Fernando Soto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1674591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Smart Materials for Microrobots. Chemical Reviews, 2022, 122, 5365-5403.	23.0	201
2	Advanced Pointâ€ofâ€Care Testing Technologies for Human Acute Respiratory Virus Detection. Advanced Materials, 2022, 34, e2103646.	11.1	92
3	Ultrasound-Powered Micro-/Nanorobots: Fundamentals and Biomedical Applications. , 2022, , 29-60.		2
4	Microneedle-mediated Intratumoral Delivery of Anti-CTLA-4 Promotes cDC1-dependent Eradication of Oral Squamous Cell Carcinoma with Limited irAEs. Molecular Cancer Therapeutics, 2022, 21, 616-624.	1.9	20
5	Robotic Pill for Biomarker and Fluid Sampling in the Gastrointestinal Tract. Advanced Intelligent Systems, 2022, 4, .	3.3	6
6	Volbots: Volvox Microalgaeâ€Based Robots for Multimode Precision Imaging and Therapy. Advanced Functional Materials, 2022, 32, .	7.8	12
7	Acoustic Fabrication of Living Cardiomyocyte-based Hybrid Biorobots. ACS Nano, 2022, 16, 10219-10230.	7.3	9
8	Reversible Design of Dynamic Assemblies at Small Scales. Advanced Intelligent Systems, 2021, 3, 2000193.	3.3	10
9	Engineering Ultrasound Fields to Power Medical Micro/Nanorobots. Current Robotics Reports, 2021, 2, 21-32.	5.1	14
10	Combinatorial microneedle patch with tunable release kinetics and dual fast-deep/sustained release capabilities. Journal of Materials Chemistry B, 2021, 9, 2189-2199.	2.9	9
11	Increasing Diversity in Radiology and Molecular Imaging: Current Challenges. Molecular Imaging and Biology, 2021, 23, 625-638.	1.3	8
12	Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models. Cancer Letters, 2021, 504, 116-124.	3.2	5
13	Wearable Collector for Noninvasive Sampling of SARS-CoV-2 from Exhaled Breath for Rapid Detection. ACS Applied Materials & Interfaces, 2021, 13, 41445-41453.	4.0	24
14	Progress and challenges in biomarker enrichment for cancer early detection. Progress in Biomedical Engineering, 2021, 3, 043001.	2.8	6
15	Designer exosomes enabling tumor targeted efficient chemo/gene/photothermal therapy. Biomaterials, 2021, 276, 121056.	5.7	79
16	Engineering Polysaccharideâ€Based Hydrogel Photonic Constructs: From Multiscale Detection to the Biofabrication of Living Optical Fibers. Advanced Materials, 2021, 33, e2105361.	11.1	21
17	Builtâ€In Active Microneedle Patch with Enhanced Autonomous Drug Delivery. Advanced Materials, 2020, 32, e1905740.	11.1	160
18	Onionâ€like Multifunctional Microtrap Vehicles for Attraction–Trapping–Destruction of Biological Threats. Angewandte Chemie, 2020, 132, 3508-3513.	1.6	10

Fernando Soto

#	Article	IF	CITATIONS
19	Onionâ€like Multifunctional Microtrap Vehicles for Attraction–Trapping–Destruction of Biological Threats. Angewandte Chemie - International Edition, 2020, 59, 3480-3485.	7.2	31
20	Medical Micro/Nanorobots in Precision Medicine. Advanced Science, 2020, 7, 2002203.	5.6	197
21	Density Asymmetry Driven Propulsion of Ultrasoundâ€Powered Janus Micromotors. Advanced Functional Materials, 2020, 30, 2004043.	7.8	60
22	Micromotors: Engineering the Interaction Dynamics between Nanoâ€Topographical Immunocyteâ€Templated Micromotors across Scales from Ions to Cells (Small 49/2020). Small, 2020, 16, 2070265.	5.2	0
23	Engineering the Interaction Dynamics between Nanoâ€Topographical Immunocyteâ€Templated Micromotors across Scales from Ions to Cells. Small, 2020, 16, 2005185.	5.2	7
24	Liquid Metal Based Islandâ€Bridge Architectures for All Printed Stretchable Electrochemical Devices. Advanced Functional Materials, 2020, 30, 2002041.	7.8	95
25	Multigear Bubble Propulsion of Transient Micromotors. Research, 2020, 2020, 7823615.	2.8	32
26	Risk Factors Associated With Bronchiolitis in Puerto Rican Children. Pediatric Emergency Care, 2020, Publish Ahead of Print, .	0.5	0
27	3D steerable, acoustically powered microswimmers for single-particle manipulation. Science Advances, 2019, 5, eaax3084.	4.7	199
28	Laserâ€Induced Graphene Composites for Printed, Stretchable, and Wearable Electronics. Advanced Materials Technologies, 2019, 4, 1900162.	3.0	55
29	Rotibot: Use of Rotifers as Selfâ€Propelling Biohybrid Microcleaners. Advanced Functional Materials, 2019, 29, 1900658.	7.8	37
30	Structureâ€Dependent Optical Modulation of Propulsion and Collective Behavior of Acoustic/Lightâ€Driven Hybrid Microbowls. Advanced Functional Materials, 2019, 29, 1809003.	7.8	79
31	Hybrid Nanovehicles: One Machine, Two Engines. Advanced Functional Materials, 2019, 29, 1806290.	7.8	77
32	Parallel Labelâ€Free Isolation of Cancer Cells Using Arrays of Acoustic Microstreaming Traps. Advanced Materials Technologies, 2019, 4, 1800374.	3.0	35
33	Virusâ€Based Nanomotors for Cargo Delivery. ChemNanoMat, 2019, 5, 194-200.	1.5	28
34	Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy and Environmental Science, 2018, 11, 3431-3442.	15.6	196
35	Frontiers of Medical Micro/Nanorobotics: in vivo Applications and Commercialization Perspectives Toward Clinical Uses. Frontiers in Bioengineering and Biotechnology, 2018, 6, 170.	2.0	86
36	Noninvasive Transdermal Delivery System of Lidocaine Using an Acoustic Dropletâ€Vaporization Based Wearable Patch. Small, 2018, 14, e1803266.	5.2	47

Fernando Soto

#	Article	IF	CITATIONS
37	Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Science Robotics, 2018, 3, .	9.9	190
38	A microneedle biosensor for minimally-invasive transdermal detection of nerve agents. Analyst, The, 2017, 142, 918-924.	1.7	86
39	Epidermal Tattoo Patch for Ultrasoundâ€Based Transdermal Microballistic Delivery. Advanced Materials Technologies, 2017, 2, 1700210.	3.0	21
40	Topographical Manipulation of Microparticles and Cells with Acoustic Microstreaming. ACS Applied Materials & amp; Interfaces, 2017, 9, 38870-38876.	4.0	60
41	Acoustically Propelled Nanomotors for Intracellular siRNA Delivery. ACS Nano, 2016, 10, 4997-5005.	7.3	257
42	Delayed ignition and propulsion of catalytic microrockets based on fuel-induced chemical dealloying of the inner alloy layer. Chemical Communications, 2016, 52, 11838-11841.	2.2	14
43	Acoustically propelled nanoshells. Nanoscale, 2016, 8, 17788-17793.	2.8	81
44	Enteric Micromotor Can Selectively Position and Spontaneously Propel in the Gastrointestinal Tract. ACS Nano, 2016, 10, 9536-9542.	7.3	211
45	Transient Micromotors That Disappear When No Longer Needed. ACS Nano, 2016, 10, 10389-10396.	7.3	109
46	Acoustic Microcannons: Toward Advanced Microballistics. ACS Nano, 2016, 10, 1522-1528.	7.3	91
47	Single Cell Real-Time miRNAs Sensing Based on Nanomotors. ACS Nano, 2015, 9, 6756-6764.	7.3	267
48	Reversible Swarming and Separation of Self-Propelled Chemically Powered Nanomotors under Acoustic Fields. Journal of the American Chemical Society, 2015, 137, 2163-2166.	6.6	258
49	Micromotorâ€Based Energy Generation. Angewandte Chemie - International Edition, 2015, 54, 6896-6899.	7.2	68
50	Self-propelled screen-printable catalytic swimmers. RSC Advances, 2015, 5, 78986-78993.	1.7	16
51	Lysozyme-Based Antibacterial Nanomotors. ACS Nano, 2015, 9, 9252-9259.	7.3	141
52	Ultrasoundâ€Propelled Nanoporous Gold Wire for Efficient Drug Loading and Release. Small, 2014, 10, 4154-4159.	5.2	196
53	Ultrasound-Modulated Bubble Propulsion of Chemically Powered Microengines. Journal of the American Chemical Society, 2014, 136, 8552-8555.	6.6	177
54	Functionalized Ultrasound-Propelled Magnetically Guided Nanomotors: Toward Practical Biomedical Applications. ACS Nano, 2013, 7, 9232-9240.	7.3	386