
## Arwen R Pearson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1676830/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science, 2021, 372, 642-646.                                                                               | 6.0 | 240       |
| 2  | MauG, a Novel Diheme Protein Required for Tryptophan Tryptophylquinone Biogenesis. Biochemistry, 2003, 42, 7318-7325.                                                                                    | 1.2 | 123       |
| 3  | All Three Domains of the Hepatitis C Virus Nonstructural NS5A Protein Contribute to RNA Binding.<br>Journal of Virology, 2010, 84, 9267-9277.                                                            | 1.5 | 108       |
| 4  | Using synchrotrons and XFELs for time-resolved X-ray crystallography and solution scattering experiments on biomolecules. Current Opinion in Structural Biology, 2015, 35, 41-48.                        | 2.6 | 97        |
| 5  | Nature of the Ferryl Heme in Compounds I and II. Journal of Biological Chemistry, 2011, 286, 1260-1268.                                                                                                  | 1.6 | 90        |
| 6  | Packaging signals in single-stranded RNA viruses: nature's alternative to a purely electrostatic<br>assembly mechanism. Journal of Biological Physics, 2013, 39, 277-287.                                | 0.7 | 86        |
| 7  | Complex Interplay between Epitope Specificity and Isotype Dictates the Biological Activity of Anti-human CD40 Antibodies. Cancer Cell, 2018, 33, 664-675.e4.                                             | 7.7 | 78        |
| 8  | Further Insights into Quinone Cofactor Biogenesis:Â Probing the Role ofmauGin Methylamine<br>Dehydrogenase Tryptophan Tryptophylquinone Formationâ€. Biochemistry, 2004, 43, 5494-5502.                  | 1.2 | 76        |
| 9  | Exploring Molecular Oxygen Pathways in Hansenula polymorpha Copper-containing Amine Oxidase.<br>Journal of Biological Chemistry, 2007, 282, 17767-17776.                                                 | 1.6 | 76        |
| 10 | Liquid application method for time-resolved analyses by serial synchrotron crystallography. Nature<br>Methods, 2019, 16, 979-982.                                                                        | 9.0 | 74        |
| 11 | Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography.<br>Acta Crystallographica Section D: Structural Biology, 2016, 72, 944-955.                          | 1.1 | 71        |
| 12 | Serial synchrotron crystallography for time-resolved structural biology. Current Opinion in<br>Structural Biology, 2020, 65, 168-174.                                                                    | 2.6 | 62        |
| 13 | X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.                                                                                                                   | 7.3 | 60        |
| 14 | Structureâ€guided design affirms inhibitors of hepatitis C virus p7 as a viable class of antivirals<br>targeting virion release. Hepatology, 2014, 59, 408-422.                                          | 3.6 | 56        |
| 15 | Structural Insight into Methyl-Coenzyme M Reductase Chemistry Using Coenzyme B Analogues,.<br>Biochemistry, 2010, 49, 7683-7693.                                                                         | 1.2 | 55        |
| 16 | MauG-Dependent in Vitro Biosynthesis of Tryptophan Tryptophylquinone in Methylamine<br>Dehydrogenase. Journal of the American Chemical Society, 2005, 127, 8258-8259.                                    | 6.6 | 52        |
| 17 | Microspectrophotometry for structural enzymology. Current Opinion in Structural Biology, 2004,<br>14, 656-662.                                                                                           | 2.6 | 51        |
| 18 | Sequence-Specific, RNA–Protein Interactions Overcome Electrostatic Barriers Preventing Assembly of<br>Satellite Tobacco Necrosis Virus Coat Protein. Journal of Molecular Biology, 2013, 425, 1050-1064. | 2.0 | 50        |

ARWEN R PEARSON

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Crystal Structure of Cytochrome P460 of Nitrosomonas europaea Reveals a Novel Cytochrome<br>Fold and Hemeâ^'Protein Cross-link,. Biochemistry, 2007, 46, 8340-8349.                                                                                   | 1.2 | 48        |
| 20 | Mechanistic Possibilities in MauG-Dependent Tryptophan Tryptophylquinone Biosynthesisâ€.<br>Biochemistry, 2006, 45, 13276-13283.                                                                                                                          | 1.2 | 45        |
| 21 | 3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow. IUCrJ, 2020, 7, 207-219.                                                                                 | 1.0 | 43        |
| 22 | Reaction Mechanism of <i>N</i> -Acetylneuraminic Acid Lyase Revealed by a Combination of<br>Crystallography, QM/MM Simulation, and Mutagenesis. ACS Chemical Biology, 2014, 9, 1025-1032.                                                                 | 1.6 | 41        |
| 23 | A new on-axis multimode spectrometer for the macromolecular crystallography beamlines of the Swiss Light Source. Journal of Synchrotron Radiation, 2009, 16, 173-182.                                                                                     | 1.0 | 39        |
| 24 | Using photocaging for fast time-resolved structural biology studies. Acta Crystallographica Section<br>D: Structural Biology, 2021, 77, 1218-1232.                                                                                                        | 1.1 | 39        |
| 25 | The HARE chip for efficient time-resolved serial synchrotron crystallography. Journal of<br>Synchrotron Radiation, 2020, 27, 360-370.                                                                                                                     | 1.0 | 39        |
| 26 | Tracking X-ray-derived redox changes in crystals of a methylamine dehydrogenase/amicyanin complex<br>using single-crystal UV/Vis microspectrophotometry. Journal of Synchrotron Radiation, 2007, 14,<br>92-98.                                            | 1.0 | 37        |
| 27 | Combining X-ray crystallography and single-crystal spectroscopy to probe enzyme mechanisms.<br>Biochemical Society Transactions, 2009, 37, 378-381.                                                                                                       | 1.6 | 31        |
| 28 | Exploring the Roles of the Metal Ions in <i>Escherichia coli</i> Copper Amine Oxidase <sup>,</sup> .<br>Biochemistry, 2010, 49, 1268-1280.                                                                                                                | 1.2 | 30        |
| 29 | Isolation of an Asymmetric RNA Uncoating Intermediate for a Single-Stranded RNA Plant Virus. Journal of Molecular Biology, 2012, 417, 65-78.                                                                                                              | 2.0 | 30        |
| 30 | The Structure of the PanD/PanZ Protein Complex Reveals Negative Feedback Regulation of Pantothenate Biosynthesis by Coenzyme A. Chemistry and Biology, 2015, 22, 492-503.                                                                                 | 6.2 | 30        |
| 31 | Extending enzyme molecular recognition with an expanded amino acid alphabet. Proceedings of the<br>National Academy of Sciences of the United States of America, 2017, 114, 2610-2615.                                                                    | 3.3 | 30        |
| 32 | Time-resolved crystallography using the Hadamard transform. Nature Methods, 2014, 11, 1131-1134.                                                                                                                                                          | 9.0 | 29        |
| 33 | Structural Insights into Substrate Specificity in Variants of N-Acetylneuraminic Acid Lyase Produced by Directed Evolution. Journal of Molecular Biology, 2010, 404, 56-69.                                                                               | 2.0 | 28        |
| 34 | Topological Dissection of the Membrane Transport Protein Mhp1 Derived from Cysteine Accessibility and Mass Spectrometry. Analytical Chemistry, 2017, 89, 8844-8852.                                                                                       | 3.2 | 28        |
| 35 | Structural Kinetics of MsbA Investigated by Stopped-Flow Time-Resolved Small-Angle X-Ray Scattering.<br>Structure, 2020, 28, 348-354.e3.                                                                                                                  | 1.6 | 28        |
| 36 | Structural Insights into the Recovery of Aldolase Activity in <i>N</i> â€Acetylneuraminic Acid Lyase by<br>Replacement of the Catalytically Active Lysine with γâ€Thialysine by Using a Chemical Mutagenesis<br>Strategy. ChemBioChem, 2013, 14, 474-481. | 1.3 | 26        |

ARWEN R PEARSON

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Isotope Labeling Studies Reveal the Order of Oxygen Incorporation into the Tryptophan<br>Tryptophylquinone Cofactor of Methylamine Dehydrogenase. Journal of the American Chemical<br>Society, 2006, 128, 12416-12417.                 | 6.6 | 23        |
| 38 | Understanding Quinone Cofactor Biogenesis in Methylamine Dehydrogenase through Novel Cofactor<br>Generationâ€. Biochemistry, 2003, 42, 3224-3230.                                                                                      | 1.2 | 21        |
| 39 | Best practices for time-resolved serial synchrotron crystallography. Acta Crystallographica Section<br>D: Structural Biology, 2022, 78, 14-29.                                                                                         | 1.1 | 21        |
| 40 | Limits of Structural Plasticity in a Picornavirus Capsid Revealed by a Massively Expanded Equine<br>Rhinitis A Virus Particle. Journal of Virology, 2014, 88, 6093-6099.                                                               | 1.5 | 20        |
| 41 | Cryocrystallography of metalloprotein reaction intermediates. Current Opinion in Chemical Biology, 2002, 6, 202-207.                                                                                                                   | 2.8 | 19        |
| 42 | Evaluation of fluoropyruvate as nucleophile in reactions catalysed by N-acetyl neuraminic acid lyase variants: scope, limitations and stereoselectivity. Organic and Biomolecular Chemistry, 2016, 14, 105-112.                        | 1.5 | 19        |
| 43 | Revealing low-dose radiation damage using single-crystal spectroscopy. Journal of Synchrotron Radiation, 2011, 18, 367-373.                                                                                                            | 1.0 | 18        |
| 44 | Directed Assembly of Homopentameric Cholera Toxin B-Subunit Proteins into Higher-Order<br>Structures Using Coiled-Coil Appendages. Journal of the American Chemical Society, 2019, 141, 5211-5219.                                     | 6.6 | 18        |
| 45 | Hinge disulfides in human IgC2 CD40 antibodies modulate receptor signaling by regulation of conformation and flexibility. Science Immunology, 2022, 7, .                                                                               | 5.6 | 18        |
| 46 | Active Site Aspartate Residues Are Critical for Tryptophan Tryptophylquinone Biogenesis in<br>Methylamine Dehydrogenase. Journal of Biological Chemistry, 2005, 280, 17392-17396.                                                      | 1.6 | 15        |
| 47 | Structure of a xenon derivative of <i>Escherichia coli</i> copper amine oxidase: confirmation of the proposed oxygen-entry pathway. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1105-1109.          | 0.7 | 15        |
| 48 | Applying broadband terahertz time-domain spectroscopy to the analysis of crystalline proteins: a dehydration study. Journal of Applied Crystallography, 2011, 44, 129-133.                                                             | 1.9 | 15        |
| 49 | Human Cellular Retinaldehyde-Binding Protein Has Secondary Thermal 9- <i>cis</i> -Retinal Isomerase<br>Activity. Journal of the American Chemical Society, 2014, 136, 137-146.                                                         | 6.6 | 15        |
| 50 | Effect of Molecular Size and Particle Shape on the Terahertz Absorption of a Homologous Series of<br>Tetraalkylammonium Salts. Analytical Chemistry, 2013, 85, 7926-7934.                                                              | 3.2 | 14        |
| 51 | The Mechanism of Regulation of Pantothenate Biosynthesis by the PanD–PanZ·AcCoA Complex Reveals<br>an Additional Mode of Action for the Antimetabolite <i>N</i> -Pentyl Pantothenamide (N5-Pan).<br>Biochemistry, 2017, 56, 4931-4939. | 1.2 | 14        |
| 52 | Homogeneous batch micro-crystallization of proteins from ammonium sulfate. Acta<br>Crystallographica Section D: Structural Biology, 2021, 77, 194-204.                                                                                 | 1.1 | 12        |
| 53 | Dynamic structural science: recent developments in time-resolved spectroscopy and X-ray crystallography. Biochemical Society Transactions, 2013, 41, 1260-1264.                                                                        | 1.6 | 11        |
| 54 | Pathological macromolecular crystallographic data affected by twinning, partial-disorder and<br>exhibiting multiple lattices for testing of data processing and refinement tools. Scientific Reports,<br>2018, 8, 14876.               | 1.6 | 11        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | X-ray-excited optical luminescence of protein crystals: a new tool for studying radiation damage<br>during diffraction data collection. Acta Crystallographica Section D: Biological Crystallography,<br>2012, 68, 505-510.                     | 2.5 | 10        |
| 56 | Structure, recombinant expression and mutagenesis studies of the catalase with oxidase activity from <i>Scytalidium thermophilum</i> . Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 398-408.                         | 2.5 | 10        |
| 57 | In pursuit of an accurate spatial and temporal model of biomolecules at the atomistic level: a perspective on computer simulation. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 162-172.                             | 2.5 | 10        |
| 58 | Catching catalysis in the act: using single crystal kinetics to trap methylamine dehydrogenase<br>reaction intermediates. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1647, 381-389.                                         | 1.1 | 9         |
| 59 | Structure of an <i>Escherichia coli N</i> -acetyl- <scp>D</scp> -neuraminic acid lyase mutant, E192N, in complex with pyruvate at 1.45â€Ã resolution. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1088-1090. | 0.7 | 9         |
| 60 | Expression, purification, crystallization and preliminary X-ray diffraction of a novelNitrosomonas<br>europaeacytochrome, cytochrome P460. Acta Crystallographica Section F: Structural Biology<br>Communications, 2006, 62, 395-398.           | 0.7 | 8         |
| 61 | Oxygen Activation Switch in the Copper Amine Oxidase of <i>Escherichia coli</i> . Biochemistry, 2018, 57, 5301-5314.                                                                                                                            | 1.2 | 8         |
| 62 | A comparative analysis of the fluorescence properties of the wild-type and active site mutants of the hepatitis C virus autoprotease NS2-3. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 212-222.                       | 1.1 | 6         |
| 63 | Threonine 57 is required for the post-translational activation of <i>Escherichia coli</i> aspartate<br>α-decarboxylase. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1166-1172.                                      | 2.5 | 5         |
| 64 | Probing the Molecular Mechanisms in Copper Amine Oxidases by Generating Heterodimers.<br>ChemBioChem, 2015, 16, 559-564.                                                                                                                        | 1.3 | 5         |
| 65 | Crystal structure of a domainâ€swapped photoactivatable sfGFP variant provides evidence for GFP<br>folding pathway. FEBS Journal, 2019, 286, 2329-2340.                                                                                         | 2.2 | 5         |
| 66 | Identification of the site of oxidase substrate binding in <i>Scytalidium thermophilum</i> catalase.<br>Acta Crystallographica Section D: Structural Biology, 2018, 74, 979-985.                                                                | 1.1 | 5         |
| 67 | If You Can Get a Crystal Structure, Why Bother with Anything Else?. Synchrotron Radiation News, 2015, 28, 10-14.                                                                                                                                | 0.2 | 4         |
| 68 | Synthesis and characterisation of α-carboxynitrobenzyl photocaged <scp>l</scp> -aspartates for applications in time-resolved structural biology. RSC Advances, 2019, 9, 8695-8699.                                                              | 1.7 | 4         |
| 69 | Probing temperature- and solvent-dependent protein dynamics using terahertz time-domain spectroscopy. Journal of Applied Crystallography, 2014, 47, 146-153.                                                                                    | 1.9 | 4         |
| 70 | Crystallization and preliminary X-ray analysis of a bifunctional catalase-phenol oxidase<br>fromScytalidium thermophilum. Acta Crystallographica Section F: Structural Biology<br>Communications, 2009, 65, 486-488.                            | 0.7 | 3         |
| 71 | Investigating the active centre of the <i>Scytalidium thermophilum</i> catalase. Acta<br>Crystallographica Section F: Structural Biology Communications, 2013, 69, 369-375.                                                                     | 0.7 | 3         |
| 72 | Probing the role of Val228 on the catalytic activity of Scytalidium catalase. Biochimica Et Biophysica<br>Acta - Proteins and Proteomics, 2021, 1869, 140662.                                                                                   | 1.1 | 3         |

ARWEN R PEARSON

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Dissecting the mechanism of oxygen trafficking in a metalloenzyme. Faraday Discussions, 2011, 148, 269-282.                                                                                                                       | 1.6 | 2         |
| 74 | Nature of the ferryl heme in Compounds I and II Journal of Biological Chemistry, 2011, 286, 18344.                                                                                                                                | 1.6 | 1         |
| 75 | Terahertz time-domain spectroscopy of lysozyme and mouse urinary protein single crystals. , 2013, , .                                                                                                                             |     | 1         |
| 76 | Capturing Functionally Relevant Protein Motions at the Atomic Level: Femtosecond Time Resolved<br>Serial Crystallography of Ligand Dissociation of Carboxy-Myoglobin. Biophysical Journal, 2016, 110,<br>513a.                    | 0.2 | 1         |
| 77 | On Axis Resonance Raman Microspectroscopy Combined with Macromolecular Crystallography at the<br>Swiss Light Source. , 2010, , .                                                                                                  |     | 0         |
| 78 | Terahertz spectral measurements of a homologous organic series. , 2010, , .                                                                                                                                                       |     | 0         |
| 79 | Terahertz time-domain spectroscopy of protein single crystals. , 2010, , .                                                                                                                                                        |     | Ο         |
| 80 | Calculation of terahertz active normal modes in organic crystals. , 2010, , .                                                                                                                                                     |     | 0         |
| 81 | Understanding the influence of morphology on the terahertz spectra of a powdered ionic crystalline system. , 2013, , .                                                                                                            |     | Ο         |
| 82 | Preface to Special Topic: Transactions from the 66th Annual Meeting of the American Crystallographic Association. Structural Dynamics, 2017, 4, 032001.                                                                           | 0.9 | 0         |
| 83 | Structure, Substrate Recognition, and Mechanism of the Na+-Hydantoin Membrane Transport Protein,<br>Mhp1. , 2019, , 1-12.                                                                                                         |     | Ο         |
| 84 | Experimental phasing and radiation damage. Acta Crystallographica Section D: Biological<br>Crystallography, 2010, 66, .                                                                                                           | 2.5 | 0         |
| 85 | Combining Single Crystal UV/Vis Spectroscopy and Diffraction to Structurally Characterise<br>Intermediates and Monitor Radiation Damage. NATO Science for Peace and Security Series A: Chemistry<br>and Biology, 2014, , 253-259. | 0.5 | 0         |
| 86 | Structure, Substrate Recognition, and Mechanism of the Na+-Hydantoin Membrane Transport Protein,<br>Mhp1. , 2019, , 1-12.                                                                                                         |     | 0         |