Frans H H Leenen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1675761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in the rates of awareness, treatment and control of hypertension in Canada over the past two decades. Cmaj, 2011, 183, 1007-1013.	0.9	220
2	How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1031-H1049.	1.5	216
3	Results of the Ontario Survey on the Prevalence and Control of Hypertension. Cmaj, 2008, 178, 1441-1449.	0.9	187
4	Clinical Events in High-Risk Hypertensive Patients Randomly Assigned to Calcium Channel Blocker Versus Angiotensin-Converting Enzyme Inhibitor in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Hypertension, 2006, 48, 374-384.	1.3	149
5	Increases in CSF [Na+] precede the increases in blood pressure in Dahl S rats and SHR on a high-salt diet. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1160-H1166.	1.5	126
6	Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1787-R1797.	0.9	126
7	17β-Estradiol downregulates tissue angiotensin-converting enzyme and ANG II type 1 receptor in female rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R759-R766.	0.9	124
8	Both Brain Angiotensin II and "Ouabain―Contribute to Sympathoexcitation and Hypertension in Dahl S Rats on High Salt Intake. Hypertension, 1998, 32, 1028-1033.	1.3	122
9	The central role of the brain aldosterone–"ouabain―pathway in salt-sensitive hypertension. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 1132-1139.	1.8	88
10	Comparison Between an Automated and Manual Sphygmomanometer in a Population Survey. American Journal of Hypertension, 2008, 21, 280-283.	1.0	85
11	Brain renin-angiotensin system and sympathetic hyperactivity in rats after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H1608-H1615.	1.5	84
12	Brain Mechanisms Contributing to Sympathetic Hyperactivity and Heart Failure. Circulation Research, 2007, 101, 221-223.	2.0	81
13	Role of central nervous system aldosterone synthase and mineralocorticoid receptors in salt-induced hypertension in Dahl salt-sensitive rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R994-R1000.	0.9	81
14	Central neuromodulatory pathways regulating sympathetic activity in hypertension. Journal of Applied Physiology, 2012, 113, 1294-1303.	1.2	80
15	Isoproterenol-induced cardiac hypertrophy: role of circulatory versus cardiac renin-angiotensin system. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2410-H2416.	1.5	78
16	Central Nervous System Blockade by Peripheral Administration of AT1 Receptor Blockers. Journal of Cardiovascular Pharmacology, 2003, 41, 593-599.	0.8	73
17	Central neuronal activation and pressor responses induced by circulating ANG II: role of the brain aldosterone-"ouabain―pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H422-H430.	1.5	72
18	Salt-Induced Hypertension in a Mouse Model of Liddle Syndrome Is Mediated by Epithelial Sodium Channels in the Brain. Hypertension, 2012, 60, 691-696.	1.3	71

#	Article	IF	CITATIONS
19	Persistence of antiâ€hypertensive effect after â€~missed doses' of calcium antagonist with long (amlodipine) <i>vs</i> short (diltiazem) elimination halfâ€life. British Journal of Clinical Pharmacology, 1996, 41, 83-88.	1.1	70
20	Brain â€~Ouabain' Mediates Sympathetic Hyperactivity in Congestive Heart Failure. Circulation Research, 1995, 77, 993-1000.	2.0	70
21	Brain sodium channels and ouabainlike compounds mediate central aldosterone-induced hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2516-H2523.	1.5	69
22	Enhanced sympathoexcitatory and pressor responses to central Na ⁺ in Dahl salt-sensitive vsresistant rats. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1881-H1889.	1.5	68
23	Epinephrine and left ventricular function in humans: Effects of beta-1 vs nonselective beta-blockade. Clinical Pharmacology and Therapeutics, 1988, 43, 519-528.	2.3	62
24	The brain and salt-sensitive hypertension. Current Hypertension Reports, 2002, 4, 129-135.	1.5	62
25	Brain Renin-Angiotensin System and Ouabain-Induced Sympathetic Hyperactivity and Hypertension in Wistar Rats. Hypertension, 1999, 34, 107-112.	1.3	60
26	Brain Sodium Channels Mediate Increases in Brain "Ouabain―and Blood Pressure in Dahl S Rats. Hypertension, 2002, 40, 96-100.	1.3	60
27	The role of cardiac beta-1 receptors in the hemodynamic response to a beta-2 agonist. Clinical Pharmacology and Therapeutics, 1986, 40, 108-115.	2.3	59
28	Pattern of neuronal activation in rats with CHF after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H2140-H2146.	1.5	59
29	Increases in brain and cardiac AT1 receptor and ACE densities after myocardial infarct in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1665-H1671.	1.5	59
30	The brain renin-angiotensin-aldosterone system: A major mechanism for sympathetic hyperactivity and left ventricular remodeling and dysfunction after myocardial infarction. Current Heart Failure Reports, 2009, 6, 81-88.	1.3	59
31	Sodium Transport in the Choroid Plexus and Salt-Sensitive Hypertension. Hypertension, 2009, 54, 860-867.	1.3	55
32	High salt intake and the brain renin–angiotensin system in Dahl salt-sensitive rats. Journal of Hypertension, 2001, 19, 89-98.	0.3	53
33	Activation of brain renin-angiotensin-aldosterone system by central sodium in Wistar rats. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1109-H1117.	1.5	53
34	Actions of Circulating Angiotensin II and Aldosterone in the Brain Contributing to Hypertension. American Journal of Hypertension, 2014, 27, 1024-1032.	1.0	53
35	Regulation of hypothalamic renin-angiotensin system and oxidative stress by aldosterone. Experimental Physiology, 2011, 96, 1028-1038.	0.9	52
36	Effects of central sodium on epithelial sodium channels in rat brain. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R222-R233.	0.9	51

#	Article	IF	CITATIONS
37	Pivotal role of α2 Na ⁺ pumps and their high affinity ouabain binding site in cardiovascular health and disease. Journal of Physiology, 2016, 594, 6079-6103.	1.3	50
38	Digoxin Prevents Ouabain and High Salt Intake–Induced Hypertension in Rats With Sinoaortic Denervation. Hypertension, 1999, 34, 733-738.	1.3	49
39	Blockade of brain mineralocorticoid receptors or Na+ channels prevents sympathetic hyperactivity and improves cardiac function in rats post-MI. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2491-H2497.	1.5	48
40	Prevention of high salt diet-induced cardiac hypertrophy and fibrosis by spironolactone. American Journal of Hypertension, 2003, 16, 319-323.	1.0	47
41	Monotherapy versus Combination Therapy as First Line Treatment of Uncomplicated Arterial Hypertension. Drugs, 2001, 61, 943-954.	4.9	46
42	Changes in cardiac ANG II postmyocardial infarction in rats: effects of nephrectomy and ACE inhibitors. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H317-H325.	1.5	45
43	Prevention of Hypertension by Irbesartan in Dahl S Rats Relates to Central Angiotensin II Type 1 Receptor Blockade. Hypertension, 2001, 37, 981-984.	1.3	45
44	Prevention of cardiac remodeling after myocardial infarction in transgenic rats deficient in brain angiotensinogen. Journal of Molecular and Cellular Cardiology, 2005, 39, 521-529.	0.9	45
45	Responses to Central Na + and Ouabain Are Attenuated in Transgenic Rats Deficient in Brain Angiotensinogen. Hypertension, 2001, 37, 683-686.	1.3	44
46	Central infusion of aldosterone synthase inhibitor prevents sympathetic hyperactivity and hypertension by central Na+ in Wistar rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R166-R172.	0.9	44
47	Antihypertensive Medication Use and Blood Pressure Control: A Community-Based Cross-Sectional Survey (ON-BP). American Journal of Hypertension, 2008, 21, 1210-1215.	1.0	44
48	Mineralocorticoid and angiotensin II type 1 receptors in the subfornical organ mediate angiotensin II – induced hypothalamic reactive oxygen species and hypertension. Neuroscience, 2016, 329, 112-121.	1.1	44
49	Critical role of CNS effects of aldosterone in cardiac remodeling post-myocardial infarction in rats. Cardiovascular Research, 2004, 64, 437-447.	1.8	43
50	Effects of high salt intake on brain AT1 receptor densities in Dahl rats. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1949-H1955.	1.5	41
51	Brain "ouabain,―ANG II, and sympathoexcitation by chronic central sodium loading in rats. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H1269-H1276.	1.5	38
52	Brain Amiloride-Sensitive Phe-Met-Arg-Phe-NH 2 –Gated Na + Channels and Na + -Induced Sympathoexcitation and Hypertension. Hypertension, 2002, 39, 557-561.	1.3	37
53	Inhibition of brain angiotensin III attenuates sympathetic hyperactivity and cardiac dysfunction in rats post-myocardial infarction. Cardiovascular Research, 2013, 97, 424-431.	1.8	35
54	Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart. Cell Research, 2017, 27, 1195-1215.	5.7	35

#	Article	IF	CITATIONS
55	Nonselective beta-blockade enhances pressor responsiveness to epinephrine, norepinephrine, and angiotensin II in normal man. Clinical Pharmacology and Therapeutics, 1984, 35, 461-466.	2.3	34
56	Brain sodium channels and central sodium-induced increases in brain ouabain-like compound and blood pressure. Journal of Hypertension, 2003, 21, 1519-1524.	0.3	34
57	Cardiac macrophages and apoptosis after myocardial infarction: effects of central MR blockade. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R879-R887.	0.9	34
58	Mechanisms in the PVN mediating local and central sodium-induced hypertension in Wistar rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R618-R630.	0.9	33
59	Prevention of Renal Dysfunction and Hypertension by Amlodipine After Heart Transplant. American Journal of Cardiology, 2007, 100, 531-535.	0.7	32
60	Pharmacokinetic and pharmacodynamic interactions between nisoldipine and propranolol. Clinical Pharmacology and Therapeutics, 1988, 43, 39-48.	2.3	31
61	Central sympathoinhibitory effects of calcium channel blockers. Current Hypertension Reports, 2001, 3, 314-321.	1.5	31
62	Sympathetic hyperactivity and cardiac dysfunction post-MI: Different impact of specific CNS versus general AT1 receptor blockade. Journal of Molecular and Cellular Cardiology, 2007, 43, 479-486.	0.9	31
63	Cardiovascular effects of angiotensin II and glutamate in the PVN of Dahl salt-sensitive rats. Brain Research, 2012, 1447, 28-37.	1.1	31
64	Central Mineralocorticoid Receptors and the Role of Angiotensin II and Glutamate in the Paraventricular Nucleus of Rats With Angiotensin II–Induced Hypertension. Hypertension, 2013, 61, 1083-1090.	1.3	31
65	Neuroendocrine Humoral and Vascular Components in the Pressor Pathway for Brain Angiotensin II: A New Axis in Long Term Blood Pressure Control. PLoS ONE, 2014, 9, e108916.	1.1	31
66	Knockdown of mineralocorticoid or angiotensin II type 1 receptor gene expression in the paraventricular nucleus prevents angiotensin II hypertension in rats. Journal of Physiology, 2014, 592, 3523-3536.	1.3	31
67	Mineralocorticoid Actions in the Brain and Hypertension. Current Hypertension Reports, 2011, 13, 214-220.	1.5	30
68	Effects of exercise training on brainâ€derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction. Experimental Physiology, 2017, 102, 314-328.	0.9	30
69	Update on angiotensin II: new endocrine connections between the brain, adrenal glands and the cardiovascular system. Endocrine Connections, 2017, 6, R131-R145.	0.8	30
70	Brain "ouabain―and angiotensin II contribute to cardiac dysfunction after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1786-H1792.	1.5	29
71	Central infusion of aldosterone synthase inhibitor attenuates left ventricular dysfunction and remodelling in rats after myocardial infarction. Cardiovascular Research, 2008, 81, 574-581.	1.8	28
72	Prevention of Salt-induced Hypertension and Fibrosis by AT1-receptor Blockers in Dahl S Rats. Journal of Cardiovascular Pharmacology, 2008, 51, 457-466.	0.8	28

#	Article	IF	CITATIONS
73	Do high doses of AT1-receptor blockers attenuate central sympathetic outflow in humans with chronic heart failure?. Clinical Science, 2013, 124, 589-595.	1.8	27
74	Neuronal Responsiveness to Central Na + in 2 Congenic Strains of Dahl Salt-Sensitive Rats. Hypertension, 2007, 49, 1315-1320.	1.3	26
75	Enhanced expression of epithelial sodium channels causes salt-induced hypertension in mice through inhibition of the α ₂ -isoform of Na ⁺ , K ⁺ -ATPase. Physiological Reports, 2015, 3, e12383.	0.7	26
76	Sex differences in depression-like behavior and neuroinflammation in rats post-MI: role of estrogens. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1159-H1173.	1.5	25
77	Inhibition of inflammation by minocycline improves heart failure and depression-like behaviour in rats after myocardial infarction. PLoS ONE, 2019, 14, e0217437.	1.1	25
78	Sympathoinhibition by Central and Peripheral Infusion of Nifedipine in Spontaneously Hypertensive Rats. Hypertension, 2000, 35, 631-636.	1.3	24
79	Obesity and the Prevalence and Management of Hypertension in Ontario, Canada. American Journal of Hypertension, 2010, 23, 1000-1006.	1.0	24
80	Role of Brain Corticosterone and Aldosterone in Central Angiotensin II–Induced Hypertension. Hypertension, 2013, 62, 564-571.	1.3	24
81	Mineralocorticoid and AT ₁ receptors in the paraventricular nucleus contribute to sympathetic hyperactivity and cardiac dysfunction in rats post myocardial infarct. Journal of Physiology, 2014, 592, 3273-3286.	1.3	24
82	Brain â€~Ouabain' and Desensitization of Arterial Baroreflex by High Sodium in Dahl Salt-Sensitive Rats. Hypertension, 1995, 25, 372-376.	1.3	23
83	Brain â€~Ouabain,' Sodium, and Arterial Baroreflex in Spontaneously Hypertensive Rats. Hypertension, 1995, 25, 814-817.	1.3	23
84	Chronic central versus systemic blockade of AT ₁ receptors and cardiac dysfunction in rats post-myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H968-H975.	1.5	21
85	Central and peripheral slow-pressor mechanisms contributing to Angiotensin II-salt hypertension in rats. Cardiovascular Research, 2018, 114, 233-246.	1.8	20
86	Sodium pumps, ouabain and aldosterone in the brain: A neuromodulatory pathway underlying salt-sensitive hypertension and heart failure. Cell Calcium, 2020, 86, 102151.	1.1	20
87	Sympathoinhibitory and Depressor Effects of Amlodipine in Spontaneously Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2003, 42, 153-160.	0.8	19
88	Control Rates of Hypertension in North America. Hypertension, 2010, 56, 571-572.	1.3	19
89	Central infusion of aliskiren prevents sympathetic hyperactivity and hypertension in Dahl salt-sensitive rats on high salt intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R825-R832.	0.9	19
90	Use of Directly Observed Therapy to Assess Treatment Adherence in Patients With Apparent Treatment-Resistant Hypertension. JAMA Internal Medicine, 2019, 179, 1433.	2.6	19

#	Article	IF	CITATIONS
91	Antihypertensive Drugs and Cardiac Trophic Mechanisms. Journal of Cardiovascular Pharmacology, 1991, 17, S50-S57.	0.8	18
92	Mortality After Coronary Artery Occlusion in Different Models of Cardiac Hypertrophy in Rats. Hypertension, 2001, 37, 209-215.	1.3	18
93	Mechanisms mediating sodium-induced pressor responses in the PVN of Dahl rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1338-R1349.	0.9	18
94	Brain renin–angiotensin–aldosterone system and ventricular remodeling after myocardial infarct:ÂaÂreviewThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research Canadian Journal of Physiology and Pharmacology, 2009, 87, 979-988.	0.7	17
95	Effects of exercise training and TrkB blockade on cardiac function and BDNF-TrkB signaling postmyocardial infarction in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1821-H1834.	1.5	17
96	Sympathoinhibitory Effects of Central Nifedipine in Spontaneously Hypertensive Rats on High Versus Regular Sodium Intake. Hypertension, 1999, 33, 32-35.	1.3	16
97	Effects of low-dose nifedipine GITS on sympathetic activity in young and older patients with hypertension. Journal of Hypertension, 2004, 22, 1039-1044.	0.3	16
98	Catecholamines and heart function in heart transplant patients: Effects of β1- versus nonselective β-blockade*. Clinical Pharmacology and Therapeutics, 1998, 64, 522-535.	2.3	15
99	Ouabain- and central sodium-induced hypertension depend on the ventral anteroventral third ventricle region. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H63-H70.	1.5	15
100	Aging and cardiac responses to epinephrine in humans: role of neuronal uptake. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2498-H2503.	1.5	15
101	Angiotensin-converting Enzyme Inhibitors, Inhibition of Brain and Peripheral Angiotensin-converting Enzymes, and Left Ventricular Dysfunction in Rats After Myocardial Infarction. Journal of Cardiovascular Pharmacology, 2008, 51, 565-572.	0.8	14
102	Comparative effectiveness of monotherapies and combination therapies for patients with hypertension: protocol for a systematic review with network meta-analyses. Systematic Reviews, 2013, 2, 44.	2.5	14
103	Cardiac sympathetic innervation and PGP9.5 expression by cardiomyocytes after myocardial infarction: effects of central MR blockade. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1817-H1829.	1.5	14
104	Differential effects of once-daily antihypertensive drugs on blood pressure, left ventricular mass and sympathetic activity: Nifedipine-GITS versus felodipine-ER versus enalapril. Canadian Journal of Cardiology, 2002, 18, 1285-93.	0.8	14
105	Lifestyle Changes and Blood Pressure Control: A Communityâ€Based Crossâ€Sectional Survey (2006) Tj ETQq1 2009, 11, 31-35.	1 0.784314 1.0	ł rgBT /Overl 13
106	Role of angiotensin II type 1 receptors in the subfornical organ in the pressor responses to central sodium in rats. Brain Research, 2013, 1527, 79-86.	1.1	13
107	Cathepsin G deficiency decreases complexity of atherosclerotic lesions in apolipoprotein E-deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1141-H1148.	1.5	13
108	Blockade of Brain â€~Ouabain' Prevents the Impairment of Baroreflexes in Rats After Myocardial Infarction. Circulation, 1997, 96, 1654-1659.	1.6	13

#	Article	IF	CITATIONS
109	Nifedipine tablet vs. hydralazine in patients with persisting hypertension who receive combined diuretic and beta-blocker therapy. Clinical Pharmacology and Therapeutics, 1986, 39, 409-413.	2.3	12
110	Hemodynamic interaction of nonselective vs. beta-1-selective beta-blockade with hydralazine in normal humans. Clinical Pharmacology and Therapeutics, 1987, 41, 326-335.	2.3	12
111	Regulation of components of the brain and cardiac renin-angiotensin systems by 17β-estradiol after myocardial infarction in female rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R155-R162.	0.9	12
112	Pharmacokinetic and Antihypertensive Profile of Amlodipine and Felodipine-ER in Younger Versus Older Patients With Hypertension. Journal of Cardiovascular Pharmacology, 2010, 56, 669-675.	0.8	12
113	Role of Myocardial Infarction-Induced Neuroinflammation for Depression-Like Behavior and Heart Failure in Ovariectomized Female Rats. Neuroscience, 2019, 415, 201-214.	1.1	12
114	Role of renin-angiotensin system in activation of macrophages by modified lipoproteins. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1309-H1320.	1.5	11
115	Effect of exercise training on the FNDC5/BDNF pathway in spontaneously hypertensive rats. Physiological Reports, 2019, 7, e14323.	0.7	11
116	Effects of CPAP on Blood Pressure and Sympathetic Activity in Patients With Diabetes Mellitus, Chronic Kidney Disease, and Resistant Hypertension. CJC Open, 2020, 2, 258-264.	0.7	11
117	Possible role of brain salt-inducible kinase 1 in responses to central sodium in Dahl rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R236-R245.	0.9	10
118	Brain Na+,K+-ATPase isozyme activity and protein expression in ouabain-induced hypertension. Brain Research, 2004, 1018, 171-180.	1.1	9
119	Moving beyond guidelines: Are report cards the answer to high rates of uncontrolled hypertension?. Current Hypertension Reports, 2006, 8, 324-329.	1.5	9
120	2006 Ontario Survey on the Prevalence and Control of Hypertension (ON-BP): Rationale and design of a community-based cross-sectional survey. Canadian Journal of Cardiology, 2008, 24, 503-505.	0.8	9
121	β-Blockade disappearance rate predicts β-adrenergic hypersensitivity. Clinical Pharmacology and Therapeutics, 1989, 46, 279-290.	2.3	8
122	Effects of ACE Inhibitors on Cardiac Angiotensin II and Aldosterone in Humans: "Relevance of Lipophilicity and Affinity for ACE― American Journal of Hypertension, 2010, 23, 1179-1182.	1.0	8
123	Sympathoinhibitory and Depressor Responses to Long-term Infusion of Nifedipine in Spontaneously Hypertensive Rats on High-Salt Diet. Journal of Cardiovascular Pharmacology, 2000, 36, 704-710.	0.8	8
124	Combination therapy as first-line treatment of arterial hypertension. Canadian Journal of Cardiology, 2002, 18, 1317-27.	0.8	8
125	Plasma Concentrationâ€Response Relationships of Two Formulations of Propranolol. Journal of Clinical Pharmacology, 1985, 25, 182-186.	1.0	7
126	Effects of nifedipine versus hydralazine on sympathetic activity and cardiac function in patients with hypertension persisting on diuretic plus beta-blocker therapy. Cardiovascular Drugs and Therapy, 1990, 4, 499-504.	1.3	7

#	Article	IF	CITATIONS
127	Role of Brain Ouabain-Like Activity in the Central Effects of Sodium in Rats. Journal of Cardiovascular Pharmacology, 1993, 22, S72-S74.	0.8	7
128	Effects of hypertension on cardiovascular responses to epinephrine in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H3025-H3031.	1.5	7
129	On-treatment blood pressures of older hypertensive patients in Canada. Journal of Hypertension, 2017, 35, 621-626.	0.3	7
130	Age, hypertension, and cardiac responses to β-agonist in humans*. Clinical Pharmacology and Therapeutics, 1998, 63, 663-671.	2.3	6
131	Changes in brain Na, K-ATPase isoform expression and enzymatic activity after aortic constriction. Brain Research, 2002, 944, 124-134.	1.1	6
132	Central Sympathetic Inhibition by Mineralocorticoid Receptor But Not Angiotensin II Type 1 Receptor Blockade. Hypertension, 2012, 60, 278-280.	1.3	6
133	Effects of exercise on BDNF-TrkB signaling in the paraventricular nucleus and rostral ventrolateral medulla in rats post myocardial infarction. Neuropeptides, 2020, 82, 102058.	0.9	6
134	How Does the Brain Talk to the Arteries and Heart?. FASEB Journal, 2015, 29, 984.3.	0.2	6
135	ALLHAT: What has it taught us so far?. Cmaj, 2004, 171, 719-720.	0.9	5
136	A cross-national comparative study of blood pressure levels and hypertension prevalence in Canada and Hungary. Journal of Hypertension, 2012, 30, 2105-2111.	0.3	5
137	Cardioprotective Brain Mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1749-1750.	1.1	4
138	Blood pressure lowering, not vascular mechanism of action, is the primary determinant of clinical outcome. Canadian Journal of Cardiology, 2004, 20 Suppl B, 77B-82B.	0.8	4
139	1,4-Dihydropyridines versus beta-blockers for hypertension: Are either safe for the heart?. Cardiovascular Drugs and Therapy, 1996, 10, 397-402.	1.3	3
140	Does Blockade of the Renin Angiotensin System Affect Sympathetic and Blood Pressure Responses to Amlodipine in Young Hypertensive Patients? <xref <br="" ref-type="author-notes">rid="fn1">[*]</xref> <xref ref-type="author-notes" rid="fn2">^{â€}</xref> <subtitle />. American Journal of Hypertension, 2007, 20, 1202-8.</subtitle 	1.0	3
141	Essential contributions of the α2-Na ⁺ /K ⁺ -ATPase ouabain binding site to cardiac remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1117-H1118.	1.5	2
142	Angiotensin II modulates brain-derived neurotrophic factor expression in the brain and adrenal. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129505.	1.1	0
143	Differential regulation of epithelial sodium channel subunits in the brain by sodium rich aCSF. FASEB Journal, 2006, 20, A796.	0.2	0
144	Dysregulated Expression Of Renal Epithelial Sodium Channels (ENaC) In Dahl Rats FASEB Journal, 2007, 21, A1406.	0.2	0