Youneng Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1674269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of medium molecular weight organics on reducing disinfection by-products and fouling prevention in nanofiltration. Water Research, 2022, 215, 118263.	11.3	14
2	Determination of growth kinetics of microorganisms linked with 1,4-dioxane degradation in a consortium based on two improved methods. Frontiers of Environmental Science and Engineering, 2022, 16, .	6.0	5
3	Long-Term Continuous Co-reduction of 1,1,1-Trichloroethane and Trichloroethene over Palladium Nanoparticles Spontaneously Deposited on H ₂ -Transfer Membranes. Environmental Science & Technology, 2021, 55, 2057-2066.	10.0	34
4	A Synergistic Platform for Continuous Co-removal of 1,1,1-Trichloroethane, Trichloroethene, and 1,4-Dioxane via Catalytic Dechlorination Followed by Biodegradation. Environmental Science & Technology, 2021, 55, 6363-6372.	10.0	23
5	Limiting factors of heavy metals removal during anaerobic biological pretreatment of municipal solid waste landfill leachate. Journal of Hazardous Materials, 2021, 416, 126081.	12.4	10
6	Biofouling by ultra-low pressure filtration of surface water: The paramount role of initial available biopolymers. Journal of Membrane Science, 2021, 640, 119740.	8.2	11
7	Defluorination Mechanism of Perfluorooctanoic Acid (PFOA) with a Nanosecond Pulsed Plasma Gas-Liquid Flowing Film Reactor. , 2021, , .		0
8	Understanding the composition and spatial distribution of biological selenate reduction products for potential selenium recovery. Environmental Science: Water Research and Technology, 2020, 6, 2153-2163.	2.4	8
9	<i>Escherichia coli</i> survival in plasmaâ€treated water and in a gas–liquid plasma reactor. Plasma Processes and Polymers, 2020, 17, 2000099.	3.0	6
10	Investigating promising substrates for promoting 1,4-dioxane biodegradation: effects of ethane and tetrahydrofuran on microbial consortia. Biodegradation, 2020, 31, 171-182.	3.0	14
11	Degradation of PFOA with a nanosecondâ€pulsed plasma gas–liquid flowing film reactor. Plasma Processes and Polymers, 2020, 17, 2000074.	3.0	19
12	Speciation and conversion of carbon and nitrogen in young landfill leachate during anaerobic biological pretreatment. Waste Management, 2020, 106, 88-98.	7.4	15
13	Comparing Methods for Measuring Dissolved and Particulate Selenium in Water. Journal of Water and Environment Technology, 2020, 18, 264-274.	0.7	2
14	Degradation of Perfluorooctanoic Acid (PFOA) in a Nanosecond Pulse Plasma Discharge Gas-Liquid Reactor. , 2020, , .		0
15	Microwave-induced heavy metal removal from dewatered biosolids for cost-effective composting. Journal of Cleaner Production, 2019, 241, 118342.	9.3	20
16	Cadmium–Bacteria Complexation and Subsequent Bacteriaâ€Facilitated Cadmium Transport in Saturated Porous Media. Journal of Environmental Quality, 2019, 48, 1524-1533.	2.0	5
17	Kinetics of anaerobic methane oxidation coupled to denitrification in the membrane biofilm reactor. Biotechnology and Bioengineering, 2019, 116, 2550-2560.	3.3	6
18	Microbial Community Analysis Provides Insights into the Effects of Tetrahydrofuran on 1,4-Dioxane Biodegradation. Applied and Environmental Microbiology, 2019, 85, .	3.1	20

YOUNENG TANG

#	Article	IF	CITATIONS
19	Direct solidâ€state evidence of H ₂ â€induced partial U(VI) reduction concomitant with adsorption by extracellular polymeric substances (EPS). Biotechnology and Bioengineering, 2018, 115, 1685-1693.	3.3	31
20	The effect of electron competition on chromate reduction using methane as electron donor. Environmental Science and Pollution Research, 2018, 25, 6609-6618.	5.3	20
21	Anaerobic oxidation of methane coupled to denitrification: fundamentals, challenges, and potential. Critical Reviews in Environmental Science and Technology, 2018, 48, 1067-1093.	12.8	35
22	Chemical-Free Recovery of Elemental Selenium from Selenate-Contaminated Water by a System Combining a Biological Reactor, a Bacterium–Nanoparticle Separator, and a Tangential Flow Filter. Environmental Science & Technology, 2018, 52, 13231-13238.	10.0	12
23	Towards selenium recovery: Biocathode induced selenate reduction to extracellular elemental selenium nanoparticles. Chemical Engineering Journal, 2018, 351, 1095-1103.	12.7	28
24	Hydrogenotrophic Microbial Reduction of Oxyanions With the Membrane Biofilm Reactor. Frontiers in Microbiology, 2018, 9, 3268.	3.5	49
25	Modeling multidimensional and multispecies biofilms in porous media. Biotechnology and Bioengineering, 2017, 114, 1679-1687.	3.3	19
26	Bioreduction of Chromate in a Methane-Based Membrane Biofilm Reactor. Environmental Science & Technology, 2016, 50, 5832-5839.	10.0	120
27	Selenate and Nitrate Bioreductions Using Methane as the Electron Donor in a Membrane Biofilm Reactor. Environmental Science & Technology, 2016, 50, 10179-10186.	10.0	119
28	Effects of salinity on simultaneous reduction of perchlorate and nitrate in a methane-based membrane biofilm reactor. Environmental Science and Pollution Research, 2016, 23, 24248-24255.	5.3	23
29	Interaction of perchlorate and trichloroethene bioreductions in mixed anaerobic culture. Science of the Total Environment, 2016, 571, 11-17.	8.0	16
30	Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors. Environmental Science and Pollution Research, 2016, 23, 9540-9548.	5.3	38
31	A hybrid poreâ€scale and continuumâ€scale model for solute diffusion, reaction, and biofilm development in porous media. Water Resources Research, 2015, 51, 1846-1859.	4.2	33
32	The roles of methanogens and acetogens in dechlorination of trichloroethene using different electron donors. Environmental Science and Pollution Research, 2015, 22, 19039-19047.	5.3	49
33	Immobilization of Selenite via Two Parallel Pathways during In Situ Bioremediation. Environmental Science & Technology, 2015, 49, 4543-4550.	10.0	19
34	Nitrate Shaped the Selenate-Reducing Microbial Community in a Hydrogen-Based Biofilm Reactor. Environmental Science & Technology, 2014, 48, 3395-3402.	10.0	106
35	Pyrosequencing Analysis Yields Comprehensive Assessment of Microbial Communities in Pilot-Scale Two-Stage Membrane Biofilm Reactors. Environmental Science & Technology, 2014, 48, 7511-7518.	10.0	37
36	Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors. Water Research, 2014, 54, 115-122.	11.3	45

YOUNENG TANG

#	Article	IF	CITATIONS
37	Managing the interactions between sulfate- and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration. Water Research, 2014, 55, 215-224.	11.3	57
38	Perchlorate reduction from a highly contaminated groundwater in the presence of sulfateâ€reducing bacteria in a hydrogenâ€fed biofilm. Biotechnology and Bioengineering, 2013, 110, 3139-3147.	3.3	17
39	A biofilm model to understand the onset of sulfate reduction in denitrifying membrane biofilm reactors. Biotechnology and Bioengineering, 2013, 110, 763-772.	3.3	43
40	An improved pore-scale biofilm model and comparison with a microfluidic flow cell experiment. Water Resources Research, 2013, 49, 8370-8382.	4.2	57
41	Effects of Multiple Electron Acceptors on Microbial Interactions in a Hydrogen-Based Biofilm. Environmental Science & Technology, 2013, 47, 7396-7403.	10.0	48
42	An improved cellular automaton method to model multispecies biofilms. Water Research, 2013, 47, 5729-5742.	11.3	42
43	Using a Two-Stage Hydrogen-Based Membrane Biofilm Reactor (MBfR) to Achieve Complete Perchlorate Reduction in the Presence of Nitrate and Sulfate. Environmental Science & Technology, 2013, 47, 1565-1572.	10.0	78
44	Modeling trichloroethene reduction in a hydrogen-based biofilm. Water Science and Technology, 2013, 68, 1158-1163.	2.5	3
45	Comparing heterotrophic and hydrogen-based autotrophic denitrification reactors for effluent water quality and post-treatment. Water Science and Technology: Water Supply, 2012, 12, 227-233.	2.1	18
46	A Steady-State Biofilm Model for Simultaneous Reduction of Nitrate and Perchlorate, Part 1: Model Development and Numerical Solution. Environmental Science & Technology, 2012, 46, 1598-1607.	10.0	45
47	A Steady-State Biofilm Model for Simultaneous Reduction of Nitrate and Perchlorate, Part 2: Parameter Optimization and Results and Discussion. Environmental Science & Technology, 2012, 46, 1608-1615.	10.0	45
48	Interactions between Perchlorate and Nitrate Reductions in the Biofilm of a Hydrogen-Based Membrane Biofilm Reactor. Environmental Science & Technology, 2011, 45, 10155-10162.	10.0	136
49	A pH-control model for heterotrophic and hydrogen-based autotrophic denitrification. Water Research, 2011, 45, 232-240.	11.3	73
50	Impact of precipitation on the treatment of real ion-exchange brine using the H2-based membrane biofilm reactor. Water Science and Technology, 2011, 63, 1453-1458.	2.5	24
51	Bioreduction of nitrate in groundwater using a pilot-scale hydrogen-based membrane biofilm reactor. Frontiers of Environmental Science and Engineering in China, 2010, 4, 280-285.	0.8	37