fat in adolescents with Down syndrome: Estimation from skinfolds. Disability and Health Journal, 2017, 10, 100-104.	2.8	11
23	Plyometric exercise and bone health in children and adolescents: a systematic review. World Journal of Pediatrics, 2017, 13, 112-121.	1.8	72
24	Assessing Fat Mass of Adolescent Swimmers Using Anthropometric Equations: A DXA Validation Study. Research Quarterly for Exercise and Sport, 2017, 88, 230-236.	1.4	5
25	Relationship between Vitamin D Levels and Bone Tissue in Adolescents with and without Down Syndrome. Journal of Developmental and Physical Disabilities, 2017, 29, 611-624.	1.6	O
26	Physical activity and bone mineral density at the femoral neck subregions in adolescents with Down syndrome. Journal of Pediatric Endocrinology and Metabolism, 2017, 30, 1075-1082.	0.9	5
27	Do 6Âmonths of whole-body vibration training improve lean mass and bone mass acquisition of adolescent swimmers?. Archives of Osteoporosis, 2017, 12, 69.	2.4	14
28	Longitudinal effects of swimming on bone in adolescents: a pQCT and DXA study. Biology of Sport, 2017, 34, 361-370.	3.2	4
29	Body fat percentage comparisons between four methods in young football players: are they comparable?. Nutricion Hospitalaria, 2017, 34, 1119-1124.	0.3	15
30	Hand span influences optimal grip span in adolescents with Down syndrome. Nutricion Hospitalaria, 2017, 34, 626.	0.3	3
31	Body fat in elite Spanish football referees and assistants: A 1-year follow-up study. Apunts Medicine De L'Esport, 2016, 51, 21-26.	0.5	6
32	Swimming and bone: Is low bone mass due to hypogravity alone or does other physical activity influence it?. Osteoporosis International, 2016, 27, 1785-1793.	3.1	18
33	Bone structure of adolescent swimmers; a peripheral quantitative computed tomography (pQCT) study. Journal of Science and Medicine in Sport, 2016, 19, 707-712.	1.3	9
34	Effect of whole-body vibration training on bone mass in adolescents with and without Down syndrome: a randomized controlled trial. Osteoporosis International, 2016, 27, 181-191.	3.1	15
35	The effects of swimming training on bone tissue in adolescence. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, e589-602.	2.9	32
36	Effect of whole body vibration training on bone mineral density and bone quality in adolescents with Down syndrome: a randomized controlled trial. Osteoporosis International, 2015, 26, 2449-2459.	3.1	26

#	Article	IF	CITATIONS
37	Body Composition in Spanish Soccer Referees. Measurement and Control, 2014, 47, 178-184.	1.8	9
38	Effect of Whole-Body Vibration Therapy on Health-Related Physical Fitness in Children and Adolescents With Disabilities: A Systematic Review. Journal of Adolescent Health, 2014, 54, 385-396.	2.5	50
39	Decreased levels of physical activity in adolescents with down syndrome are related with low bone mineral density: a cross-sectional study. BMC Endocrine Disorders, 2013, 13, 22.	2.2	29
40	Effects of whole body vibration training on body composition in adolescents with Down syndrome. Research in Developmental Disabilities, 2013, 34, 1426-1433.	2.2	33
41	Do calcium and vitamin D intake influence the effect of cycling on bone mass through adolescence?. Nutricion Hospitalaria, 2013, 28, 1136-9.	0.3	8
42	Physical activity and cardiorespiratory fitness in adolescents with Down syndrome. Nutricion Hospitalaria, 2013, 28, 1151-5.	0.3	24
43	The nutritional status in adolescent Spanish cyclists. Nutricion Hospitalaria, 2013, 28, 1184-9.	0.3	8