Thomas P White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1674104/publications.pdf

Version: 2024-02-01

173 papers 10,846 citations

28274 55 h-index 30922 102 g-index

174 all docs

174 docs citations

174 times ranked

9418 citing authors

#	Article	IF	Citations
1	Origin of Efficiency and Stability Enhancement in Highâ€Performing Mixed Dimensional 2Dâ€3D Perovskite Solar Cells: A Review. Advanced Functional Materials, 2022, 32, 2009164.	14.9	96
2	Electrical properties of perovskite solar cells by illumination intensity and temperatureâ€dependent photoluminescence imaging. Progress in Photovoltaics: Research and Applications, 2022, 30, 1038-1044.	8.1	7
3	Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature, 2022, 601, 573-578.	27.8	137
4	Unraveling the Role of Energy Band Alignment and Mobile Ions on Interfacial Recombination in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	8
5	Above 23% Efficiency by Binary Surface Passivation of Perovskite Solar Cells Using Guanidinium and Octylammonium Spacer Cations. Solar Rrl, 2022, 6, .	5. 8	22
6	27.6% Perovskite/c‧i Tandem Solar Cells Using Industrial Fabricated TOPCon Device. Advanced Energy Materials, 2022, 12, .	19.5	22
7	Anion Exchangeâ€Induced Crystal Engineering via Hotâ€Pressing Sublimation Affording Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000729.	5 . 8	6
8	Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science, 2021, 371, 390-395.	12.6	270
9	Efficient and stable wide bandgap perovskite solar cells through surface passivation with long alkyl chain organic cations. Journal of Materials Chemistry A, 2021, 9, 18454-18465.	10.3	32
10	Contactless and Spatially Resolved Determination of Currentâ [^] Voltage Curves in Perovskite Solar Cells via Photoluminescence. Solar Rrl, 2021, 5, 2100348.	5. 8	7
11	Contactless and Spatially Resolved Determination of Currentâ°'Voltage Curves in Perovskite Solar Cells via Photoluminescence. Solar Rrl, 2021, 5, 2170083.	5 . 8	1
12	Combined Bulk and Surface Passivation in Dimensionally Engineered 2Dâ€3D Perovskite Films via Chlorine Diffusion. Advanced Functional Materials, 2021, 31, 2104251.	14.9	37
13	Doubleâ€Sided Surface Passivation of 3D Perovskite Film for Highâ€Efficiency Mixedâ€Dimensional Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1907962.	14.9	130
14	Monolithic Perovskite/Si Tandem Solar Cells: Pathways to Over 30% Efficiency. Advanced Energy Materials, 2020, 10, 1902840.	19.5	87
15	Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1902901.	19.5	9
16	In Situ Formation of Mixedâ€Dimensional Surface Passivation Layers in Perovskite Solar Cells with Dualâ€Isomer Alkylammonium Cations. Small, 2020, 16, e2005022.	10.0	34
17	Efficient Passivation and Low Resistivity for p ⁺ -Si/TiO ₂ Contact by Atomic Layer Deposition. ACS Applied Energy Materials, 2020, 3, 6291-6301.	5.1	5
18	Tandem Solar Cells: Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells (Adv. Energy Mater. 4/2020). Advanced Energy Materials, 2020, 10, 2070016.	19.5	0

#	Article	IF	CITATIONS
19	Non-Periodic Epsilon-Near-Zero Metamaterials at Visible Wavelengths for Efficient Non-Resonant Optical Sensing. Nano Letters, 2020, 20, 3970-3977.	9.1	30
20	High Efficiency Perovskiteâ€Silicon Tandem Solar Cells: Effect of Surface Coating versus Bulk Incorporation of 2D Perovskite. Advanced Energy Materials, 2020, 10, 1903553.	19.5	110
21	Light Management: A Key Concept in High-Efficiency Perovskite/Silicon Tandem Photovoltaics. Journal of Physical Chemistry Letters, 2019, 10, 3159-3170.	4.6	81
22	Perovskite Solar Cells: Imaging Spatial Variations of Optical Bandgaps in Perovskite Solar Cells (Adv.) Tj ETQq0 (0 0 rgBT /O	verlock 10 Tf
23	Ultrasensitive room-temperature chemical sensors by Ag-decorated ultraporous ZnO nanoparticle networks. , 2019, , .		O
24	Extracting optical bandgaps from luminescence images of perovskite solar cells. , 2019, , .		0
25	Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. Journal of Materials Science and Technology, 2019, 35, 987-993.	10.7	123
26	Interfacial Dynamics and Contact Passivation in Perovskite Solar Cells. Advanced Electronic Materials, 2019, 5, 1800500.	5.1	25
27	Imaging Spatial Variations of Optical Bandgaps in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1802790.	19.5	18
28	lightr: import spectral data and metadata in R. Journal of Open Source Software, 2019, 4, 1857.	4.6	5
29	Nonresonant ENZ metamaterial at visible wavelength for superior refractive index matching sensing. , 2019, , .		O
30	Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy and Environmental Science, 2018, 11, 394-406.	30.8	209
31	In situ recombination junction between p-Si and TiO ₂ enables high-efficiency monolithic perovskite/Si tandem cells. Science Advances, 2018, 4, eaau9711.	10.3	122
32	The two faces of capacitance: New interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis. Journal of Applied Physics, 2018, 124, .	2.5	110
33	Impact of Light on the Thermal Stability of Perovskite Solar Cells and Development of Stable Semi-transparent Cells. , 2018, , .		2
34	A Universal Double‧ide Passivation for High Open ircuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate). Advanced Energy Materials, 2018, 8, 1801208.	19.5	387
35	Perovskite Solar Cells Employing Copper Phthalocyanine Hole-Transport Material with an Efficiency over 20% and Excellent Thermal Stability. ACS Energy Letters, 2018, 3, 2441-2448.	17.4	90
36	NiO–ZnO Nanoheterojunction Networks for Roomâ€Temperature Volatile Organic Compounds Sensing. Advanced Optical Materials, 2018, 6, 1800677.	7.3	54

#	Article	IF	CITATIONS
37	Light and elevated temperature induced degradation (LeTID) in perovskite solar cells and development of stable semi-transparent cells. Solar Energy Materials and Solar Cells, 2018, 188, 27-36.	6.2	43
38	Feature issue introduction: halide perovskites for optoelectronics. Optics Express, 2018, 26, A153.	3.4	11
39	Feature issue introduction: halide perovskites for optoelectronics. Optical Materials Express, 2018, 8, 231.	3.0	2
40	Transient Photovoltage in Perovskite Solar Cells: Interaction of Trap-Mediated Recombination and Migration of Multiple Ionic Species. Journal of Physical Chemistry C, 2018, 122, 11270-11281.	3.1	66
41	Characterization of trap states in perovskite films by simultaneous fitting of steady-state and transient photoluminescence measurements. Journal of Applied Physics, 2018, 124, .	2.5	10
42	Understanding the impact of carrier mobility and mobile ions on perovskite cell performance. , 2018, , .		0
43	Improved Reproducibility for Perovskite Solar Cells with 1 cm ² Active Area by a Modified Two-Step Process. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5974-5981.	8.0	41
44	Inverted Hysteresis in CH ₃ NH ₃ PbI ₃ Solar Cells: Role of Stoichiometry and Band Alignment. Journal of Physical Chemistry Letters, 2017, 8, 2672-2680.	4.6	71
45	Rubidium Multication Perovskite with Optimized Bandgap for Perovskiteâ€6ilicon Tandem with over 26% Efficiency. Advanced Energy Materials, 2017, 7, 1700228.	19.5	443
46	Transparent Long-Pass Filter with Short-Wavelength Scattering Based on <i>Morpho</i> Butterfly Nanostructures. ACS Photonics, 2017, 4, 741-745.	6.6	13
47	Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation. Physical Chemistry Chemical Physics, 2017, 19, 3094-3103.	2.8	159
48	Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy and Environmental Science, 2017, 10, 2472-2479.	30.8	178
49	Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26859-26866.	8.0	114
50	Identifying the Cause of Voltage and Fill Factor Losses in Perovskite Solar Cells by Using Luminescence Measurements. Energy Technology, 2017, 5, 1827-1835.	3.8	103
51	Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy and Environmental Science, 2017, 10, 1792-1800.	30.8	381
52	Efficient Indiumâ€Doped TiO <i>_x</i> Electron Transport Layers for Highâ€Performance Perovskite Solar Cells and Perovskiteâ€Silicon Tandems. Advanced Energy Materials, 2017, 7, 1601768.	19.5	167
53	Notice of Removal High efficiency perovskite/silicon tandem cells with low parasitic absorption. , 2017, , .		1
54	Design guidelines for perovskite/silicon 2-terminal tandem solar cells: an optical study. Optics Express, 2016, 24, A1454.	3.4	76

#	Article	IF	CITATIONS
55	Total absorption of visible light in ultrathin weakly absorbing semiconductor gratings. Optica, 2016, 3, 556.	9.3	42
56	A re-evaluation of transparent conductor requirements for thin-film solar cells. Journal of Materials Chemistry A, 2016, 4, 4490-4496.	10.3	42
57	Filterless Spectral Splitting Perovskite–Silicon Tandem System With >23% Calculated Efficiency. IEEE Journal of Photovoltaics, 2016, 6, 1432-1439.	2.5	15
58	Evaporated and solution deposited planar Sb ₂ S ₃ solar cells: A comparison and its significance. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 108-113.	1.8	40
59	Photoluminescence study of time- and spatial-dependent light induced trap de-activation in CH ₃ NH ₃ Pbl ₃ perovskite films. Physical Chemistry Chemical Physics, 2016, 18, 22557-22564.	2.8	36
60	Structural Engineering of Nanoâ€Grain Boundaries for Lowâ€Voltage UVâ€Photodetectors with Gigantic Photo―to Darkâ€Current Ratios. Advanced Optical Materials, 2016, 4, 1787-1795.	7.3	42
61	Flame-made ultra-porous TiO ₂ layers for perovskite solar cells. Nanotechnology, 2016, 27, 505403.	2.6	11
62	Modelling of slow transient processes in organo-metal halide perovskites. , 2016, , .		0
63	Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano Energy, 2016, 30, 330-340.	16.0	133
64	Semitransparent Perovskite Solar Cell With Sputtered Front and Rear Electrodes for a Four-Terminal Tandem. IEEE Journal of Photovoltaics, 2016, 6, 679-687.	2.5	80
65	Total absorption in Structured Ultrathin Semiconductor Layers. , 2016, , .		0
66	Room temperature GaAsSb single nanowire infrared photodetectors. Nanotechnology, 2015, 26, 445202.	2.6	63
67	Ultralow Absorption Coefficient and Temperature Dependence of Radiative Recombination of CH ₃ NH ₃ Perovskite from Photoluminescence. Journal of Physical Chemistry Letters, 2015, 6, 767-772.	4.6	73
68	Nanoporous Silicon Produced by Metal-Assisted Etching: A Detailed Investigation of Optical and Contact Properties for Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 538-544.	2.5	4
69	Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence. Optics Express, 2015, 23, A391.	3.4	33
70	Feature Issue Introduction: Light, Energy and the Environment, 2014. Optics Express, 2015, 23, A764.	3.4	3
71	Optical Optimization of Perovskite-Silicon Reflective Tandem Solar Cells. , 2015, , .		2
72	Metal Nanoparticle Arrays as Wavelength-Selective Rear Reflectors. , 2015, , .		O

#	Article	IF	Citations
73	Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. Optics Express, 2014, 22, A1422.	3.4	101
74	Wavelength selective light trapping for tandem solar cells on silicon. , 2014, , .		0
75	Light trapping with titanium dioxide diffraction gratings fabricated by nanoimprinting. Progress in Photovoltaics: Research and Applications, 2014, 22, 587-592.	8.1	14
76	Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for >30% Efficiency. IEEE Journal of Photovoltaics, 2014, 4, 208-214.	2.5	164
77	Optics and Light Trapping for Tandem Solar Cells on Silicon. IEEE Journal of Photovoltaics, 2014, 4, 1380-1386.	2.5	114
78	High-resolution photocurrent imaging of light trapping by plasmonic nanoparticles on thin film Si solar cells. , 2014, , .		0
79	Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions. Journal of Applied Physics, 2013, 114, .	2.5	26
80	Plasmonic Near-Field Enhancement for Planar Ultra-Thin Photovoltaics. IEEE Photonics Journal, 2013, 5, 8400608-8400608.	2.0	18
81	Coupled-mode theory analysis of optical forces between longitudinally shifted periodic waveguides. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 736.	2.1	6
82	Designing Nano-loop antenna arrays for light-trapping in solar cells. , 2013, , .		5
83	Thin-film Inorganic Top Cells in Tandem with c-Si: Targeting 30% Efficiency. , 2013, , .		0
84	Slow-light enhanced optical forces between longitudinally shifted photonic-crystal nanowire waveguides. Optics Letters, 2012, 37, 785.	3.3	4
85	Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells. Optics Express, 2012, 20, 13226.	3.4	21
86	Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000). Optics Express, 2012, 20, 15503.	3.4	27
87	The analytical basis for the resonances and anti-resonances of loop antennas and meta-material ring resonators. Journal of Applied Physics, 2012, 112, .	2.5	36
88	Slow-light enhanced optomechanical interactions. , 2012, , .		1
89	Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Applied Physics Letters, 2012, 101, 073905.	3.3	197
90	Plasmonic near-field enhancement for planar ultra-thin absorber solar cells. , 2012, , .		0

#	Article	IF	Citations
91	High-Q (>750,000) photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding. Proceedings of SPIE, 2012, , .	0.8	0
92	Transition from slow and frozen to superluminal and backward light through loss or gain in dispersion-engineered waveguides. Physical Review A, 2012, 85, .	2.5	9
93	Loss saturation in dispersion-engineered slow light waveguides. , 2011, , .		0
94	Slow-light and evanescent modes at interfaces in photonic crystal waveguides: optimal extraction from experimental near-field measurements. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 955.	2.1	12
95	Slow light in photonic crystals with loss or gain. , 2011, , .		1
96	Experimental observation of evanescent modes at the interface to slow-light photonic crystal waveguides. Optics Letters, 2011, 36, 1170.	3.3	24
97	$\label{limits} \begin{subarray}{ll} Ultrahigh Q-factor Ge11.5As24Se64.5 chalcogenide glass photonic crystal cavity embedded in silica. , 2011, , . \\ \end{subarray}$		0
98	Slow-light enhanced forces between shifted photonic-crystal waveguides. , 2011, , .		0
99	All-optical signal processing using slow light enhanced nonlinearities in silicon waveguides. , 2011, , .		0
100	Slow-Light Enhanced Optical Forces between Shifted Photonic-Crystal Nanowire Waveguides. , 2011, , .		0
101	Four-wave mixing in short silicon slow-light engineered photonic crystal waveguides., 2011,,.		0
102	The UK silicon photonics project. Proceedings of SPIE, 2010, , .	0.8	1
103	Dispersion engineered slow light in photonic crystals: a comparison. Journal of Optics (United) Tj ETQq1 1 0.784	314 rgBT / 2.2	Overlock 10 186
104	Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 344-356.	2.9	132
105	Investigation of slow light enhanced nonlinear transmission for all-optical regeneration in silicon photonic crystal waveguides at 10Gbit/s. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 67-71.	2.0	5
106	Slow-light enhanced optical signal processing on a silicon chip at 640Gb/s., 2010,,.		0
107	Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics. Optics Express, 2010, 18, 6831.	3.4	54
108	Optical signal processing on a silicon chip at 640Gb/s using slow-light. Optics Express, 2010, 18, 7770.	3.4	138

#	Article	IF	Citations
109	Four-wave mixing in slow light engineered silicon photonic crystal waveguides. Optics Express, 2010, 18, 22915.	3.4	134
110	Loss engineered slow light waveguides. Optics Express, 2010, 18, 27627.	3.4	182
111	Nonlinear loss dynamics in a silicon slow-light photonic crystal waveguide. Optics Letters, 2010, 35, 1073.	3.3	12
112	Compact Optical Switches and Modulators Based on Dispersion Engineered Photonic Crystals. IEEE Photonics Journal, 2010, 2, 404-414.	2.0	90
113	Ultrafast adiabatic manipulation of slow light in a photonic crystal. Physical Review A, 2010, 81, .	2.5	72
114	Slow-light photonic crystal switches and modulators. Proceedings of SPIE, 2010, , .	0.8	3
115	Slow-light based optical signal processing at 640Gb/s. , 2010, , .		0
116	Observation of Evanescent Modes in Slow Light Photonic Crystal Waveguides., 2010,,.		0
117	Dynamics of Nonlinear Loss in a Silicon Slow Light Photonic Crystal Waveguide. , 2010, , .		0
118	Green light emission in silicon through slow light enhanced third-harmonic generation in photonic crystal waveguides., 2009,,.		0
119	Ultracompact switches and modulators based on slow light in photonic crystals. , 2009, , .		0
120	Nonlinear transfer function in slow light silicon photonic crystal waveguides at 10 Gbit/s., 2009,,.		0
121	Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler. Applied Physics Letters, 2009, 94, .	3.3	33
122	Optical performance monitoring at 160Gb/s via slow light enhanced third-harmonic generation in silicon photonic crystal waveguides. , 2009 , , .		0
123	Slow-light enhanced nonlinear transfer function for 2R regeneration in 2D silicon photonic crystals at 10 Gb/s., 2009,,.		0
124	Losses in engineered slow light photonic crystal waveguides. , 2009, , .		0
125	Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nature Photonics, 2009, 3, 206-210.	31.4	503
126	Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1111-1114.	2.7	21

#	Article	IF	Citations
127	Optical filter with very large stopband (â‰^300 nm) based on a photonic-crystal vertical-directional coupler. Optics Letters, 2009, 34, 3292.	3.3	18
128	Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. Optics Express, 2009, 17, 2944.	3.4	221
129	Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes. Optics Express, 2009, 17, 17338.	3.4	38
130	Ultrashort Photonic Crystal Optical Switch Actuated by a Microheater. IEEE Photonics Technology Letters, 2009, 21, 24-26.	2.5	50
131	Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law. Physical Review B, 2009, 80, .	3.2	66
132	Reconfigurable optofluidic silicon-based photonic crystal components. Proceedings of SPIE, 2009, , .	0.8	0
133	Ultrafast Re-routing of Slow Light in a Nanophotonic Directional Coupler. , 2009, , .		0
134	Optical Performance Monitoring via Slow Light Enhanced Third Harmonic Generation in Silicon Photonic Crystal Waveguides., 2009,,.		0
135	Ultracompact and low-power optical switch based on silicon photonic crystals. Optics Letters, 2008, 33, 147.	3.3	216
136	Efficient slow-light coupling in a photonic crystal waveguide without transition region. Optics Letters, 2008, 33, 2644.	3.3	46
137	Photonic crystal laser with mode selective mirrors. Optics Express, 2008, 16, 1365.	3.4	15
138	Systematic design of flat band slow light in photonic crystal waveguides. Optics Express, 2008, 16, 6227.	3.4	517
139	Silica-embedded silicon photonic crystal waveguides. Optics Express, 2008, 16, 17076.	3.4	7 3
140	Microfluidic cavities in silicon-based photonic crystal slab waveguides. , 2008, , .		0
141	Slow light enhanced third-harmonic generation in silicon photonic crystal waveguides. , 2008, , .		0
142	Reconfigurable silicon-based photonic crystal components using microfluidics. , 2008, , .		0
143	Enhanced nonlinear self-phase modulation in engineered slow light silicon photonic crystal waveguides. , 2008, , .		O
144	Systematic design of broadband slow light photonic crystal waveguides. , 2008, , .		1

#	Article	IF	Citations
145	Efficient Modeling of 2D Multi-Segment Photonic Crystal Devices. , 2007, , .		O
146	Coupling into slow-mode photonic crystal waveguides. Optics Letters, 2007, 32, 2638.	3.3	137
147	Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Optics Express, 2007, 15, 13129.	3.4	134
148	Modeling light propagation in photonic crystal devices: Simplification of the Bloch mode scattering matrix method. Journal of Applied Physics, 2007, 102, 053103.	2.5	2
149	Efficient Modeling of 2D Multi-Segment Photonic Crystal Devices. , 2007, , .		0
150	Strengths and applications of semi-analytic techniques for photonic crystal modelling. , 2006, , .		0
151	Low interface reflection of rod-type photonic crystals: a bottom up approach., 2006,,.		1
152	Wide-angle coupling into rod-type photonic crystals with ultralow reflectance. Physical Review E, 2006, 74, 026603.	2.1	12
153	Highly efficient wide-angle transmission into uniform rod-type photonic crystals. Applied Physics Letters, 2005, 87, 111107.	3.3	21
154	Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory. Physical Review E, 2004, 70, 056606.	2.1	75
155	Bloch mode scattering matrix methods for modeling extended photonic crystal structures. II. Applications. Physical Review E, 2004, 70, 056607.	2.1	14
156	Interferometric Characterization of Nonflat Transmission Diffraction Gratings. IEEE Photonics Technology Letters, 2004, 16, 2314-2316.	2.5	0
157	Application of an ARROW model for designing tunable photonic devices. Optics Express, 2004, 12, 1540.	3.4	112
158	Photonic crystal devices modelled as grating stacks: matrix generalizations of thin film optics. Optics Express, 2004, 12, 1592.	3.4	16
159	Recirculation-enhanced switching in photonic crystal Mach-Zehnder interferometers. Optics Express, 2004, 12, 3035.	3.4	13
160	Long wavelength anti-resonant guidance in high index inclusion microstructured fibers. Optics Express, 2004, 12, 5424.	3.4	42
161	Modes of coupled photonic crystal waveguides. Optics Letters, 2004, 29, 1384.	3.3	34
162	Interferometric characterization of phase masks. Applied Optics, 2003, 42, 2336.	2.1	4

THOMAS P WHITE

#	Article	IF	CITATIONS
163	Semianalytic treatment for propagation in finite photonic crystal waveguides. Optics Letters, 2003, 28, 854.	3.3	25
164	Ultracompact resonant filters in photonic crystals. Optics Letters, 2003, 28, 2452.	3.3	29
165	Multipole method for microstructured optical fibers I Formulation: errata. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 1581.	2.1	4
166	Resonances in microstructured optical waveguides. Optics Express, 2003, 11, 1243.	3.4	234
167	<title>Multipole study of dispersion and structural losses of photonic crystal fibers</title> ., 2002,,		1
168	Resonance and scattering in microstructured optical fibers. Optics Letters, 2002, 27, 1977.	3.3	145
169	Multipole method for microstructured optical fibers I Formulation. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2322.	2.1	506
170	Multipole method for microstructured optical fibers II Implementation and results. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2331.	2.1	302
171	Symmetry and degeneracy in microstructured optical fibers. Optics Letters, 2001, 26, 488.	3.3	249
172	Confinement losses in microstructured optical fibers. Optics Letters, 2001, 26, 1660.	3.3	271
173	Calculations of air-guided modes in photonic crystal fibers using the multipole method. Optics Express, 2001, 9, 721.	3.4	72