Seth N Lyman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1674109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of Membranes and Detailed HYSPLIT Analyses to Understand Atmospheric Particulate, Gaseous Oxidized, and Reactive Mercury Chemistry. Environmental Science & Technology, 2021, 55, 893-901.	4.6	15
2	Development of an Understanding of Reactive Mercury in Ambient Air: A Review. Atmosphere, 2021, 12, 73.	1.0	21
3	Winter Ozone Pollution in Utah's Uinta Basin is Attenuating. Atmosphere, 2021, 12, 4.	1.0	4
4	High Ethylene and Propylene in an Area Dominated by Oil Production. Atmosphere, 2021, 12, 1.	1.0	20
5	Declining methane emissions and steady, high leakage rates observed over multiple years in a western US oil/gas production basin. Scientific Reports, 2021, 11, 22291.	1.6	13
6	An updated review of atmospheric mercury. Science of the Total Environment, 2020, 707, 135575.	3.9	111
7	Strong temporal variability in methane fluxes from natural gas well pad soils. Atmospheric Pollution Research, 2020, 11, 1386-1395.	1.8	13
8	Evaluation of sorption surface materials for reactive mercury compounds. Atmospheric Environment, 2020, 242, 117836.	1.9	11
9	Improvements to the Accuracy of Atmospheric Oxidized Mercury Measurements. Environmental Science & Technology, 2020, 54, 13379-13388.	4.6	19
10	Use of Multiple Lines of Evidence to Understand Reactive Mercury Concentrations and Chemistry in Hawai'i, Nevada, Maryland, and Utah, USA. Environmental Science & Technology, 2020, 54, 7922-7931.	4.6	14
11	Mercury biogeochemical cycling: A synthesis of recent scientific advances. Science of the Total Environment, 2020, 737, 139619.	3.9	48
12	Aerial and ground-based optical gas imaging survey of Uinta Basin oil and gas wells. Elementa, 2019, 7, .	1.1	17
13	Emissions of organic compounds from produced water ponds III: Mass-transfer coefficients, composition-emission correlations, and contributions to regional emissions. Science of the Total Environment, 2018, 627, 860-868.	3.9	13
14	Emissions of organic compounds from produced water ponds II: Evaluation of flux chamber measurements with inverse-modeling techniques. Journal of the Air and Waste Management Association, 2018, 68, 713-724.	0.9	10
15	Four dimensional data assimilation (FDDA) impacts on WRF performance in simulating inversion layer structure and distributions of CMAQ-simulated winter ozone concentrations in Uintah Basin. Atmospheric Environment, 2018, 177, 75-92.	1.9	15
16	Emissions of organic compounds from produced water ponds I: Characteristics and speciation. Science of the Total Environment, 2018, 619-620, 896-905.	3.9	21
17	Organic compound emissions from a landfarm used for oil and gas solid waste disposal. Journal of the Air and Waste Management Association, 2018, 68, 637-642.	0.9	4
18	Hydrocarbon and Carbon Dioxide Fluxes from Natural Gas Well Pad Soils and Surrounding Soils in Eastern Utah. Environmental Science & Samp; Technology, 2017, 51, 11625-11633.	4.6	32

Seth N Lyman

#	Article	IF	CITATIONS
19	A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmospheric Chemistry and Physics, 2017, 17, 9133-9144.	1.9	33
20	Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13545-13572.	1.2	20
21	Detection and quantification of gas-phase oxidized mercury compounds by GC/MS. Atmospheric Measurement Techniques, 2016, 9, 2195-2205.	1.2	36
22	Automated Calibration of Atmospheric Oxidized Mercury Measurements. Environmental Science & Technology, 2016, 50, 12921-12927.	4.6	28
23	The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA. Atmospheric Chemistry and Physics, 2016, 16, 13837-13851.	1.9	7
24	Inversion structure and winter ozone distribution in the Uintah Basin, Utah, U.S.A Atmospheric Environment, 2015, 123, 156-165.	1.9	30
25	A review of passive sampling systems for ambient air mercury measurements. Environmental Sciences: Processes and Impacts, 2014, 16, 374-392.	1.7	45
26	Progress on Understanding Atmospheric Mercury Hampered by Uncertain Measurements. Environmental Science & Technology, 2014, 48, 7204-7206.	4.6	90
27	Do We Understand What the Mercury Speciation Instruments Are Actually Measuring? Results of RAMIX. Environmental Science & Technology, 2013, 47, 7295-7306.	4.6	179
28	Fast Time Resolution Oxidized Mercury Measurements during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX). Environmental Science & Technology, 2013, 47, 7285-7294.	4.6	66
29	Formation and fate of oxidized mercury in the upper troposphere and lower stratosphere. Nature Geoscience, 2012, 5, 114-117.	5.4	132
30	Sources of gaseous oxidized mercury and mercury dry deposition at two southeastern U.S. sites. Atmospheric Environment, 2011, 45, 4569-4579.	1.9	50
31	A passive sampler for ambient gaseous oxidized mercury concentrations. Atmospheric Environment, 2010, 44, 246-252.	1.9	57
32	Determinants of atmospheric mercury concentrations in Reno, Nevada, U.S.A Science of the Total Environment, 2009, 408, 431-438.	3.9	59
33	Atmospheric mercury concentrations and speciation measured from 2004 to 2007 in Reno, Nevada, USA. Atmospheric Environment, 2009, 43, 4646-4654.	1.9	63
34	Testing and Application of Surrogate Surfaces for Understanding Potential Gaseous Oxidized Mercury Dry Deposition. Environmental Science & Technology, 2009, 43, 6235-6241.	4.6	60
35	Observations of speciated atmospheric mercury at three sites in Nevada: Evidence for a free tropospheric source of reactive gaseous mercury. Journal of Geophysical Research, 2009, 114, .	3.3	78
36	Speciation of atmospheric mercury at two sites in northern Nevada, USA. Atmospheric Environment, 2008, 42, 927-939.	1.9	49

#	Article	IF	CITATIONS
37	Estimation of Dry Deposition of Atmospheric Mercury in Nevada by Direct and Indirect Methods. Environmental Science & Technology, 2007, 41, 1970-1976.	4.6	119
38	Mercury exchange between the atmosphere and low mercury containing substrates. Applied Geochemistry, 2006, 21, 1913-1923.	1.4	84