Victoria A Blaho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1676594/publications.pdf

Version: 2024-02-01

257450 377865 3,661 38 24 34 h-index citations g-index papers 39 39 39 6453 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lysophospholipid (LPA) receptors in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	O
2	Lysophospholipid (S1P) receptors in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	O
3	Lysophospholipid (LPA) receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	O
4	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
5	Leukotriene B4 receptor BLT1 signaling is critical for neutrophil apoptosis and resolution of experimental Lyme arthritis. FASEB Journal, 2020, 34, 2840-2852.	0.5	8
6	Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities. Advances in Experimental Medicine and Biology, 2020, 1274, 101-135.	1.6	6
7	Sphingosine 1-phosphate escapes the Catch-22 of sepsis prevention and mitigation therapies. EBioMedicine, 2020, 59, 102952.	6.1	1
8	Lysophospholipid (LPA) receptors (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	1
9	Lysophospholipid (S1P) receptors (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	O
10	LPA _{1/3} overactivation induces neonatal posthemorrhagic hydrocephalus through ependymal loss and ciliary dysfunction. Science Advances, 2019, 5, eaax2011.	10.3	30
11	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
12	Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. Journal of Lipid Research, 2019, 60, 1912-1921.	4.2	33
13	Abrogation of Endogenous Glycolipid Antigen Presentation on Myelin-Laden Macrophages by D-Sphingosine Ameliorates the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2019, 10, 404.	4.8	3
14	Fingolimod: Lessons Learned and New Opportunities for Treating Multiple Sclerosis and Other Disorders. Annual Review of Pharmacology and Toxicology, 2019, 59, 149-170.	9.4	82
15	Lysophospholipid (S1P) receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	3
16	Lysophospholipid (LPA) receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
17	â€ ⁻ Crystal' Clear? Lysophospholipid Receptor Structure Insights and Controversies. Trends in Pharmacological Sciences, 2018, 39, 953-966.	8.7	28
18	An engineered S1P chaperone attenuates hypertension and ischemic injury. Science Signaling, 2017, 10, .	3.6	89

#	Article	IF	CITATIONS
19	HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature, 2015, 523, 342-346.	27.8	192
20	HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P ₁ to limit vascular inflammation. Science Signaling, 2015, 8, ra79.	3.6	254
21	Sphingosineâ€1â€phosphate receptor 1 signalling in T cells: trafficking and beyond. Immunology, 2014, 142, 347-353.	4.4	124
22	An update on the biology of sphingosine 1-phosphate receptors. Journal of Lipid Research, 2014, 55, 1596-1608.	4.2	420
23	Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nature Immunology, 2013, 14, 1166-1172.	14.5	135
24	Dietary Fish Oil Substitution Alters the Eicosanoid Profile in Ankle Joints of Mice during Lyme Infection. Journal of Nutrition, 2012, 142, 1582-1589.	2.9	15
25	Regulation of Mammalian Physiology, Development, and Disease by the Sphingosine 1-Phosphate and Lysophosphatidic Acid Receptors. Chemical Reviews, 2011, 111, 6299-6320.	47.7	136
26	Obesity Is Associated with Inflammation and Elevated Aromatase Expression in the Mouse Mammary Gland. Cancer Prevention Research, 2011, 4, 329-346.	1.5	335
27	5-Lipoxygenase–Deficient Mice Infected with <i>Borrelia</i> â€^ <i>burgdorferi</i> Develop Persistent Arthritis. Journal of Immunology, 2011, 186, 3076-3084.	0.8	37
28	Engagement of S1P1-degradative mechanisms leads to vascular leak in mice. Journal of Clinical Investigation, 2011, 121, 2290-2300.	8.2	196
29	Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics. Journal of Experimental Medicine, 2010, 207, 1475-1483.	8.5	155
30	The Chemokine Receptor CXCR2 Ligand KC (CXCL1) Mediates Neutrophil Recruitment and Is Critical for Development of Experimental Lyme Arthritis and Carditis. Infection and Immunity, 2010, 78, 4593-4600.	2.2	94
31	Cyclooxygenase-1 Orchestrates Germinal Center Formation and Antibody Class-Switch via Regulation of IL-17. Journal of Immunology, 2009, 183, 5644-5653.	0.8	32
32	Lipidomic Analysis of Dynamic Eicosanoid Responses during the Induction and Resolution of Lyme Arthritis. Journal of Biological Chemistry, 2009, 284, 21599-21612.	3.4	105
33	Arthritis develops but fails to resolve during inhibition of cyclooxygenase 2 in a murine model of lyme disease. Arthritis and Rheumatism, 2008, 58, 1485-1495.	6.7	31
34	Adenoviral Delivery of Interleukin-10 Fails To Attenuate Experimental Lyme Disease. Infection and Immunity, 2008, 76, 5500-5507.	2,2	16
35	Recruitment of Macrophages and Polymorphonuclear Leukocytes in Lyme Carditis. Infection and Immunity, 2007, 75, 613-620.	2.2	59
36	Stat1 Deficiency Exacerbates Carditis but Not Arthritis During Experimental Lyme Borreliosis. Journal of Interferon and Cytokine Research, 2006, 26, 390-399.	1.2	26

#	Article	lF	CITATIONS
37	Treatment of Mice with the Neutrophil-Depleting Antibody RB6-8C5 Results in Early Development of Experimental Lyme Arthritis via the Recruitment of Gr-1 and Polymorphonuclear Leukocyte-Like Cells. Infection and Immunity, 2004, 72, 4956-4965.	2.2	44
38	Susceptibility to Experimental Lyme Arthritis Correlates with KC and Monocyte Chemoattractant Protein-1 Production in Joints and Requires Neutrophil Recruitment Via CXCR2. Journal of Immunology, 2003, 171, 893-901.	0.8	113