Kerstin Kutsche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1674575/publications.pdf

Version: 2024-02-01

516710 434195 1,614 39 16 31 citations g-index h-index papers 39 39 39 2920 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nature Genetics, 2009, 41, 1022-1026.	21.4	358
2	A restricted spectrum of NRAS mutations causes Noonan syndrome. Nature Genetics, 2010, 42, 27-29.	21.4	271
3	Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome. Nature Genetics, 2015, 47, 661-667.	21.4	177
4	Cancer spectrum and frequency among children with Noonan, Costello, and cardio-facio-cutaneous syndromes. British Journal of Cancer, 2015, 112, 1392-1397.	6.4	167
5	Mutation of KCNJ8 in a patient with Cantú syndrome with unique vascular abnormalities – Support for the role of K(ATP) channels in this condition. European Journal of Medical Genetics, 2013, 56, 678-682.	1.3	79
6	Genotype and phenotype in patients with Noonan syndrome and a RIT1 mutation. Genetics in Medicine, 2016, 18, 1226-1234.	2.4	77
7	Activating Mutations in PAK1, Encoding p21-Activated Kinase 1, Cause a Neurodevelopmental Disorder. American Journal of Human Genetics, 2018, 103, 579-591.	6.2	54
8	The homozygous variant c.797G>A/p.(Cys266Tyr) in <i>PISD</i> is associated with a Spondyloepimetaphyseal dysplasia with large epiphyses and disturbed mitochondrial function. Human Mutation, 2019, 40, 299-309.	2.5	54
9	Gain-of-Function Mutations in KCNN3 Encoding the Small-Conductance Ca2+-Activated K+ Channel SK3 Cause Zimmermann-Laband Syndrome. American Journal of Human Genetics, 2019, 104, 1139-1157.	6.2	45
10	Structure–function–behavior relationship in estrogen-induced synaptic plasticity. Hormones and Behavior, 2015, 74, 139-148.	2.1	39
11	The lysosomal storage disorders mucolipidosis type II, type III alpha/beta, and type III gamma: Update on <i>GNPTAB</i> and <i>GNPTG</i> mutations. Human Mutation, 2019, 40, 842-864.	2.5	36
12	OncogenicHRASmutations cause prolonged PI3K signaling in response to epidermal growth factor in fibroblasts of patients with Costello syndrome. Human Mutation, 2009, 30, 352-362.	2.5	29
13	RIT1 controls actin dynamics via complex formation with RAC1/CDC42 and PAK1. PLoS Genetics, 2018, 14, e1007370.	3. 5	25
14	Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain, 2020, 143, 2437-2453.	7.6	21
15	Syndromic disorders caused by gain-of-function variants in KCNH1, KCNK4, and KCNN3—a subgroup of K+ channelopathies. European Journal of Human Genetics, 2021, 29, 1384-1395.	2.8	21
16	Elsahy–Waters syndrome is caused by biallelic mutations in ⟨i⟩CDH11⟨/i⟩. American Journal of Medical Genetics, Part A, 2018, 176, 477-482.	1,2	18
17	A homozygous missense variant in CACNB4 encoding the auxiliary calcium channel beta4 subunit causes a severe neurodevelopmental disorder and impairs channel and non-channel functions. PLoS Genetics, 2020, 16, e1008625.	3. 5	18
18	The novel <i>RAF1</i> mutation p.(Gly361Ala) located outside the kinase domain of the CR3 region in two patients with Noonan syndrome, including one with a rare brain tumor. American Journal of Medical Genetics, Part A, 2018, 176, 470-476.	1.2	17

#	Article	IF	Citations
19	A novel multiple joint dislocation syndrome associated with a homozygous nonsense variant in the EXOC6B gene. European Journal of Human Genetics, 2016, 24, 1206-1210.	2.8	16
20	Autosomal dominant Robinow syndrome associated with a novel <i>DVL3</i> splice mutation. American Journal of Medical Genetics, Part A, 2018, 176, 992-996.	1.2	14
21	Biallelic variants in SMAD6 are associated with a complex cardiovascular phenotype. Human Genetics, 2019, 138, 625-634.	3.8	12
22	Bi-allelic Pathogenic Variants in HS2ST1 Cause a Syndrome Characterized by Developmental Delay and Corpus Callosum, Skeletal, and Renal Abnormalities. American Journal of Human Genetics, 2020, 107, 1044-1061.	6.2	11
23	Biallelic lossâ€ofâ€function variants in <i>TBC1D2B</i> cause a neurodevelopmental disorder with seizures and gingival overgrowth. Human Mutation, 2020, 41, 1645-1661.	2.5	10
24	Novel biallelic variants expand the SLC5A6-related phenotypic spectrum. European Journal of Human Genetics, 2022, 30, 439-449.	2.8	10
25	Biallelic <i>FRA10AC1</i> variants cause a neurodevelopmental disorder with growth retardation. Brain, 2022, 145, 1551-1563.	7.6	9
26	Genetic diagnostics of inherited aortic diseases. Herz, 2017, 42, 459-467.	1.1	7
27	Cant \tilde{A}^{o} syndrome versus Zimmermann-Laband syndrome: Report of nine individuals with ABCC9 variants. European Journal of Medical Genetics, 2020, 63, 103996.	1.3	7
28	Roberts syndrome in an Indian patient with humeroradial synostosis, congenital elbow contractures and a novel homozygous splice variant in ESCO2. American Journal of Medical Genetics, Part A, 2020, 182, 2793-2796.	1.2	4
29	A homozygous hypomorphic <i>BNIP1</i> variant causes an increase in autophagosomes and reduced autophagic flux and results in a spondyloâ€epiphyseal dysplasia. Human Mutation, 2022, 43, 625-642.	2.5	3
30	Cardiofacioneurodevelopmental syndrome: Report of a novel patient and expansion of the phenotype. American Journal of Medical Genetics, Part A, 2022, 188, 2448-2453.	1.2	3
31	Pathogenic variants in GNPTAB and GNPTG encoding distinct subunits of GlcNAc-1-phosphotransferase differentially impact bone resorption in patients with mucolipidosis type II and III. Genetics in Medicine, 2021, 23, 2369-2377.	2.4	2
32	Coinheritance of biallelic SLURP1 and SLC39A4 mutations cause a severe genodermatosis with skin peeling and hair loss all over the body. British Journal of Dermatology, 2018, 179, 1192-1194.	1.5	0
33	Genotype–Phenotype Correlations in Pediatric Patients with a Heterozygous Pathogenic FBN1 Variant. Thoracic and Cardiovascular Surgeon, 2022, 70, .	1.0	0
34	Thoracic Aortic Disease in Patients with Heterozygous Variants in FBN2. Thoracic and Cardiovascular Surgeon, 2022, 70, .	1.0	0
35	Title is missing!. , 2020, 16, e1008625.		0
36	Title is missing!. , 2020, 16, e1008625.		0

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 16, e1008625.		0
38	Title is missing!. , 2020, 16, e1008625.		0
39	Autosomal dominantly inherited myopathy likely caused by the <i>TNNT1</i> variant p.(Asp65Ala). Human Mutation, 2022, 43, 1224-1233.	2.5	0