## James P O'callaghan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1675768/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A role for neuroimmune signaling in a rat model of Gulf War Illness-related pain. Brain, Behavior, and<br>Immunity, 2021, 91, 418-428.                                                                                      | 2.0 | 14        |
| 2  | Modeling Neuroimmune Interactions in Human Subjects and Animal Models to Predict Subtype-Specific<br>Multidrug Treatments for Gulf War Illness. International Journal of Molecular Sciences, 2021, 22,<br>8546.             | 1.8 | 9         |
| 3  | The β-adrenergic receptor blocker and anti-inflammatory drug propranolol mitigates brain cytokine expression in a long-term model of Gulf War Illness. Life Sciences, 2021, 285, 119962.                                    | 2.0 | 6         |
| 4  | Alterations in high-order diffusion imaging in veterans with Gulf War Illness is associated with<br>chemical weapons exposure and mild traumatic brain injury. Brain, Behavior, and Immunity, 2020, 89,<br>281-290.         | 2.0 | 17        |
| 5  | Exploring the Role of Chemokine Receptor 6 (Ccr6) in the BXD Mouse Model of Gulf War Illness.<br>Frontiers in Neuroscience, 2020, 14, 818.                                                                                  | 1.4 | 4         |
| 6  | Genome-wide transcriptome architecture in a mouse model of Gulf War Illness. Brain, Behavior, and<br>Immunity, 2020, 89, 209-223.                                                                                           | 2.0 | 13        |
| 7  | Modeling the Genetic Basis of Individual Differences in Susceptibility to Gulf War Illness. Brain<br>Sciences, 2020, 10, 143.                                                                                               | 1.1 | 11        |
| 8  | Microglial activation and responses to vasculature that result from an acute LPS exposure.<br>NeuroToxicology, 2020, 77, 181-192.                                                                                           | 1.4 | 30        |
| 9  | Acetylcholinesterase inhibitor exposures as an initiating factor in the development of Gulf War<br>Illness, a chronic neuroimmune disorder in deployed veterans. Neuropharmacology, 2020, 171, 108073.                      | 2.0 | 34        |
| 10 | Oligodendrocyte involvement in Gulf War Illness. Glia, 2019, 67, 2107-2124.                                                                                                                                                 | 2.5 | 17        |
| 11 | Neuroinflammation disorders exacerbated by environmental stressors. Metabolism: Clinical and Experimental, 2019, 100, 153951.                                                                                               | 1.5 | 35        |
| 12 | Astrocyteâ€specific transcriptome analysis using the ALDH1L1 bacTRAP mouse reveals novel biomarkers of astrogliosis in response to neurotoxicity. Journal of Neurochemistry, 2019, 150, 420-440.                            | 2.1 | 18        |
| 13 | Glial Reactivity in Response to Neurotoxins: Relevance and Methods. Neuromethods, 2019, , 51-67.                                                                                                                            | 0.2 | 1         |
| 14 | Corticosterone and pyridostigmine/DEET exposure attenuate peripheral cytokine expression:<br>Supporting a dominant role for neuroinflammation in a mouse model of Gulf War Illness.<br>NeuroToxicology, 2019, 70, 26-32.    | 1.4 | 35        |
| 15 | Epigenetic impacts of stress priming of the neuroinflammatory response to sarin surrogate in mice: a<br>model of Gulf War illness. Journal of Neuroinflammation, 2018, 15, 86.                                              | 3.1 | 47        |
| 16 | Corticosterone potentiates DFP-induced neuroinflammation and affects high-order diffusion imaging in a rat model of Gulf War Illness. Brain, Behavior, and Immunity, 2018, 67, 42-46.                                       | 2.0 | 66        |
| 17 | The Multiple Hit Hypothesis for Gulf War Illness: Self-Reported Chemical/Biological Weapons<br>Exposure and Mild Traumatic Brain Injury. Brain Sciences, 2018, 8, 198.                                                      | 1.1 | 34        |
| 18 | The Neuroinflammatory Phenotype in a Mouse Model of Gulf War Illness is Unrelated to Brain<br>Regional Levels of Acetylcholine as Measured by Quantitative HILIC-UPLC-MS/MS. Toxicological<br>Sciences, 2018, 165, 302-313. | 1.4 | 31        |

JAMES P O'CALLAGHAN

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Logic Model of Neuronal-Glial Interaction Suggests Altered Homeostatic Regulation in the<br>Perpetuation of Neuroinflammation. Frontiers in Cellular Neuroscience, 2018, 12, 336.                                 | 1.8 | 10        |
| 20 | Prior exposure to corticosterone markedly enhances and prolongs the neuroinflammatory response to systemic challenge with LPS. PLoS ONE, 2018, 13, e0190546.                                                        | 1.1 | 35        |
| 21 | New horizons for focused ultrasound (FUS) – therapeutic applications in neurodegenerative diseases.<br>Metabolism: Clinical and Experimental, 2017, 69, S3-S7.                                                      | 1.5 | 31        |
| 22 | The combined effects of 3,4-methylenedioxymethamphetamine (MDMA) and selected substituted methcathinones on measures of neurotoxicity. Neurotoxicology and Teratology, 2017, 61, 74-81.                             | 1.2 | 24        |
| 23 | Corticosterone primes the neuroinflammatory response to Gulf War Illnessâ€relevant<br>organophosphates independently of acetylcholinesterase inhibition. Journal of Neurochemistry, 2017,<br>142, 444-455.          | 2.1 | 77        |
| 24 | Corticosterone and exogenous glucose alter blood glucose levels, neurotoxicity, and vascular toxicity produced by methamphetamine. Journal of Neurochemistry, 2017, 143, 198-213.                                   | 2.1 | 18        |
| 25 | Advancing the Role of Neuroimmunity and Genetic Susceptibility in Gulf War Illness. EBioMedicine, 2017, 26, 11-12.                                                                                                  | 2.7 | 8         |
| 26 | Supporting a Neuroimmune Basis of Gulf War Illness. EBioMedicine, 2016, 13, 5-6.                                                                                                                                    | 2.7 | 23        |
| 27 | Vascular-directed responses of microglia produced by methamphetamine exposure: indirect evidence that microglia are involved in vascular repair?. Journal of Neuroinflammation, 2016, 13, 64.                       | 3.1 | 21        |
| 28 | Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War:<br>Effects of toxicant exposures during deployment. Cortex, 2016, 74, 449-475.                                      | 1.1 | 326       |
| 29 | Corticosterone primes the neuroinflammatory response to <scp>DFP</scp> in mice: potential animal model of Gulf War Illness. Journal of Neurochemistry, 2015, 133, 708-721.                                          | 2.1 | 133       |
| 30 | Translational Biomarkers of Neurotoxicity: A Health and Environmental Sciences Institute Perspective on the Way Forward. Toxicological Sciences, 2015, 148, 332-340.                                                | 1.4 | 43        |
| 31 | Biomarkers of Parkinson's disease: Present and future. Metabolism: Clinical and Experimental, 2015, 64,<br>S40-S46.                                                                                                 | 1.5 | 284       |
| 32 | Early Activation of STAT3 Regulates Reactive Astrogliosis Induced by Diverse Forms of Neurotoxicity.<br>PLoS ONE, 2014, 9, e102003.                                                                                 | 1.1 | 114       |
| 33 | Genetic correlational analysis reveals no association between MPP+ and the severity of striatal dopaminergic damage following MPTP treatment in BXD mouse strains. Neurotoxicology and Teratology, 2014, 45, 91-92. | 1.2 | 3         |
| 34 | SN79, a sigma receptor antagonist, attenuates methamphetamine-induced astrogliosis through a<br>blockade of OSMR/gp130 signaling and STAT3 phosphorylation. Experimental Neurology, 2014, 254,<br>180-189.          | 2.0 | 47        |
| 35 | Health assessment of gasoline and fuel oxygenate vapors: Neurotoxicity evaluation. Regulatory<br>Toxicology and Pharmacology, 2014, 70, S35-S42.                                                                    | 1.3 | 24        |
| 36 | Health assessment of gasoline and fuel oxygenate vapors: Reproductive toxicity assessment.<br>Regulatory Toxicology and Pharmacology, 2014, 70, S48-S57.                                                            | 1.3 | 20        |

James P O'callaghan

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Systems analysis of genetic variation in MPTP neurotoxicity in mice. NeuroToxicology, 2013, 37, 26-34.                                                                                                                                                  | 1.4 | 23        |
| 38 | Chronic exposure to corticosterone enhances the neuroinflammatory and neurotoxic responses to methamphetamine. Journal of Neurochemistry, 2012, 122, 995-1009.                                                                                          | 2.1 | 66        |
| 39 | Early Alterations of Brain Cellular Energy Homeostasis in Huntington Disease Models. Journal of<br>Biological Chemistry, 2012, 287, 1361-1370.                                                                                                          | 1.6 | 104       |
| 40 | Organophosphates dysregulate dopamine signaling, glutamatergic neurotransmission, and induce neuronal injury markers in striatum. Journal of Neurochemistry, 2011, 119, 303-313.                                                                        | 2.1 | 82        |
| 41 | Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice. Toxicology and Applied Pharmacology, 2011, 256, 258-267.                                                                            | 1.3 | 21        |
| 42 | Effects of Repeated Treatment with Phosphodiesterase-4 Inhibitors on cAMP Signaling, Hippocampal<br>Cell Proliferation, and Behavior in the Forced-Swim Test. Journal of Pharmacology and Experimental<br>Therapeutics, 2011, 338, 641-647.             | 1.3 | 36        |
| 43 | Astrogliosis in CNS Pathologies: Is There A Role for Microglia?. Molecular Neurobiology, 2010, 41, 232-241.                                                                                                                                             | 1.9 | 252       |
| 44 | Spinal glia and chronic pain. Metabolism: Clinical and Experimental, 2010, 59, S21-S26.                                                                                                                                                                 | 1.5 | 43        |
| 45 | Indirubins deplete striatal monoamines in the Intact and MPTP-treated mouse brain and block kainate-induced striatal astrogliosis. Neurotoxicology and Teratology, 2010, 32, 212-219.                                                                   | 1.2 | 16        |
| 46 | Nerve agent exposure elicits site-specific changes in protein phosphorylation in mouse brain. Brain<br>Research, 2010, 1342, 11-23.                                                                                                                     | 1.1 | 22        |
| 47 | Protracted exposure to supraphysiological levels of corticosterone does not cause neuronal loss or<br>damage and protects against kainic acid-induced neurotoxicity in the hippocampus of C57BL/6J mice.<br>NeuroToxicology, 2009, 30, 965-976.         | 1.4 | 5         |
| 48 | Mild steel welding fume causes manganese accumulation and subtle neuroinflammatory changes but<br>not overt neuronal damage in discrete brain regions of rats after short-term inhalation exposure.<br>NeuroToxicology, 2009, 30, 915-925.              | 1.4 | 51        |
| 49 | Defining "Neuroinflammation― Annals of the New York Academy of Sciences, 2008, 1139, 318-330.                                                                                                                                                           | 1.8 | 122       |
| 50 | AMP-activated protein kinase phosphorylation in brain is dependent on method of killing and tissue preparation. Journal of Neurochemistry, 2008, 105, 833-841.                                                                                          | 2.1 | 31        |
| 51 | Autoantibodies to neurotypic and gliotypic proteins as biomarkers of neurotoxicity: Assessment of trimethyltin (TMT). NeuroToxicology, 2008, 29, 109-115.                                                                                               | 1.4 | 21        |
| 52 | Distinct Roles of PDE4 and PDE10A in the Regulation of cAMP/PKA Signaling in the Striatum. Journal of Neuroscience, 2008, 28, 10460-10471.                                                                                                              | 1.7 | 257       |
| 53 | Low-Level Human Equivalent Gestational Lead Exposure Produces Supernormal Scotopic<br>Electroretinograms, Increased Retinal Neurogenesis, and Decreased Retinal Dopamine Utilization in<br>Rats. Environmental Health Perspectives, 2008, 116, 618-625. | 2.8 | 33        |
| 54 | Recapitulation of cell signaling events associated with astrogliosis using the brain slice preparation.<br>Journal of Neurochemistry, 2007, 100, 720-726.                                                                                               | 2.1 | 20        |

JAMES P O'CALLAGHAN

| #  | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Divergent Roles for Tumor Necrosis Factor-α in the Brain. Journal of NeuroImmune Pharmacology, 2007, 2, 140-153.                                                                                                                                                                                 | 2.1 | 196       |
| 56 | Mechanism of age-dependent susceptibility and novel treatment strategy in glutaric acidemia type I.<br>Journal of Clinical Investigation, 2007, 117, 3258-3270.                                                                                                                                  | 3.9 | 92        |
| 57 | Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain<br>regions to MPTPâ€induced neurotoxicity: role of TNFâ€Î± 1. FASEB Journal, 2006, 20, 670-682.                                                                                              | 0.2 | 213       |
| 58 | Development of an animal model to study the potential neurotoxic effects associated with welding fume inhalation. NeuroToxicology, 2006, 27, 745-751.                                                                                                                                            | 1.4 | 11        |
| 59 | Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic<br>neurotoxicity: role of tumor necrosis factor-alpha. Journal of Neurochemistry, 2006, 96, 706-718.                                                                                                    | 2.1 | 238       |
| 60 | Calcium/calmodulin-dependent protein kinase II activity and expression are altered in the hippocampus of Pb2+-exposed rats. Brain Research, 2005, 1044, 51-58.                                                                                                                                   | 1.1 | 38        |
| 61 | Microscale sample deposition onto hydrophobic target plates for trace level detection of<br>neuropeptides in brain tissue by MALDI-MS. Journal of Mass Spectrometry, 2005, 40, 1338-1346.                                                                                                        | 0.7 | 28        |
| 62 | Associations of cortical astrogliosis with cognitive performance and dementia status. Journal of Alzheimer's Disease, 2005, 6, 595-604.                                                                                                                                                          | 1.2 | 90        |
| 63 | Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert<br>Opinion on Drug Safety, 2005, 4, 433-442.                                                                                                                                                   | 1.0 | 216       |
| 64 | Depression, cytokines, and glial function. Metabolism: Clinical and Experimental, 2005, 54, 33-38.                                                                                                                                                                                               | 1.5 | 64        |
| 65 | Induction of gp130-related Cytokines and Activation of JAK2/STAT3 Pathway in Astrocytes Precedes<br>Up-regulation of Glial Fibrillary Acidic Protein in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine<br>Model of Neurodegeneration. Journal of Biological Chemistry, 2004, 279, 19936-19947. | 1.6 | 229       |
| 66 | Brain concentrations of d-MDMA are increased after stress. Psychopharmacology, 2004, 173, 278-286.                                                                                                                                                                                               | 1.5 | 46        |
| 67 | Focused microwave irradiation of the brain preserves in vivo protein phosphorylation: comparison with other methods of sacrifice and analysis of multiple phosphoproteins. Journal of Neuroscience Methods, 2004, 135, 159-168.                                                                  | 1.3 | 99        |
| 68 | Neurotoxic esterase: not so toxic?. Nature Genetics, 2003, 33, 437-438.                                                                                                                                                                                                                          | 9.4 | 12        |
| 69 | Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: Implications for<br>Parkinson's disease. FASEB Journal, 2002, 16, 1474-1476.                                                                                                                                   | 0.2 | 340       |
| 70 | Measurement of Glial Fibrillary Acidic Protein. Current Protocols in Toxicology / Editorial Board,<br>Mahin D Maines (editor-in-chief) [et Al ], 2002, 11, Unit12.8.                                                                                                                             | 1.1 | 19        |
| 71 | Neuroendocrine aspects of the response to stress. Metabolism: Clinical and Experimental, 2002, 51, 5-10.                                                                                                                                                                                         | 1.5 | 400       |
| 72 | Chronic treatment with supraphysiological levels of corticosterone enhances d-MDMA-induced dopaminergic neurotoxicity in the C57BL/6J female mouse. Brain Research, 2002, 933, 130-138.                                                                                                          | 1.1 | 38        |

JAMES P O'CALLAGHAN

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Prior exposure to a behaviorally sensitizing regimen of d-methamphetamine does not alter the striatal dopaminergic damage induced by a neurotoxic regimen. Addiction Biology, 2000, 5, 361-367.                                                            | 1.4 | 1         |
| 74 | Chronic dopaminergic signaling in the basal ganglia: a damage perspective on kinases and fos-related antigens. Addiction Biology, 2000, 5, 369-376.                                                                                                        | 1.4 | 1         |
| 75 | Age as a Susceptibility Factor in the Striatal Dopaminergic Neurotoxicity Observed in the Mouse<br>following Substituted Amphetamine Exposure. Annals of the New York Academy of Sciences, 2000, 914,<br>194-207.                                          | 1.8 | 31        |
| 76 | Protein Phosphorylation Cascades Associated with Methamphetamineâ€induced Glial Activation. Annals of the New York Academy of Sciences, 2000, 914, 238-262.                                                                                                | 1.8 | 81        |
| 77 | Quantitative Immunoblots of Proteins Resolved from Brain Homogenates: Underestimation of Specific<br>Protein Concentration and of Treatment Effects. Analytical Biochemistry, 1999, 274, 18-26.                                                            | 1.1 | 31        |
| 78 | The Impact of Gender and Estrogen on Striatal Dopaminergic Neurotoxicity. Annals of the New York<br>Academy of Sciences, 1998, 844, 153-165.                                                                                                               | 1.8 | 236       |
| 79 | A direct comparison of GFAP immunocytochemistry and GFAP concentration in various regions of ethanol-fixed rat and mouse brain. Journal of Neuroscience Methods, 1995, 58, 181-192.                                                                        | 1.3 | 49        |
| 80 | Quantitative Features of Reactive Gliosis following Toxicant-induced Damage of the CNS. Annals of the New York Academy of Sciences, 1993, 679, 195-210.                                                                                                    | 1.8 | 126       |
| 81 | The concentration of glial fibrillary acidic protein increases with age in the mouse and rat brain.<br>Neurobiology of Aging, 1991, 12, 171-174.                                                                                                           | 1.5 | 141       |
| 82 | Quantification of glial fibrillary acidic protein: Comparison of slot-immunobinding assays with a novel sandwich ELISA. Neurotoxicology and Teratology, 1991, 13, 275-281.                                                                                 | 1.2 | 149       |
| 83 | Diethyldithiocarbamate Potentiates the Neurotoxicity of In Vivo I-Methyl-4-Phenyl-1, 2, 3,<br>6-Tetrahydropyridine and of In Vitro 1-Methyl-4-Phenylpyridinium. Journal of Neurochemistry, 1991, 57,<br>541-549.                                           | 2.1 | 52        |
| 84 | Glucocorticoids Regulate the Synthesis of Glial Fibrillary Acidic Protein in Intact and<br>Adrenalectomized Rats but Do Not Affect Its Expression Following Brain Injury. Journal of<br>Neurochemistry, 1991, 57, 860-869.                                 | 2.1 | 127       |
| 85 | The Use of Glial Fibrillary Acidic Protein in First-Tier Assessments of Neurotoxicity. Journal of the American College of Toxicology, 1991, 10, 719-726.                                                                                                   | 0.2 | 13        |
| 86 | 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced damage of striatal dopaminergic fibers<br>attenuates subsequent astrocyte response to MPTP. Neuroscience Letters, 1990, 117, 228-233.                                                         | 1.0 | 28        |
| 87 | Characterization of the origins of astrocyte response to injury using the dopaminergic neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Research, 1990, 521, 73-80.                                                                      | 1.1 | 142       |
| 88 | The neurotoxicant MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) increases glial fibrillary acidic<br>protein and decreases dopamine levels of the mouse striatum: Evidence for glial response to injury.<br>Neuroscience Letters, 1988, 95, 246-251. | 1.0 | 57        |
| 89 | A method for dissection of discrete regions of rat brain following microwave irradiation. Brain Research Bulletin, 1983, 11, 31-42.                                                                                                                        | 1.4 | 6         |
| 90 | Neurotoxic Effects of Substituted Amphetamines in Rats and Mice: Challenges to the Current Dogma. ,<br>0, , 269-302.                                                                                                                                       |     | 23        |

6

IF

CITATIONS

## # ARTICLE

The astrocyte response to neural injury. , 0, , 233-266.