
FabiÃ;n A PulgarÃ-n-Agudelo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1674540/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Germanium Content on the Properties of Cu 2 Zn(SnGe)Se 4 Thin Films Deposited by Sequential Thermal Evaporation Technique Studied by Photoacoustic Technique. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900260.	0.8	2
2	Cu ₂ ZnSn(S,Se) ₄ thin-films prepared from selenized nanocrystals ink. RSC Advances, 2019, 9, 18420-18428.	1.7	13
3	Optimization of CdxZn1-xS compound from CdS/ZnS bi-layers deposited by chemical bath deposition for thin film solar cells application. Thin Solid Films, 2019, 676, 100-107.	0.8	25
4	Study on the impact of stoichiometric and optimal compositional ratios on physical properties of Cu ₂ ZnSnS ₄ thin films deposited by spray pyrolysis. Materials Research Express, 2018, 5, 015513.	0.8	12
5	Influence of Ge content on Cu2Zn(SnGe)Se4 physical properties deposited by sequential thermal evaporation technique. Materials Science in Semiconductor Processing, 2018, 83, 96-101.	1.9	11
6	Cu content dependence of Cu2Zn(SnGe)Se4 solar cells prepared by using sequential thermal evaporation technique of Cu/Sn/Cu/Zn/Ge stacked layers. Journal of Materials Science: Materials in Electronics, 2018, 29, 15363-15368.	1.1	6
7	Preparation and characterization of Cu ₂ ZnSnSe ₄ and Cu ₂ ZnSn(S,Se) ₄ powders by ball milling process for solar cells application. Materials Research Express, 2017, 4, 125501.	0.8	11
8	Optimization of physical properties of spray-deposited Cu2ZnSnS4 thin films for solar cell applications. Materials and Design, 2017, 114, 515-520.	3.3	41
9	Suited growth parameters inducing type of conductivity conversions on chemical spray pyrolysis synthesized SnS thin films. Journal of Analytical and Applied Pyrolysis, 2016, 121, 347-359.	2.6	25
10	Ultra-thin CdS for highly performing chalcogenides thin film based solar cells. Solar Energy Materials and Solar Cells, 2016, 158, 138-146.	3.0	31
11	Optimization of CBD-CdS physical properties for solar cell applications considering a MIS structure. Materials and Design, 2016, 99, 254-261.	3.3	18
12	Open-circuit voltage enhancement in CdS/Cu2ZnSnSe4-based thin film solar cells: A metal–insulator–semiconductor (MIS) performance. Solar Energy Materials and Solar Cells, 2016, 149, 204-212.	3.0	45
13	Determination of minority carrier diffusion length of sprayed-Cu 2 ZnSnS 4 thin films. Solid-State Electronics, 2016, 118, 1-3.	0.8	26
14	Secondary phase formation in Znâ€rich Cu ₂ ZnSnSe ₄ â€based solar cells annealed in low pressure and temperature conditions. Progress in Photovoltaics: Research and Applications, 2014, 22, 479-487.	4.4	97
15	A thermal route to synthesize photovoltaic grade CuInSe2 films from printed CuO/In2O3 nanoparticle-based inks under Se atmosphere. Journal of Renewable and Sustainable Energy, 2013, 5, 053140.	0.8	4
16	Synthesis of CuInSe _{2 nanopowders by microwave assisted solvothermal method. International Journal of Nanotechnology, 2013, 10, 1029.}	0.1	1
17	Preparation of 4.8% efficiency Cu <inf>2</inf> ZnSnSe <inf>4</inf> based solar cell by a two step process. , 2012, , .		2
18	Development of a Selective Chemical Etch To Improve the Conversion Efficiency of Zn-Rich Cu ₂ ZnSnS ₄ Solar Cells. Journal of the American Chemical Society, 2012, 134, 8018-8021.	6.6	242

#	Article	IF	CITATIONS
19	Visible electroluminescence from silicon nanoclusters embedded in chlorinated silicon nitride thin films. Thin Solid Films, 2010, 518, 3891-3893.	0.8	13