Mohd Rosli Hainin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1674482/publications.pdf

Version: 2024-02-01

72 papers 1,783 citations

304743 22 h-index 302126 39 g-index

72 all docs 72 docs citations

times ranked

72

1132 citing authors

#	Article	IF	CITATIONS
1	Chemical modification of waste cooking oil to improve the physical and rheological properties of asphalt binder. Construction and Building Materials, 2016, 126, 218-226.	7.2	146
2	Modelling the rheological properties of bituminous binders using mathematical equations. Construction and Building Materials, 2013, 40, 174-188.	7.2	113
3	Modelling the rheological properties of bituminous binders using the 2S2P1D Model. Construction and Building Materials, 2013, 38, 395-406.	7.2	110
4	An overview on alternative binders for flexible pavement. Construction and Building Materials, 2015, 84, 315-319.	7.2	108
5	Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction. Transportation Geotechnics, 2015, 2, 47-55.	4.5	108
6	Characterisation of micro-structural damage in asphalt mixtures using image analysis. Construction and Building Materials, 2014, 54, 27-38.	7.2	73
7	Mechanical performance of asphaltic concrete incorporating untreated and treated waste cooking oil. Construction and Building Materials, 2017, 150, 653-663.	7.2	56
8	Use of waste cooking oil, tire rubber powder and palm oil fuel ash in partial replacement of bitumen. Construction and Building Materials, 2017, 150, 95-104.	7.2	55
9	Engineering properties of asphalt binders containing nanoclay and chemical warm-mix asphalt additives. Construction and Building Materials, 2016, 112, 232-240.	7.2	54
10	High temperature characteristics of warm mix asphalt mixtures with nanoclay and chemical warm mix asphalt modified binders. Journal of Cleaner Production, 2016, 122, 326-334.	9.3	49
11	Comparative evaluation of dense-graded and gap-graded asphalt mix incorporating electric arc furnace steel slag and copper mine tailings. Journal of Cleaner Production, 2016, 122, 315-325.	9.3	49
12	Fundamental and rheological properties of oil palm fruit ash modified bitumen. Construction and Building Materials, 2013, 49, 702-711.	7.2	48
13	Investigation into hot-mix asphalt moisture-induced damage under tropical climatic conditions. Construction and Building Materials, 2014, 50, 567-576.	7.2	47
14	Laboratory performance of crumb rubber concrete block pavement. International Journal of Pavement Engineering, 2009, 10, 361-374.	4.4	43
15	Properties of Crumb Rubber Concrete Paving Blocks with SBR Latex. Road Materials and Pavement Design, 2009, 10, 213-222.	4.0	42
16	Steel Slag as an Aggregate Replacement in Malaysian Hot Mix Asphalt. ISRN Civil Engineering, 2012, 2012, 1-5.	0.4	41
17	Microstructural investigation on air void properties of porous asphalt using virtual cut section. Construction and Building Materials, 2017, 155, 485-494.	7.2	38
18	Effects of mixture design variables on rubber–bitumen interaction: properties of dry mixed rubberized asphalt mixture. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	36

#	Article	IF	CITATIONS
19	Strength and microstructure analysis of concrete containing rice husk ash under seawater attack by wetting and drying cycles. Advances in Cement Research, 2014, 26, 145-154.	1.6	34
20	Microstructural characterisation of dry mixed rubberised asphalt mixtures. Construction and Building Materials, 2015, 82, 173-183.	7.2	32
21	The effect of lift thickness on permeability and the time available for compaction of hot mix asphalt pavement under tropical climate condition. Construction and Building Materials, 2013, 48, 315-324.	7.2	27
22	Laboratory evaluation on the characteristics and pollutant emissions of nanoclay and chemical warm mix asphalt modified binders. Construction and Building Materials, 2016, 113, 488-497.	7.2	27
23	Synergistic effect of SBS copolymers and aromatic oil on the characteristics of asphalt binders and mixtures containing reclaimed asphalt pavement. Construction and Building Materials, 2022, 327, 127026.	7.2	23
24	Steel Slag as A Road Construction Material. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	22
25	Rutting Evaluation of Aged Binder Containing Waste Engine Oil. Advanced Materials Research, 0, 911, 405-409.	0.3	20
26	Performance of Waste Cooking Oil in Asphalt Binder Modification. Key Engineering Materials, 0, 700, 216-226.	0.4	20
27	Palm oil fuel ash application in cold mix dense-graded bituminous mixture. Construction and Building Materials, 2021, 287, 123033.	7.2	20
28	Characterisation of microstructural and sound absorption properties of porous asphalt subjected to progressive clogging. Construction and Building Materials, 2021, 283, 122654.	7.2	19
29	A Review on The Exploration of Nanomaterials Application in Pavement Engineering. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	18
30	Assessment framework for pavement material and technology elements in green highway index. Journal of Cleaner Production, 2018, 174, 1240-1246.	9.3	18
31	An Overview of Moisture Damage in Asphalt Mixtures. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	17
32	Influence of diatomite filler on rheological properties of porous asphalt mastic. International Journal of Pavement Engineering, 2020, 21, 428-436.	4.4	17
33	Warm Mix Asphalt Technology: A Review. Jurnal Teknologi (Sciences and Engineering), 2014, 71, .	0.4	16
34	Chemical Identification of Waste Cooking Oil as Additive in Bitumen. Key Engineering Materials, 0, 700, 207-215.	0.4	15
35	Cup lump modified asphalt mixture along jalan Kuala Lumpur-Kuantan, daerah Temerloh, Pahang. MATEC Web of Conferences, 2018, 250, 02007.	0.2	13
36	Effect of various filler types on the properties of porous asphalt mixture. IOP Conference Series: Materials Science and Engineering, 2018, 342, 012036.	0.6	13

3

#	Article	IF	CITATIONS
37	Evaluation of Effects of Extended Short-Term Aging on the Rheological Properties of Asphalt Binders at Intermediate Temperatures Using Respond Surface Method. Jurnal Teknologi (Sciences and) Tj ETQq1 1 0.7843	31 4.4 gBT /	'O ve rlock 10'
38	Comparative evaluation of hot-mix asphalt design methods. International Journal of Pavement Engineering, 2012, 13, 89-97.	4.4	11
39	Investigations of Rubber Dipping by-Product on Bitumen Properties. Advanced Materials Research, 0, 911, 449-453.	0.3	10
40	Performance of Modified Asphalt Binder with Tire Rubber Powder. Jurnal Teknologi (Sciences and) Tj ETQq0 0 0 rg	BT Overl	ock 10 Tf 50
41	Strength and Properties of Concrete Pavement Incorporating Multiple Blended Binders. Materials Science Forum, 2017, 889, 265-269.	0.3	10
42	Evaluation of Performance Characteristics of Stone Mastic Asphalt Incorporating Industrial Waste. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	9
43	Review on the potentials of natural rubber in bitumen modification. IOP Conference Series: Earth and Environmental Science, 2020, 476, 012067.	0.3	9
44	Curing of Asphalt Emulsified Tack Coat Subjected to Malaysian Weather Conditions. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	8
45	A comparative assessment of the physical and microstructural properties of waste garnet generated from automated and manual blasting process. Case Studies in Construction Materials, 2021, 14, e00474.	1.7	8
46	A Comparative Study of Phase Angle Predictive Equations Using Bituminous Binder Data. Arabian Journal for Science and Engineering, 2012, 37, 1571-1583.	1.1	7
47	Density profile of hot mix asphalt layer during compaction with various types of rollers and lift thickness. Construction and Building Materials, 2016, 121, 265-277.	7.2	7
48	Marshall stability properties of asphalt mixture incorporating black rice husk ash. Materials Today: Proceedings, 2018, 5, 22056-22062.	1.8	7
49	Physical and chemical properties of cement with nano black rice husk ash. AIP Conference Proceedings, 2019, , .	0.4	7
50	Mechanical performance and global warming potential of unaged warm cup lump modified asphalt. Journal of Cleaner Production, 2021, 297, 126653.	9.3	7
51	Physical, thermal and micro-surface characteristics of PG76 binder incorporated with liquid chemical WMA additive. Construction and Building Materials, 2021, 272, 121626.	7.2	6
52	The Effect of Groove–Underside Shaped Concrete Block on Pavement Permanent Deformation. Jurnal Teknologi (Sciences and Engineering), 2013, 61, .	0.4	5
53	Effect of Rice Husk Ash Fineness on the Properties of Concrete. Applied Mechanics and Materials, 2014, 554, 203-207.	0.2	5
54	Effect of Antioxidant Characteristic from Waste Cooking Oil in Modified Asphalt Binder. Key Engineering Materials, 0, 700, 197-206.	0.4	5

#	Article	IF	CITATIONS
55	Effect of Nano Silica on the Physical Property of Porous Concrete Pavement. IOP Conference Series: Materials Science and Engineering, 2017, 226, 012043.	0.6	5
56	Stabilizing Asphalt Concrete Using Kenaf Fibers. Advanced Science Letters, 2018, 24, 3963-3967.	0.2	5
57	Effect of Aging on the Resilient Modulus of Stone Mastic Asphalt Incorporating Electric Arc Furnace Steel Slag and Copper Mine Tailings. , 2015, , 1199-1208.		5
58	EVALUATION ON THE PERFORMANCE OF AGED ASPHALT BINDER AND MIXTURE UNDER VARIOUS AGING METHODS. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	4
59	An Overall Review: Modified Asphalt Binder Containing Sasobit in Warm-Mix Asphalt Technology. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.4	4
60	Chloride penetration of RHA concrete under marine environment. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2016, 169, 76-85.	0.2	4
61	Effect of Temperature on Phase Angle and Dynamic Modulus of Asphalt Mixtures Using SPT. Materials Science Forum, 0, 1007, 99-104.	0.3	4
62	Evaluation of Pavement Mixture Incorporating Waste Oil. Jurnal Teknologi (Sciences and Engineering), 2014, 71, .	0.4	3
63	Performance of RHA Blended Cement Concrete under Sodium Chloride via Wetting and Drying. Applied Mechanics and Materials, 2014, 554, 106-110.	0.2	3
64	LABORATORY EVALUATION ON THE EFFECT OF CLOGGING ON PERMEABILITY OF POROUS ASPHALT MIXTURES. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.4	3
65	Properties of dense-graded asphalt mixture compacted at different temperatures. IOP Conference Series: Earth and Environmental Science, 2019, 220, 012010.	0.3	3
66	Properties of Crumb Rubber Concrete Paving Blocks with SBR Latex. Road Materials and Pavement Design, 2009, 10, 213-222.	4.0	3
67	Effects of Nano-kaolin clay on the rutting resistance of asphalt binder. AIP Conference Proceedings, 2019, , .	0.4	2
68	Physical and Rheological Characterization of Waste Engine Oil in Aged Asphalt Binder. Journal of Computational and Theoretical Nanoscience, 2020, 17, 1040-1043.	0.4	2
69	Creep stiffness and voids characteristic of asphalt mixture with waste cooking oil after aging. AIP Conference Proceedings, 2018, , .	0.4	1
70	WORKABILITY AND RHEOLOGICAL PROPERTIES OF EVA-MODIFIED BITUMEN COMPARED WITH PG 76 BINDER. Jurnal Teknologi (Sciences and Engineering), 2018, 80, .	0.4	1
71	Physical properties of bitumen containing diatomite and waste engine oil. Malaysian Journal of Fundamental and Applied Sciences, 2019, 15, 528-531.	0.8	1
72	Experimental investigation of flexural behaviour of U-shaped concrete subgrade panel. IOP Conference Series: Materials Science and Engineering, 2019, 620, 012061.	0.6	0