
Maricela RodrÃ-guez-Cruz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1675273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proâ€inflammatory monocytes are increased in Duchenne muscular dystrophy and suppressed with omegaâ€3 fatty acids: A doubleâ€blind, randomized, placeboâ€controlled pilot study. European Journal of Neurology, 2022, 29, 855-864.	3.3	1
2	Circulating markers of oxidative stress are associated with a muscle injury in patients with muscular dystrophy Duchenne. Brain and Development, 2021, 43, 111-120.	1.1	8
3	Efficacy of Docosahexaenoic Acid for the Prevention of Necrotizing Enterocolitis in Preterm Infants: A Randomized Clinical Trial. Nutrients, 2021, 13, 648.	4.1	8
4	Natural History of Serum Enzyme Levels in Duchenne Muscular Dystrophy and Implications for Clinical Practice. American Journal of Physical Medicine and Rehabilitation, 2020, 99, 1121-1128.	1.4	6
5	Body composition and body mass index in Duchenne muscular dystrophy: Role of dietary intake. Muscle and Nerve, 2019, 59, 295-302.	2.2	16
6	Enteral Docosahexaenoic Acid and Retinopathy of Prematurity: A Randomized Clinical Trial. Journal of Parenteral and Enteral Nutrition, 2019, 43, 874-882.	2.6	30
7	Muscle function and age are associated with loss of bone mineral density in Duchenne muscular dystrophy. Muscle and Nerve, 2019, 59, 417-421.	2.2	10
8	Evidence of muscle loss delay and improvement of hyperinsulinemia and insulin resistance in Duchenne muscular dystrophy supplemented with omega-3 fatty acids: A randomized study. Clinical Nutrition, 2019, 38, 2087-2097.	5.0	15
9	Potential therapeutic impact of omega-3 long chain-polyunsaturated fatty acids on inflammation markers in Duchenne muscular dystrophy: A double-blind, controlled randomized trial. Clinical Nutrition, 2018, 37, 1840-1851.	5.0	26
10	Genomics of lactation: role of nutrigenomics and nutrigenetics in the fatty acid composition of human milk. British Journal of Nutrition, 2017, 118, 161-168.	2.3	29
11	Impact of Metabolic Hormones Secreted in Human Breast Milk on Nutritional Programming in Childhood Obesity. Journal of Mammary Cland Biology and Neoplasia, 2017, 22, 171-191.	2.7	63
12	Association Between the Brain-derived Neurotrophic Factor Val66Met Polymorphism and Overweight/Obesity in Pediatric Population. Archives of Medical Research, 2017, 48, 599-608.	3.3	16
13	Nutrigenomics of ω-3 fatty acids: Regulators of the master transcription factors. Nutrition, 2017, 41, 90-96.	2.4	48
14	Enteral Docosahexaenoic Acid Reduces Analgesic Administration in Neonates Undergoing Cardiovascular Surgery. Annals of Nutrition and Metabolism, 2016, 69, 150-160.	1.9	2
15	The effect of gestational age on expression of genes involved in uptake, trafficking and synthesis of fatty acids in the rat placenta. Gene, 2016, 591, 403-410.	2.2	9
16	Beneficial Effects of Enteral Docosahexaenoic Acid on the Markers of Inflammation and Clinical Outcomes of Neonates Undergoing Cardiovascular Surgery: An Intervention Study. Annals of Nutrition and Metabolism, 2016, 69, 15-23.	1.9	8
17	Systemic Inflammation in Duchenne Muscular Dystrophy: Association with Muscle Function and Nutritional Status. BioMed Research International, 2015, 2015, 1-7.	1.9	54
18	Evidence of Insulin Resistance and Other Metabolic Alterations in Boys with Duchenne or Becker Muscular Dystrophy. International Journal of Endocrinology, 2015, 2015, 1-8.	1.5	50

#	Article	IF	CITATIONS
19	Excessive Refined Carbohydrates and Scarce Micronutrients Intakes Increase Inflammatory Mediators and Insulin Resistance in Prepubertal and Pubertal Obese Children Independently of Obesity. Mediators of Inflammation, 2014, 2014, 1-7.	3.0	17
20	Role of maternal tissue in the synthesis of polyunsaturated fatty acids in response to a lipid-deficient diet during pregnancy and lactation in rats. Gene, 2014, 549, 7-23.	2.2	14
21	Protein Restriction in the Rat Negatively Impacts Long-chain Polyunsaturated Fatty Acid Composition and Mammary Gland Development at the End of Gestation. Archives of Medical Research, 2013, 44, 429-436.	3.3	18
22	Identification of Putative Ortholog Gene Blocks Involved in Gestant and Lactating Mammary Gland Development: A Rodent Cross-Species Microarray Transcriptomics Approach. International Journal of Genomics, 2013, 2013, 1-12.	1.6	6
23	PPARÎ ³ 2 Pro12Ala polymorphism is associated with improved lipoprotein lipase functioning in adipose tissue of insulin resistant obese women. Gene, 2012, 511, 404-410.	2.2	4
24	Coexisting role of fasting or feeding and dietary lipids in the control of gene expression of enzymes involved in the synthesis of saturated, monounsaturated and polyunsaturated fatty acids. Gene, 2012, 496, 28-36.	2.2	18
25	Participation of mammary gland in long-chain polyunsaturated fatty acid synthesis during pregnancy and lactation in rats. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 284-293.	2.4	27
26	Effect of dietary levels of corn oil on maternal arachidonic acid synthesis and fatty acid composition in lactating rats. Nutrition, 2009, 25, 209-215.	2.4	14
27	Synthesis of long-chain polyunsaturated fatty acids in lactating mammary gland: role of Δ5 and Δ6 desaturases, SREBP-1, PPARα, and PGC-1. Journal of Lipid Research, 2006, 47, 553-560.	4.2	64