Thomas P White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1674104/publications.pdf Version: 2024-02-01

ΤΗΟΜΛΟ Ρ \λ/ΗΙΤΕ

#	Article	IF	CITATIONS
1	Systematic design of flat band slow light in photonic crystal waveguides. Optics Express, 2008, 16, 6227.	3.4	517
2	Multipole method for microstructured optical fibers I Formulation. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2322.	2.1	506
3	Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nature Photonics, 2009, 3, 206-210.	31.4	503
4	Rubidium Multication Perovskite with Optimized Bandgap for Perovskite‣ilicon Tandem with over 26% Efficiency. Advanced Energy Materials, 2017, 7, 1700228.	19.5	443
5	A Universal Doubleâ€5ide Passivation for High Openâ€Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate). Advanced Energy Materials, 2018, 8, 1801208.	19.5	387
6	Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy and Environmental Science, 2017, 10, 1792-1800.	30.8	381
7	Multipole method for microstructured optical fibers II Implementation and results. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2331.	2.1	302
8	Confinement losses in microstructured optical fibers. Optics Letters, 2001, 26, 1660.	3.3	271
9	Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science, 2021, 371, 390-395.	12.6	270
10	Symmetry and degeneracy in microstructured optical fibers. Optics Letters, 2001, 26, 488.	3.3	249
11	Resonances in microstructured optical waveguides. Optics Express, 2003, 11, 1243.	3.4	234
12	Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. Optics Express, 2009, 17, 2944.	3.4	221
13	Ultracompact and low-power optical switch based on silicon photonic crystals. Optics Letters, 2008, 33, 147.	3.3	216
14	Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy and Environmental Science, 2018, 11, 394-406.	30.8	209
15	Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Applied Physics Letters, 2012, 101, 073905.	3.3	197
16	Dispersion engineered slow light in photonic crystals: a comparison. Journal of Optics (United) Tj ETQq0 0 0 rgB	T /Qverloc	k 10 Tf 50 14. 186
17	Loss engineered slow light waveguides. Optics Express, 2010, 18, 27627.	3.4	182

18 Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy and 30.8 178 Environmental Science, 2017, 10, 2472-2479.

#	Article	IF	CITATIONS
19	Efficient Indiumâ€Doped TiO <i>_x</i> Electron Transport Layers for Highâ€Performance Perovskite Solar Cells and Perovskiteâ€Silicon Tandems. Advanced Energy Materials, 2017, 7, 1601768.	19.5	167
20	Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for >30% Efficiency. IEEE Journal of Photovoltaics, 2014, 4, 208-214.	2.5	164
21	Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation. Physical Chemistry Chemical Physics, 2017, 19, 3094-3103.	2.8	159
22	Resonance and scattering in microstructured optical fibers. Optics Letters, 2002, 27, 1977.	3.3	145
23	Optical signal processing on a silicon chip at 640Gb/s using slow-light. Optics Express, 2010, 18, 7770.	3.4	138
24	Coupling into slow-mode photonic crystal waveguides. Optics Letters, 2007, 32, 2638.	3.3	137
25	Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature, 2022, 601, 573-578.	27.8	137
26	Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Optics Express, 2007, 15, 13129.	3.4	134
27	Four-wave mixing in slow light engineered silicon photonic crystal waveguides. Optics Express, 2010, 18, 22915.	3.4	134
28	Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano Energy, 2016, 30, 330-340.	16.0	133
29	Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 344-356.	2.9	132
30	Double‣ided Surface Passivation of 3D Perovskite Film for Highâ€Efficiency Mixedâ€Dimensional Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1907962.	14.9	130
31	Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. Journal of Materials Science and Technology, 2019, 35, 987-993.	10.7	123
32	In situ recombination junction between p-Si and TiO ₂ enables high-efficiency monolithic perovskite/Si tandem cells. Science Advances, 2018, 4, eaau9711.	10.3	122
33	Optics and Light Trapping for Tandem Solar Cells on Silicon. IEEE Journal of Photovoltaics, 2014, 4, 1380-1386.	2.5	114
34	Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 26859-26866.	8.0	114
35	Application of an ARROW model for designing tunable photonic devices. Optics Express, 2004, 12, 1540.	3.4	112
36	The two faces of capacitance: New interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis. Journal of Applied Physics, 2018, 124, .	2.5	110

#	Article	IF	CITATIONS
37	High Efficiency Perovskiteâ€Silicon Tandem Solar Cells: Effect of Surface Coating versus Bulk Incorporation of 2D Perovskite. Advanced Energy Materials, 2020, 10, 1903553.	19.5	110
38	Identifying the Cause of Voltage and Fill Factor Losses in Perovskite Solar Cells by Using Luminescence Measurements. Energy Technology, 2017, 5, 1827-1835.	3.8	103
39	Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. Optics Express, 2014, 22, A1422.	3.4	101
40	Origin of Efficiency and Stability Enhancement in Highâ€Performing Mixed Dimensional 2Dâ€3D Perovskite Solar Cells: A Review. Advanced Functional Materials, 2022, 32, 2009164.	14.9	96
41	Compact Optical Switches and Modulators Based on Dispersion Engineered Photonic Crystals. IEEE Photonics Journal, 2010, 2, 404-414.	2.0	90
42	Perovskite Solar Cells Employing Copper Phthalocyanine Hole-Transport Material with an Efficiency over 20% and Excellent Thermal Stability. ACS Energy Letters, 2018, 3, 2441-2448.	17.4	90
43	Monolithic Perovskite/Si Tandem Solar Cells: Pathways to Over 30% Efficiency. Advanced Energy Materials, 2020, 10, 1902840.	19.5	87
44	Light Management: A Key Concept in High-Efficiency Perovskite/Silicon Tandem Photovoltaics. Journal of Physical Chemistry Letters, 2019, 10, 3159-3170.	4.6	81
45	Semitransparent Perovskite Solar Cell With Sputtered Front and Rear Electrodes for a Four-Terminal Tandem. IEEE Journal of Photovoltaics, 2016, 6, 679-687.	2.5	80
46	Design guidelines for perovskite/silicon 2-terminal tandem solar cells: an optical study. Optics Express, 2016, 24, A1454.	3.4	76
47	Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory. Physical Review E, 2004, 70, 056606.	2.1	75
48	Silica-embedded silicon photonic crystal waveguides. Optics Express, 2008, 16, 17076.	3.4	73
49	Ultralow Absorption Coefficient and Temperature Dependence of Radiative Recombination of CH ₃ NH ₃ PbI ₃ Perovskite from Photoluminescence. Journal of Physical Chemistry Letters, 2015, 6, 767-772.	4.6	73
50	Calculations of air-guided modes in photonic crystal fibers using the multipole method. Optics Express, 2001, 9, 721.	3.4	72
51	Ultrafast adiabatic manipulation of slow light in a photonic crystal. Physical Review A, 2010, 81, .	2.5	72
52	Inverted Hysteresis in CH ₃ NH ₃ PbI ₃ Solar Cells: Role of Stoichiometry and Band Alignment. Journal of Physical Chemistry Letters, 2017, 8, 2672-2680.	4.6	71
53	Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law. Physical Review B, 2009, 80, .	3.2	66
54	Transient Photovoltage in Perovskite Solar Cells: Interaction of Trap-Mediated Recombination and Migration of Multiple Ionic Species. Journal of Physical Chemistry C, 2018, 122, 11270-11281.	3.1	66

#	Article	IF	CITATIONS
55	Room temperature GaAsSb single nanowire infrared photodetectors. Nanotechnology, 2015, 26, 445202.	2.6	63
56	Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics. Optics Express, 2010, 18, 6831.	3.4	54
57	NiO–ZnO Nanoheterojunction Networks for Roomâ€Temperature Volatile Organic Compounds Sensing. Advanced Optical Materials, 2018, 6, 1800677.	7.3	54
58	Ultrashort Photonic Crystal Optical Switch Actuated by a Microheater. IEEE Photonics Technology Letters, 2009, 21, 24-26.	2.5	50
59	Efficient slow-light coupling in a photonic crystal waveguide without transition region. Optics Letters, 2008, 33, 2644.	3.3	46
60	Light and elevated temperature induced degradation (LeTID) in perovskite solar cells and development of stable semi-transparent cells. Solar Energy Materials and Solar Cells, 2018, 188, 27-36.	6.2	43
61	Long wavelength anti-resonant guidance in high index inclusion microstructured fibers. Optics Express, 2004, 12, 5424.	3.4	42
62	Total absorption of visible light in ultrathin weakly absorbing semiconductor gratings. Optica, 2016, 3, 556.	9.3	42
63	A re-evaluation of transparent conductor requirements for thin-film solar cells. Journal of Materials Chemistry A, 2016, 4, 4490-4496.	10.3	42
64	Structural Engineering of Nanoâ€Grain Boundaries for Lowâ€Voltage UVâ€Photodetectors with Gigantic Photo―to Darkâ€Current Ratios. Advanced Optical Materials, 2016, 4, 1787-1795.	7.3	42
65	Improved Reproducibility for Perovskite Solar Cells with 1 cm ² Active Area by a Modified Two-Step Process. ACS Applied Materials & amp; Interfaces, 2017, 9, 5974-5981.	8.0	41
66	Evaporated and solution deposited planar Sb ₂ S ₃ solar cells: A comparison and its significance. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 108-113.	1.8	40
67	Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes. Optics Express, 2009, 17, 17338.	3.4	38
68	Combined Bulk and Surface Passivation in Dimensionally Engineered 2Dâ€3D Perovskite Films via Chlorine Diffusion. Advanced Functional Materials, 2021, 31, 2104251.	14.9	37
69	The analytical basis for the resonances and anti-resonances of loop antennas and meta-material ring resonators. Journal of Applied Physics, 2012, 112, .	2.5	36
70	Photoluminescence study of time- and spatial-dependent light induced trap de-activation in CH ₃ NH ₃ PbI ₃ perovskite films. Physical Chemistry Chemical Physics, 2016, 18, 22557-22564.	2.8	36
71	Modes of coupled photonic crystal waveguides. Optics Letters, 2004, 29, 1384.	3.3	34
72	In Situ Formation of Mixedâ€Dimensional Surface Passivation Layers in Perovskite Solar Cells with Dualâ€Isomer Alkylammonium Cations. Small, 2020, 16, e2005022.	10.0	34

#	Article	IF	CITATIONS
73	Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler. Applied Physics Letters, 2009, 94, .	3.3	33
74	Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence. Optics Express, 2015, 23, A391.	3.4	33
75	Efficient and stable wide bandgap perovskite solar cells through surface passivation with long alkyl chain organic cations. Journal of Materials Chemistry A, 2021, 9, 18454-18465.	10.3	32
76	Non-Periodic Epsilon-Near-Zero Metamaterials at Visible Wavelengths for Efficient Non-Resonant Optical Sensing. Nano Letters, 2020, 20, 3970-3977.	9.1	30
77	Ultracompact resonant filters in photonic crystals. Optics Letters, 2003, 28, 2452.	3.3	29
78	Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000). Optics Express, 2012, 20, 15503.	3.4	27
79	Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions. Journal of Applied Physics, 2013, 114, .	2.5	26
80	Semianalytic treatment for propagation in finite photonic crystal waveguides. Optics Letters, 2003, 28, 854.	3.3	25
81	Interfacial Dynamics and Contact Passivation in Perovskite Solar Cells. Advanced Electronic Materials, 2019, 5, 1800500.	5.1	25
82	Experimental observation of evanescent modes at the interface to slow-light photonic crystal waveguides. Optics Letters, 2011, 36, 1170.	3.3	24
83	Above 23% Efficiency by Binary Surface Passivation of Perovskite Solar Cells Using Guanidinium and Octylammonium Spacer Cations. Solar Rrl, 2022, 6, .	5.8	22
84	27.6% Perovskite/c‧i Tandem Solar Cells Using Industrial Fabricated TOPCon Device. Advanced Energy Materials, 2022, 12, .	19.5	22
85	Highly efficient wide-angle transmission into uniform rod-type photonic crystals. Applied Physics Letters, 2005, 87, 111107.	3.3	21
86	Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1111-1114.	2.7	21
87	Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells. Optics Express, 2012, 20, 13226.	3.4	21
88	Optical filter with very large stopband (â‰^300 nm) based on a photonic-crystal vertical-directional coupler. Optics Letters, 2009, 34, 3292.	3.3	18
89	Plasmonic Near-Field Enhancement for Planar Ultra-Thin Photovoltaics. IEEE Photonics Journal, 2013, 5, 8400608-8400608.	2.0	18
90	Imaging Spatial Variations of Optical Bandgaps in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1802790.	19.5	18

#	Article	IF	CITATIONS
91	Photonic crystal devices modelled as grating stacks: matrix generalizations of thin film optics. Optics Express, 2004, 12, 1592.	3.4	16
92	Photonic crystal laser with mode selective mirrors. Optics Express, 2008, 16, 1365.	3.4	15
93	Filterless Spectral Splitting Perovskite–Silicon Tandem System With >23% Calculated Efficiency. IEEE Journal of Photovoltaics, 2016, 6, 1432-1439.	2.5	15
94	Bloch mode scattering matrix methods for modeling extended photonic crystal structures. II. Applications. Physical Review E, 2004, 70, 056607.	2.1	14
95	Light trapping with titanium dioxide diffraction gratings fabricated by nanoimprinting. Progress in Photovoltaics: Research and Applications, 2014, 22, 587-592.	8.1	14
96	Recirculation-enhanced switching in photonic crystal Mach-Zehnder interferometers. Optics Express, 2004, 12, 3035.	3.4	13
97	Transparent Long-Pass Filter with Short-Wavelength Scattering Based on <i>Morpho</i> Butterfly Nanostructures. ACS Photonics, 2017, 4, 741-745.	6.6	13
98	Wide-angle coupling into rod-type photonic crystals with ultralow reflectance. Physical Review E, 2006, 74, 026603.	2.1	12
99	Nonlinear loss dynamics in a silicon slow-light photonic crystal waveguide. Optics Letters, 2010, 35, 1073.	3.3	12
100	Slow-light and evanescent modes at interfaces in photonic crystal waveguides: optimal extraction from experimental near-field measurements. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 955.	2.1	12
101	Flame-made ultra-porous TiO ₂ layers for perovskite solar cells. Nanotechnology, 2016, 27, 505403.	2.6	11
102	Feature issue introduction: halide perovskites for optoelectronics. Optics Express, 2018, 26, A153.	3.4	11
103	Characterization of trap states in perovskite films by simultaneous fitting of steady-state and transient photoluminescence measurements. Journal of Applied Physics, 2018, 124, .	2.5	10
104	Transition from slow and frozen to superluminal and backward light through loss or gain in dispersion-engineered waveguides. Physical Review A, 2012, 85, .	2.5	9
105	Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1902901.	19.5	9
106	Unraveling the Role of Energy Band Alignment and Mobile Ions on Interfacial Recombination in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	8
107	Contactless and Spatially Resolved Determination of Currentâ^'Voltage Curves in Perovskite Solar Cells via Photoluminescence. Solar Rrl, 2021, 5, 2100348.	5.8	7
108	Electrical properties of perovskite solar cells by illumination intensity and temperatureâ€dependent photoluminescence imaging. Progress in Photovoltaics: Research and Applications, 2022, 30, 1038-1044.	8.1	7

#	Article	IF	CITATIONS
109	Coupled-mode theory analysis of optical forces between longitudinally shifted periodic waveguides. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 736.	2.1	6
110	Anion Exchangeâ€Induced Crystal Engineering via Hotâ€Pressing Sublimation Affording Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000729.	5.8	6
111	Investigation of slow light enhanced nonlinear transmission for all-optical regeneration in silicon photonic crystal waveguides at 10Gbit/s. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 67-71.	2.0	5
112	Designing Nano-loop antenna arrays for light-trapping in solar cells. , 2013, , .		5
113	Perovskite Solar Cells: Imaging Spatial Variations of Optical Bandgaps in Perovskite Solar Cells (Adv.) Tj ETQq1 1	0.784314	l rgBT /Over
114	Efficient Passivation and Low Resistivity for p ⁺ -Si/TiO ₂ Contact by Atomic Layer Deposition. ACS Applied Energy Materials, 2020, 3, 6291-6301.	5.1	5
115	lightr: import spectral data and metadata in R. Journal of Open Source Software, 2019, 4, 1857.	4.6	5
116	Interferometric characterization of phase masks. Applied Optics, 2003, 42, 2336.	2.1	4
117	Multipole method for microstructured optical fibers I Formulation: errata. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 1581.	2.1	4
118	Slow-light enhanced optical forces between longitudinally shifted photonic-crystal nanowire waveguides. Optics Letters, 2012, 37, 785.	3.3	4
119	Nanoporous Silicon Produced by Metal-Assisted Etching: A Detailed Investigation of Optical and Contact Properties for Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 538-544.	2.5	4
120	Slow-light photonic crystal switches and modulators. Proceedings of SPIE, 2010, , .	0.8	3
121	Feature Issue Introduction: Light, Energy and the Environment, 2014. Optics Express, 2015, 23, A764.	3.4	3
122	Modeling light propagation in photonic crystal devices: Simplification of the Bloch mode scattering matrix method. Journal of Applied Physics, 2007, 102, 053103.	2.5	2
123	Impact of Light on the Thermal Stability of Perovskite Solar Cells and Development of Stable Semi-transparent Cells. , 2018, , .		2
124	Feature issue introduction: halide perovskites for optoelectronics. Optical Materials Express, 2018, 8, 231.	3.0	2
125	Optical Optimization of Perovskite-Silicon Reflective Tandem Solar Cells. , 2015, , .		2
126	<title>Multipole study of dispersion and structural losses of photonic crystal fibers</title> . , 2002, ,		1

#	Article	IF	CITATIONS
127	Low interface reflection of rod-type photonic crystals: a bottom up approach. , 2006, , .		1
128	The UK silicon photonics project. Proceedings of SPIE, 2010, , .	0.8	1
129	Slow light in photonic crystals with loss or gain. , 2011, , .		1
130	Slow-light enhanced optomechanical interactions. , 2012, , .		1
131	Notice of Removal High efficiency perovskite/silicon tandem cells with low parasitic absorption. , 2017, , .		1
132	Contactless and Spatially Resolved Determination of Currentâ^'Voltage Curves in Perovskite Solar Cells via Photoluminescence. Solar Rrl, 2021, 5, 2170083.	5.8	1
133	Systematic design of broadband slow light photonic crystal waveguides. , 2008, , .		1
134	Interferometric Characterization of Nonflat Transmission Diffraction Gratings. IEEE Photonics Technology Letters, 2004, 16, 2314-2316.	2.5	0
135	Strengths and applications of semi-analytic techniques for photonic crystal modelling. , 2006, , .		0
136	Efficient Modeling of 2D Multi-Segment Photonic Crystal Devices. , 2007, , .		0
137	Microfluidic cavities in silicon-based photonic crystal slab waveguides. , 2008, , .		0
138	Slow light enhanced third-harmonic generation in silicon photonic crystal waveguides. , 2008, , .		0
139	Reconfigurable silicon-based photonic crystal components using microfluidics. , 2008, , .		0
140	Enhanced nonlinear self-phase modulation in engineered slow light silicon photonic crystal waveguides. , 2008, , .		0
141	Green light emission in silicon through slow light enhanced third-harmonic generation in photonic crystal waveguides. , 2009, , .		0
142	Ultracompact switches and modulators based on slow light in photonic crystals. , 2009, , .		0
143	Nonlinear transfer function in slow light silicon photonic crystal waveguides at 10 Gbit/s. , 2009, , .		0
144	Optical performance monitoring at 160Gb/s via slow light enhanced third-harmonic generation in silicon photonic crystal waveguides. , 2009, , .		0

#	Article	IF	CITATIONS
145	Slow-light enhanced nonlinear transfer function for 2R regeneration in 2D silicon photonic crystals at 10 Gb/s. , 2009, , .		0
146	Losses in engineered slow light photonic crystal waveguides. , 2009, , .		0
147	Reconfigurable optofluidic silicon-based photonic crystal components. Proceedings of SPIE, 2009, , .	0.8	0
148	Slow-light enhanced optical signal processing on a silicon chip at 640Gb/s. , 2010, , .		0
149	Slow-light based optical signal processing at 640Gb/s. , 2010, , .		0
150	Loss saturation in dispersion-engineered slow light waveguides. , 2011, , .		0
151	Ultrahigh Q-factor Ge <inf>11.5</inf> As <inf>24</inf> Se <inf>64.5</inf> chalcogenide glass photonic crystal cavity embedded in silica. , 2011, , .		0
152	Slow-light enhanced forces between shifted photonic-crystal waveguides. , 2011, , .		0
153	All-optical signal processing using slow light enhanced nonlinearities in silicon waveguides. , 2011, , .		0
154	Plasmonic near-field enhancement for planar ultra-thin absorber solar cells. , 2012, , .		0
155	High-Q (>750,000) photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding. Proceedings of SPIE, 2012, , .	0.8	Ο
156	Wavelength selective light trapping for tandem solar cells on silicon. , 2014, , .		0
157	Modelling of slow transient processes in organo-metal halide perovskites. , 2016, , .		0
158	Ultrasensitive room-temperature chemical sensors by Ag-decorated ultraporous ZnO nanoparticle networks. , 2019, , .		0
159	Extracting optical bandgaps from luminescence images of perovskite solar cells. , 2019, , .		0
160	Tandem Solar Cells: Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells (Adv. Energy Mater. 4/2020). Advanced Energy Materials, 2020, 10, 2070016.	19.5	0
161	Efficient Modeling of 2D Multi-Segment Photonic Crystal Devices. , 2007, , .		0
162	Ultrafast Re-routing of Slow Light in a Nanophotonic Directional Coupler. , 2009, , .		0

Ultrafast Re-routing of Slow Light in a Nanophotonic Directional Coupler. , 2009, , . 162

#	Article	IF	CITATIONS
163	Optical Performance Monitoring via Slow Light Enhanced Third Harmonic Generation in Silicon Photonic Crystal Waveguides. , 2009, , .		0
164	Observation of Evanescent Modes in Slow Light Photonic Crystal Waveguides. , 2010, , .		0
165	Dynamics of Nonlinear Loss in a Silicon Slow Light Photonic Crystal Waveguide. , 2010, , .		0
166	Slow-Light Enhanced Optical Forces between Shifted Photonic-Crystal Nanowire Waveguides. , 2011, , .		0
167	Four-wave mixing in short silicon slow-light engineered photonic crystal waveguides. , 2011, , .		0
168	Thin-film Inorganic Top Cells in Tandem with c-Si: Targeting 30% Efficiency. , 2013, , .		0
169	High-resolution photocurrent imaging of light trapping by plasmonic nanoparticles on thin film Si solar cells. , 2014, , .		0
170	Metal Nanoparticle Arrays as Wavelength-Selective Rear Reflectors. , 2015, , .		0
171	Total absorption in Structured Ultrathin Semiconductor Layers. , 2016, , .		0
172	Understanding the impact of carrier mobility and mobile ions on perovskite cell performance. , 2018, , .		0
173	Nonresonant ENZ metamaterial at visible wavelength for superior refractive index matching sensing. ,		0