Chao Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1675945/publications.pdf Version: 2024-02-01

		36691	64407
83	11,444	53	83
papers	citations	h-index	g-index
84	84	84	13203
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nonaqueous Mg Flow Battery with a Polymer Catholyte. ACS Applied Energy Materials, 2022, 5, 2675-2678.	2.5	6
2	Multiâ€Functionalized Polymers as Organic Cathodes for Sustainable Sodium/Potassiumâ€Ion Batteries. Batteries and Supercaps, 2022, 5, .	2.4	9
3	Establishing substitution rules of functional groups for high-capacity organic anode materials in Na-ion batteries. Journal of Power Sources, 2022, 533, 231383.	4.0	5
4	Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	41
5	Synergy of carbonyl and azo chemistries for wide-temperature-range rechargeable aluminum organic batteries. Nano Energy, 2022, 101, 107554.	8.2	12
6	A Fourâ€Armed Polyacrylic Acid Homopolymer Binder with Enhanced Performance for SiO <i>_x</i> /Graphite Anode. Macromolecular Materials and Engineering, 2021, 306, .	1.7	8
7	Organic electrode materials for non-aqueous, aqueous, and all-solid-state Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 19083-19115.	5.2	33
8	Strategies in Structure and Electrolyte Design for Highâ€Performance Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2009694.	7.8	122
9	Natural Cocoons Enabling Flexible and Stable Fabric Lithium–Sulfur Full Batteries. Nano-Micro Letters, 2021, 13, 84.	14.4	30
10	Tin phosphide nanoparticles loaded on multi-walled carbon nanotubes networks as a superior anode material for lithium ion batteries. Applied Surface Science, 2021, 556, 149764.	3.1	8
11	A conjugated tetracarboxylate anode for stable and sustainable Na-ion batteries. Chemical Communications, 2021, 57, 2360-2363.	2.2	12
12	Multifunctional Organic Electrode Materials for Sustainable and Fast-Charging Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 491-491.	0.0	0
13	Organic Electrode Materials for Metal Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 5361-5380.	4.0	231
14	Integrating Multiredox Centers into One Framework for High-Performance Organic Li-Ion Battery Cathodes. ACS Energy Letters, 2020, 5, 224-231.	8.8	59
15	Recent advances in developing organic electrode materials for multivalent rechargeable batteries. Energy and Environmental Science, 2020, 13, 3950-3992.	15.6	148
16	Tuning the Anode–Electrolyte Interface Chemistry for Garnetâ€Based Solidâ€&tate Li Metal Batteries. Advanced Materials, 2020, 32, e2000030.	11.1	156
17	Waterâ€Pillared Sodium Vanadium Bronze Nanowires for Enhanced Rechargeable Magnesium Ion Storage. Small, 2020, 16, e2000741.	5.2	34
18	A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14712-14720.	3.3	102

#	Article	IF	CITATIONS
19	Lithiophilic Zn Sites in Porous CuZn Alloy Induced Uniform Li Nucleation and Dendrite-free Li Metal Deposition. Nano Letters, 2020, 20, 2724-2732.	4.5	134
20	A carboxylate group-based organic anode for sustainable and stable sodium ion batteries. Journal of Power Sources, 2020, 453, 227904.	4.0	46
21	A Highly Reversible, Dendriteâ€Free Lithium Metal Anode Enabled by a Lithiumâ€Fluorideâ€Enriched Interphase. Advanced Materials, 2020, 32, e1906427.	11.1	168
22	A Covalent Organic Framework for Fast-Charge and Durable Rechargeable Mg Storage. Nano Letters, 2020, 20, 3880-3888.	4.5	72
23	A Pyrazineâ€Based Polymer for Fastâ€Charge Batteries. Angewandte Chemie - International Edition, 2019, 58, 17820-17826.	7.2	173
24	A Pyrazineâ€Based Polymer for Fast harge Batteries. Angewandte Chemie, 2019, 131, 17984-17990.	1.6	19
25	Exploiting Pulping Waste as an Ecofriendly Multifunctional Binder for Lithium Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 8413-8418.	3.2	21
26	Lignin-Derived Nitrogen-Doped Porous Carbon as a High-Rate Anode Material for Sodium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A423-A428.	1.3	24
27	An Organic Anode for High Temperature Potassiumâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1802986.	10.2	151
28	Solidâ€State Lithium/Selenium–Sulfur Chemistry Enabled via a Robust Solidâ€Electrolyte Interphase. Advanced Energy Materials, 2019, 9, 1802235.	10.2	63
29	Lignin derived Si@C composite as a high performance anode material for lithium ion batteries. Solid State Ionics, 2018, 319, 77-82.	1.3	29
30	Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Liâ€ l on Batteries. Advanced Materials, 2018, 30, e1706498.	11.1	134
31	Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example. ACS Applied Materials & Interfaces, 2018, 10, 14767-14776.	4.0	99
32	Reversible Redox Chemistry of Azo Compounds for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2018, 57, 2879-2883.	7.2	159
33	Reversible Redox Chemistry of Azo Compounds for Sodiumâ€ion Batteries. Angewandte Chemie, 2018, 130, 2929-2933.	1.6	33
34	Azo compounds as a family of organic electrode materials for alkali-ion batteries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2004-2009.	3.3	168
35	Self-Templated Formation of P2-type K _{0.6} CoO ₂ Microspheres for High Reversible Potassium-Ion Batteries. Nano Letters, 2018, 18, 1522-1529.	4.5	167
36	A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries. Angewandte Chemie, 2018, 130, 7264-7268.	1.6	51

#	Article	IF	CITATIONS
37	A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries. Angewandte Chemie - International Edition, 2018, 57, 7146-7150.	7.2	177
38	Rational Design of Core–Shell-Structured Particles by a One-Step and Template-Free Process for High-Performance Lithium/Sodium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 22232-22240.	1.5	10
39	Novel Lignin-Derived Water-Soluble Binder for Micro Silicon Anode in Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 12621-12629.	3.2	68
40	Solidâ€State Electrolyte Anchored with a Carboxylated Azo Compound for Allâ€Solidâ€State Lithium Batteries. Angewandte Chemie - International Edition, 2018, 57, 8567-8571.	7.2	103
41	Layered P2â€Type K _{0.65} Fe _{0.5} Mn _{0.5} O ₂ Microspheres as Superior Cathode for Highâ€Energy Potassiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1800219.	7.8	157
42	Solidâ€State Electrolyte Anchored with a Carboxylated Azo Compound for Allâ€Solidâ€State Lithium Batteries. Angewandte Chemie, 2018, 130, 8703-8707.	1.6	29
43	High power rechargeable magnesium/iodine battery chemistry. Nature Communications, 2017, 8, 14083.	5.8	251
44	Atomic-Layer-Deposition Functionalized Carbonized Mesoporous Wood Fiber for High Sulfur Loading Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 14801-14807.	4.0	77
45	Superior reversible tin phosphide-carbon spheres for sodium ion battery anode. Nano Energy, 2017, 38, 350-357.	8.2	122
46	Self-Healing Chemistry between Organic Material and Binder for Stable Sodium-Ion Batteries. CheM, 2017, 3, 1050-1062.	5.8	99
47	P2-type transition metal oxides for high performance Na-ion battery cathodes. Journal of Materials Chemistry A, 2017, 5, 18214-18220.	5.2	93
48	Insight into the Capacity Fading Mechanism of Amorphous Se ₂ S ₅ Confined in Micro/Mesoporous Carbon Matrix in Ether-Based Electrolytes. Nano Letters, 2016, 16, 2663-2673.	4.5	83
49	Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries. ACS Nano, 2016, 10, 5567-5577.	7.3	88
50	One-pot preparation of polyimide/Fe 3 O 4 magnetic nanofibers with solvent resistant properties. Composites Science and Technology, 2016, 133, 97-103.	3.8	41
51	Activation of Oxygen tabilized Sulfur for Li and Na Batteries. Advanced Functional Materials, 2016, 26, 745-752.	7.8	80
52	High-Performance All-Solid-State Lithium–Sulfur Battery Enabled by a Mixed-Conductive Li ₂ S Nanocomposite. Nano Letters, 2016, 16, 4521-4527.	4.5	333
53	In situ lithiated FeF3/C nanocomposite as high energy conversion-reaction cathode for lithium-ion batteries. Journal of Power Sources, 2016, 307, 435-442.	4.0	64
54	Building Self-Healing Alloy Architecture for Stable Sodium-Ion Battery Anodes: A Case Study of Tin Anode Materials. ACS Applied Materials & Interfaces, 2016, 8, 7147-7155.	4.0	92

#	Article	IF	CITATIONS
55	Electrospun FeS ₂ @Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries. ACS Nano, 2016, 10, 1529-1538.	7.3	199
56	Superior Stable Selfâ€Healing SnP ₃ Anode for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1500174.	10.2	197
57	Solid-State Fabrication of SnS ₂ /C Nanospheres for High-Performance Sodium Ion Battery Anode. ACS Applied Materials & Interfaces, 2015, 7, 11476-11481.	4.0	176
58	Sodium-Ion Batteries: An Advanced MoS ₂ /Carbon Anode for High-Performance Sodium-Ion Batteries (Small 4/2015). Small, 2015, 11, 472-472.	5.2	11
59	Red Phosphorus–Single-Walled Carbon Nanotube Composite as a Superior Anode for Sodium Ion Batteries. ACS Nano, 2015, 9, 3254-3264.	7.3	359
60	Carbon cage encapsulating nano-cluster Li2S by ionic liquid polymerization and pyrolysis for high performance Li–S batteries. Nano Energy, 2015, 13, 467-473.	8.2	76
61	Layer-by-Layer Surface Molecular Imprinting on Polyacrylonitrile Nanofiber Mats. Journal of Physical Chemistry A, 2015, 119, 6661-6667.	1.1	28
62	Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries. Nano Energy, 2015, 13, 537-545.	8.2	91
63	Scalable synthesis of Na ₃ V ₂ (PO ₄) ₃ /C porous hollow spheres as a cathode for Na-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10378-10385.	5.2	109
64	Controlled growth of polyhedral and plate-like Ag nanocrystals on a nanofiber mat as a SERS substrate. Analyst, The, 2015, 140, 5190-5197.	1.7	13
65	PEDOT Encapsulated FeOF Nanorod Cathodes for High Energy Lithium-Ion Batteries. Nano Letters, 2015, 15, 7650-7656.	4.5	96
66	Enhancing the Reversibility of Mg/S Battery Chemistry through Li ⁺ Mediation. Journal of the American Chemical Society, 2015, 137, 12388-12393.	6.6	225
67	"Water-in-salt―electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 2015, 350, 938-943.	6.0	2,553
68	Hybrid Mg ²⁺ /Li ⁺ Battery with Long Cycle Life and High Rate Capability. Advanced Energy Materials, 2015, 5, 1401507.	10.2	155
69	In situ formed carbon bonded and encapsulated selenium composites for Li–Se and Na–Se batteries. Journal of Materials Chemistry A, 2015, 3, 555-561.	5.2	115
70	Hierarchically structured polyacrylonitrile nanofiber mat as highly efficient lead adsorbent for water treatment. Chemical Engineering Journal, 2015, 262, 775-784.	6.6	78
71	3D Si/C Fiber Paper Electrodes Fabricated Using a Combined Electrospray/Electrospinning Technique for Liâ€ion Batteries. Advanced Energy Materials, 2015, 5, 1400753.	10.2	247
72	An Advanced MoS ₂ /Carbon Anode for High-Performance Sodium-Ion Batteries. Small, 2015, 11, 473-481.	5.2	390

#	Article	IF	CITATIONS
73	Carbonized Polyacrylonitrileâ€5tabilized SeS _x Cathodes for Long Cycle Life and High Power Density Lithium Ion Batteries. Advanced Functional Materials, 2014, 24, 4082-4089.	7.8	165
74	Copperâ€Stabilized Sulfurâ€Microporous Carbon Cathodes for Li–S Batteries. Advanced Functional Materials, 2014, 24, 4156-4163.	7.8	200
75	Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats. Applied Surface Science, 2014, 316, 245-250.	3.1	54
76	Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes. Journal of Power Sources, 2014, 250, 372-378.	4.0	134
77	Self-Assembled Organic Nanowires for High Power Density Lithium Ion Batteries. Nano Letters, 2014, 14, 1596-1602.	4.5	187
78	Selenium@Mesoporous Carbon Composite with Superior Lithium and Sodium Storage Capacity. ACS Nano, 2013, 7, 8003-8010.	7.3	393
79	Comparison of electrochemical performances of olivine NaFePO ₄ in sodium-ion batteries and olivine LiFePO ₄ in lithium-ion batteries. Nanoscale, 2013, 5, 780-787.	2.8	420
80	The synthesis and 1O2 photosensitization of halogenated asymmetric aniline-based squaraines. New Journal of Chemistry, 2011, 35, 1128.	1.4	22
81	Supramolecular assembly of a new squaraine and β-cyclodextrin for detection of thiol-containing amino acids in water. Supramolecular Chemistry, 2011, 23, 657-662.	1.5	6
82	A new squaraine and Hg ²⁺ -based chemosensor with tunable measuring range for thiol-containing amino acids. New Journal of Chemistry, 2011, 35, 45-48.	1.4	39
83	The effects of micellar media on the photocatalytic H2 production from water. International Journal of Hydrogen Energy, 2011, 36, 10593-10599.	3.8	10