List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1674482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synergistic effect of SBS copolymers and aromatic oil on the characteristics of asphalt binders and mixtures containing reclaimed asphalt pavement. Construction and Building Materials, 2022, 327, 127026.	7.2	23
2	Physical, thermal and micro-surface characteristics of PG76 binder incorporated with liquid chemical WMA additive. Construction and Building Materials, 2021, 272, 121626.	7.2	6
3	Mechanical performance and global warming potential of unaged warm cup lump modified asphalt. Journal of Cleaner Production, 2021, 297, 126653.	9.3	7
4	Characterisation of microstructural and sound absorption properties of porous asphalt subjected to progressive clogging. Construction and Building Materials, 2021, 283, 122654.	7.2	19
5	Palm oil fuel ash application in cold mix dense-graded bituminous mixture. Construction and Building Materials, 2021, 287, 123033.	7.2	20
6	A comparative assessment of the physical and microstructural properties of waste garnet generated from automated and manual blasting process. Case Studies in Construction Materials, 2021, 14, e00474.	1.7	8
7	Influence of diatomite filler on rheological properties of porous asphalt mastic. International Journal of Pavement Engineering, 2020, 21, 428-436.	4.4	17
8	Review on the potentials of natural rubber in bitumen modification. IOP Conference Series: Earth and Environmental Science, 2020, 476, 012067.	0.3	9
9	Physical and Rheological Characterization of Waste Engine Oil in Aged Asphalt Binder. Journal of Computational and Theoretical Nanoscience, 2020, 17, 1040-1043.	0.4	2
10	Properties of dense-graded asphalt mixture compacted at different temperatures. IOP Conference Series: Earth and Environmental Science, 2019, 220, 012010.	0.3	3
11	Physical and chemical properties of cement with nano black rice husk ash. AIP Conference Proceedings, 2019, , .	0.4	7
12	Effects of Nano-kaolin clay on the rutting resistance of asphalt binder. AIP Conference Proceedings, 2019, , .	0.4	2
13	Experimental investigation of flexural behaviour of U-shaped concrete subgrade panel. IOP Conference Series: Materials Science and Engineering, 2019, 620, 012061.	0.6	Ο
14	Physical properties of bitumen containing diatomite and waste engine oil. Malaysian Journal of Fundamental and Applied Sciences, 2019, 15, 528-531.	0.8	1
15	Assessment framework for pavement material and technology elements in green highway index. Journal of Cleaner Production, 2018, 174, 1240-1246.	9.3	18
16	Marshall stability properties of asphalt mixture incorporating black rice husk ash. Materials Today: Proceedings, 2018, 5, 22056-22062.	1.8	7
17	Creep stiffness and voids characteristic of asphalt mixture with waste cooking oil after aging. AIP Conference Proceedings, 2018, , .	0.4	1
18	Cup lump modified asphalt mixture along jalan Kuala Lumpur-Kuantan, daerah Temerloh, Pahang. MATEC Web of Conferences, 2018, 250, 02007.	0.2	13

#	Article	IF	CITATIONS
19	WORKABILITY AND RHEOLOGICAL PROPERTIES OF EVA-MODIFIED BITUMEN COMPARED WITH PG 76 BINDER. Jurnal Teknologi (Sciences and Engineering), 2018, 80, .	0.4	1
20	Effect of various filler types on the properties of porous asphalt mixture. IOP Conference Series: Materials Science and Engineering, 2018, 342, 012036.	0.6	13
21	Stabilizing Asphalt Concrete Using Kenaf Fibers. Advanced Science Letters, 2018, 24, 3963-3967.	0.2	5
22	Strength and Properties of Concrete Pavement Incorporating Multiple Blended Binders. Materials Science Forum, 2017, 889, 265-269.	0.3	10
23	Use of waste cooking oil, tire rubber powder and palm oil fuel ash in partial replacement of bitumen. Construction and Building Materials, 2017, 150, 95-104.	7.2	55
24	Effect of Nano Silica on the Physical Property of Porous Concrete Pavement. IOP Conference Series: Materials Science and Engineering, 2017, 226, 012043.	0.6	5
25	Microstructural investigation on air void properties of porous asphalt using virtual cut section. Construction and Building Materials, 2017, 155, 485-494.	7.2	38
26	Mechanical performance of asphaltic concrete incorporating untreated and treated waste cooking oil. Construction and Building Materials, 2017, 150, 653-663.	7.2	56
27	Effects of mixture design variables on rubber–bitumen interaction: properties of dry mixed rubberized asphalt mixture. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	36
28	Engineering properties of asphalt binders containing nanoclay and chemical warm-mix asphalt additives. Construction and Building Materials, 2016, 112, 232-240.	7.2	54
29	Evaluation of Performance Characteristics of Stone Mastic Asphalt Incorporating Industrial Waste. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	9
30	Density profile of hot mix asphalt layer during compaction with various types of rollers and lift thickness. Construction and Building Materials, 2016, 121, 265-277.	7.2	7
31	Chloride penetration of RHA concrete under marine environment. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2016, 169, 76-85.	0.2	4
32	Chemical modification of waste cooking oil to improve the physical and rheological properties of asphalt binder. Construction and Building Materials, 2016, 126, 218-226.	7.2	146
33	Laboratory evaluation on the characteristics and pollutant emissions of nanoclay and chemical warm mix asphalt modified binders. Construction and Building Materials, 2016, 113, 488-497.	7.2	27
34	High temperature characteristics of warm mix asphalt mixtures with nanoclay and chemical warm mix asphalt modified binders. Journal of Cleaner Production, 2016, 122, 326-334.	9.3	49
35	Comparative evaluation of dense-graded and gap-graded asphalt mix incorporating electric arc furnace steel slag and copper mine tailings. Journal of Cleaner Production, 2016, 122, 315-325.	9.3	49

Evaluation of Effects of Extended Short-Term Aging on the Rheological Properties of Asphalt Binders at Intermediate Temperatures Using Respond Surface Method. Jurnal Teknologi (Sciences and) Tj ETQq0 0 0 rgBT /@verlock 112Tf 50 57 36

#	Article	IF	CITATIONS
37	Steel Slag as A Road Construction Material. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	22
38	A Review on The Exploration of Nanomaterials Application in Pavement Engineering. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	18
39	An Overview of Moisture Damage in Asphalt Mixtures. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	17
40	EVALUATION ON THE PERFORMANCE OF AGED ASPHALT BINDER AND MIXTURE UNDER VARIOUS AGING METHODS. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	4
41	An Overall Review: Modified Asphalt Binder Containing Sasobit in Warm-Mix Asphalt Technology. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	4
42	LABORATORY EVALUATION ON THE EFFECT OF CLOGGING ON PERMEABILITY OF POROUS ASPHALT MIXTURES. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.4	3
43	Performance of Modified Asphalt Binder with Tire Rubber Powder. Jurnal Teknologi (Sciences and) Tj ETQq1 1 0.78	84314 rgB ⁻ 0.4	T 10verlock
44	Microstructural characterisation of dry mixed rubberised asphalt mixtures. Construction and Building Materials, 2015, 82, 173-183.	7.2	32
45	Curing of Asphalt Emulsified Tack Coat Subjected to Malaysian Weather Conditions. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	8
46	An overview on alternative binders for flexible pavement. Construction and Building Materials, 2015, 84, 315-319.	7.2	108
47	Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction. Transportation Geotechnics, 2015, 2, 47-55.	4.5	108
48	Effect of Aging on the Resilient Modulus of Stone Mastic Asphalt Incorporating Electric Arc Furnace Steel Slag and Copper Mine Tailings. , 2015, , 1199-1208.		5
49	Warm Mix Asphalt Technology: A Review. Jurnal Teknologi (Sciences and Engineering), 2014, 71, .	0.4	16
50	Evaluation of Pavement Mixture Incorporating Waste Oil. Jurnal Teknologi (Sciences and Engineering), 2014, 71, .	0.4	3
51	Performance of RHA Blended Cement Concrete under Sodium Chloride via Wetting and Drying. Applied Mechanics and Materials, 2014, 554, 106-110.	0.2	3
52	Effect of Rice Husk Ash Fineness on the Properties of Concrete. Applied Mechanics and Materials, 2014, 554, 203-207.	0.2	5
53	Investigation into hot-mix asphalt moisture-induced damage under tropical climatic conditions. Construction and Building Materials, 2014, 50, 567-576.	7.2	47
54	Characterisation of micro-structural damage in asphalt mixtures using image analysis. Construction and Building Materials, 2014, 54, 27-38.	7.2	73

#	Article	IF	CITATIONS
55	Strength and microstructure analysis of concrete containing rice husk ash under seawater attack by wetting and drying cycles. Advances in Cement Research, 2014, 26, 145-154.	1.6	34
56	The effect of lift thickness on permeability and the time available for compaction of hot mix asphalt pavement under tropical climate condition. Construction and Building Materials, 2013, 48, 315-324.	7.2	27
57	Modelling the rheological properties of bituminous binders using the 2S2P1D Model. Construction and Building Materials, 2013, 38, 395-406.	7.2	110
58	Modelling the rheological properties of bituminous binders using mathematical equations. Construction and Building Materials, 2013, 40, 174-188.	7.2	113
59	Fundamental and rheological properties of oil palm fruit ash modified bitumen. Construction and Building Materials, 2013, 49, 702-711.	7.2	48
60	The Effect of Groove–Underside Shaped Concrete Block on Pavement Permanent Deformation. Jurnal Teknologi (Sciences and Engineering), 2013, 61, .	0.4	5
61	Comparative evaluation of hot-mix asphalt design methods. International Journal of Pavement Engineering, 2012, 13, 89-97.	4.4	11
62	Steel Slag as an Aggregate Replacement in Malaysian Hot Mix Asphalt. ISRN Civil Engineering, 2012, 2012, 1-5.	0.4	41
63	A Comparative Study of Phase Angle Predictive Equations Using Bituminous Binder Data. Arabian Journal for Science and Engineering, 2012, 37, 1571-1583.	1.1	7
64	Properties of Crumb Rubber Concrete Paving Blocks with SBR Latex. Road Materials and Pavement Design, 2009, 10, 213-222.	4.0	42
65	Laboratory performance of crumb rubber concrete block pavement. International Journal of Pavement Engineering, 2009, 10, 361-374.	4.4	43
66	Properties of Crumb Rubber Concrete Paving Blocks with SBR Latex. Road Materials and Pavement Design, 2009, 10, 213-222.	4.0	3
67	Rutting Evaluation of Aged Binder Containing Waste Engine Oil. Advanced Materials Research, 0, 911, 405-409.	0.3	20
68	Investigations of Rubber Dipping by-Product on Bitumen Properties. Advanced Materials Research, 0, 911, 449-453.	0.3	10
69	Effect of Antioxidant Characteristic from Waste Cooking Oil in Modified Asphalt Binder. Key Engineering Materials, 0, 700, 197-206.	0.4	5
70	Chemical Identification of Waste Cooking Oil as Additive in Bitumen. Key Engineering Materials, 0, 700, 207-215.	0.4	15
71	Performance of Waste Cooking Oil in Asphalt Binder Modification. Key Engineering Materials, 0, 700, 216-226.	0.4	20
72	Effect of Temperature on Phase Angle and Dynamic Modulus of Asphalt Mixtures Using SPT. Materials Science Forum, 0, 1007, 99-104.	0.3	4