Gáspár Jékely

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1675551/publications.pdf

Version: 2024-02-01

89 papers

6,021 citations

38 h-index 70 g-index

119 all docs

119 docs citations

119 times ranked

5204 citing authors

#	Article	IF	Citations
1	Premetazoan Origin of Neuropeptide Signaling. Molecular Biology and Evolution, 2022, 39, .	3.5	38
2	Origins of eukaryotic excitability. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190758.	1.8	44
3	Reafference and the origin of the self in early nervous system evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190764.	1.8	30
4	Animal Phylogeny: Resolving the Slugfest ofÂCtenophores, Sponges and Acoels?. Current Biology, 2021, 31, R202-R204.	1.8	6
5	The chemical brain hypothesis for the origin of nervous systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190761.	1.8	52
6	Nemertean, Brachiopod, and Phoronid Neuropeptidomics Reveals Ancestral Spiralian Signaling Systems. Molecular Biology and Evolution, 2021, 38, 4847-4866.	3.5	29
7	The Nereid on the rise: Platynereis as a model system. EvoDevo, 2021, 12, 10.	1.3	34
8	Flatworm behaviour: Pieces behaving like wholes. Current Biology, 2021, 31, R1472-R1474.	1.8	0
9	Evolution of synapses and neurotransmitter systems: The divide-and-conquer model for early neural cell-type evolution. Current Opinion in Neurobiology, 2021, 71, 127-138.	2.0	16
10	Nervous systems: Neuropeptides define enigmatic comb-jelly neurons. Current Biology, 2021, 31, R1515-R1517.	1.8	2
11	On the unity and diversity of cilia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190148.	1.8	16
12	Neuronal coordination of motile cilia in locomotion and feeding. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190165.	1.8	34
13	Diversity of cilia-based mechanosensory systems and their functions in marine animal behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190376.	1.8	37
14	A G protein–coupled receptor mediates neuropeptide-induced oocyte maturation in the jellyfish Clytia. PLoS Biology, 2020, 18, e3000614.	2.6	31
15	Spinning disk-remote focusing microscopy. Biomedical Optics Express, 2020, 11, 2874.	1.5	7
16	A nemertean excitatory peptide/CCHamide regulates ciliary swimming in the larvae of Lineus longissimus. Frontiers in Zoology, 2019, 16, 28.	0.9	8
17	Content-aware image restoration for electron microscopy. Methods in Cell Biology, 2019, 152, 277-289.	0.5	71
18	Editorial overview: Tissue-level dynamics in development and evolution. Current Opinion in Genetics and Development, 2019, 57, iii-v.	1.5	0

#	Article	IF	Citations
19	Neuronal cell types in the annelid Platynereis dumerilii. Current Opinion in Neurobiology, 2019, 56, 106-116.	2.0	17
20	Glass confers rhabdomeric photoreceptor identity in Drosophila, but not across all metazoans. EvoDevo, 2019, 10, 4.	1.3	1
21	Evolution: How Not to Become an Animal. Current Biology, 2019, 29, R1240-R1242.	1.8	3
22	The long and the short of it – a perspective on peptidergic regulation of circuits and behaviour. Journal of Experimental Biology, 2018, 221, .	0.8	75
23	Whole-head recording of chemosensory activity in the marine annelid <i>Platynereis dumerilii</i> Open Biology, 2018, 8, .	1.5	23
24	Dual signaling of Wamide myoinhibitory peptides through a peptideâ€gated channel and a GPCR in <i>Platynereis</i> . FASEB Journal, 2018, 32, 5338-5349.	0.2	29
25	High Cell Diversity and Complex Peptidergic Signaling Underlie Placozoan Behavior. Current Biology, 2018, 28, 3495-3501.e2.	1.8	84
26	Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. ELife, 2018, 7, .	2.8	37
27	A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia. ELife, 2018, 7, .	2.8	69
28	Neural circuitry of a polycystin-mediated hydrodynamic startle response for predator avoidance. ELife, 2018, 7, .	2.8	44
29	Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biology, 2017, 15, 6.	1.7	71
30	Back to the Basics: Cnidarians Start to Fire. Trends in Neurosciences, 2017, 40, 92-105.	4.2	102
31	High diversity in neuropeptide immunoreactivity patterns among three closely related species of Dinophilidae (Annelida). Journal of Comparative Neurology, 2017, 525, 3596-3635.	0.9	25
32	An ancient FMRFamide-related peptide–receptor pair induces defence behaviour in a brachiopod larva. Open Biology, 2017, 7, 170136.	1.5	21
33	Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the Platynereis larva. ELife, 2017, 6, .	2.8	57
34	Synaptic and peptidergic connectome of a neurosecretory center in the annelid brain. ELife, 2017, 6, .	2.8	78
35	Towards a systems-level understanding of development in the marine annelid Platynereis dumerilii. Current Opinion in Genetics and Development, 2016, 39, 175-181.	1.5	29
36	Phototaxis and the origin of visual eyes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150042.	1.8	58

#	Article	IF	CITATIONS
37	Think small. ELife, 2016, 5, .	2.8	3
38	The phylogenetic position of ctenophores and the origin(s) of nervous systems. EvoDevo, 2015, 6, 1.	1.3	148
39	Large-Scale Combinatorial Deorphanization of Platynereis Neuropeptide GPCRs. Cell Reports, 2015, 12, 684-693.	2.9	120
40	Myoinhibitory peptide regulates feeding in the marine annelid Platynereis. Frontiers in Zoology, 2015, 12, 1.	0.9	116
41	Spectral Tuning of Phototaxis by a Go-Opsin in the Rhabdomeric Eyes of Platynereis. Current Biology, 2015, 25, 2265-2271.	1.8	71
42	Object-based representation and analysis of light and electron microscopic volume data using Blender. BMC Bioinformatics, 2015, 16, 229.	1.2	12
43	Site-Directed RNA Editing in Vivo Can Be Triggered by the Light-Driven Assembly of an Artificial Riboprotein. Journal of the American Chemical Society, 2015, 137, 15875-15881.	6.6	63
44	An option space for early neural evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150181.	1.8	116
45	Inter-individual stereotypy of the Platynereis larval visual connectome. ELife, 2015, 4, e08069.	2.8	53
46	A serial multiplex immunogold labeling method for identifying peptidergic neurons in connectomes. ELife, 2015, 4, .	2.8	57
47	Origin and Evolution of the Self-Organizing Cytoskeleton in the Network of Eukaryotic Organelles. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016030-a016030.	2.3	30
48	Neuronal connectome of a sensory-motor circuit for visual navigation. ELife, 2014, 3, .	2.8	100
49	Deep transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pompejana identifies the CvP-bias as a robust measure of eukaryotic thermostability. Biology Direct, 2013, 8, 2.	1.9	47
50	Wnt6 is required for maxillary palp formation in Drosophila. BMC Biology, 2013, 11, 104.	1.7	27
51	The neuropeptide complement of the marine annelid Platynereis dumerilii. BMC Genomics, 2013, 14, 906.	1.2	139
52	Global view of the evolution and diversity of metazoan neuropeptide signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8702-8707.	3.3	402
53	Put a tiger in your tank: the polyclad flatworm Maritigrella crozieri as a proposed model for evo-devo. EvoDevo, 2013, 4, 29.	1.3	29
54	Expression Dynamics and Protein Localization of Rhabdomeric Opsins in Platynereis Larvae. Integrative and Comparative Biology, 2013, 53, 7-16.	0.9	45

#	Article	IF	CITATIONS
55	Conserved MIP receptor–ligand pair regulates <i>Platynereis</i> larval settlement. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8224-8229.	3.3	128
56	Antibodies against conserved amidated neuropeptide epitopes enrich the comparative neurobiology toolbox. EvoDevo, 2012, 3, 23.	1.3	55
57	Whole-body gene expression pattern registration in Platynereis larvae. EvoDevo, 2012, 3, 27.	1.3	59
58	Neuropeptides regulate swimming depth of <i>Platynereis</i> larvae. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1174-83.	3.3	109
59	Origin and early evolution of neural circuits for the control of ciliary locomotion. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 914-922.	1.2	71
60	Evolution of phototaxis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2795-2808.	1.8	190
61	The evolution of nervous system centralization. , 2009, , 65-70.		0
62	Mechanism of phototaxis in marine zooplankton. Nature, 2008, 456, 395-399.	13.7	254
63	Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell. Biology Direct, 2008, 3, 31.	1.9	29
64	Chapter 3 How Did the Cilium Evolve?. Current Topics in Developmental Biology, 2008, 85, 63-82.	1.0	99
65	The evolution of nervous system centralization. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1523-1528.	1.8	172
66	Evolution of the Golgi complex. , 2008, , 675-691.		2
67	Molecular Architecture of Annelid Nerve Cord Supports Common Origin of Nervous System Centralization in Bilateria. Cell, 2007, 129, 277-288.	13.5	406
68	Origin of Eukaryotic Endomembranes: A Critical Evaluation of Different Model Scenarios. Advances in Experimental Medicine and Biology, 2007, 607, 38-51.	0.8	40
69	Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms. Biology Direct, 2007, 2, 3.	1.9	22
70	Cellular resolution expression profiling using confocal detection of NBT/BCIP precipitate by reflection microscopy. BioTechniques, 2007, 42, 751-755.	0.8	72
71	Did the last common ancestor have a biological membrane?. Biology Direct, 2006, 1, 35.	1.9	38
72	Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. BioEssays, 2006, 28, 191-198.	1.2	206

#	Article	IF	CITATIONS
73	Ancestry of Photic and Mechanic Sensation?. Science, 2005, 308, 1113-1114.	6.0	33
74	Glimpsing Over the Event Horizon: Evolution of Nuclear Pores and Envelope. Cell Cycle, 2005, 4, 296-298.	1.3	14
75	Regulators of Endocytosis Maintain Localized Receptor Tyrosine Kinase Signaling in Guided Migration. Developmental Cell, 2005, 9, 197-207.	3.1	196
76	Least of all visible things. FEBS Letters, 2005, 579, 3202-3202.	1.3	0
77	Glimpsing over the event horizon: evolution of nuclear pores and envelope. Cell Cycle, 2005, 4, 297-9.	1.3	6
78	Autolytic activation and localization in Schneider cells (S2) of calpain B from Drosophila. Biochemical Journal, 2004, 378, 299-305.	1.7	18
79	Small GTPases and the evolution of the eukaryotic cell. BioEssays, 2003, 25, 1129-1138.	1.2	119
80	Hrs mediates downregulation of multiple signalling receptors in Drosophila. EMBO Reports, 2003, 4, 1163-1168.	2.0	135
81	A novel human small subunit of calpains. Biochemical Journal, 2002, 362, 383.	1.7	26
82	A novel human small subunit of calpains. Biochemical Journal, 2002, 362, 383-388.	1.7	35
83	The human genome sequence: a triumph of chemistry. EMBO Reports, 2002, 3, 594-595.	2.0	0
84	Cloning and expression of sprint, a Drosophila homologue of RIN1. Mechanisms of Development, 2001, 101, 259-262.	1.7	22
85	Guidance of Cell Migration by the Drosophila PDGF/VEGF Receptor. Cell, 2001, 107, 17-26.	13.5	428
86	Drosophila Calpains Purification of a Calpain-like Enzyme from Fruit Flies, and Expression in Escherichia coli., 2000, 144, 67-74.		1
87	Characterization of Two Recombinant Drosophila Calpains. Journal of Biological Chemistry, 1999, 274, 23893-23900.	1.6	31
88	The Evolution of the Calpain Family as Reflected in Paralogous Chromosome Regions. Journal of Molecular Evolution, 1999, 49, 272-281.	0.8	41
89	TER94, a Drosophila homolog of the membrane fusion protein CDC48/p97, is accumulated in nonproliferating cells: in the reproductive organs and in the brain of the imago. Insect Biochemistry and Molecular Biology, 1998, 28, 91-98.	1.2	38