Sergio Martos-Rosillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1674028/publications.pdf Version: 2024-02-01

		687363	713466
32	478	13	21
papers	citations	h-index	g-index
33	33	33	656
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Ecohydrological Approach in Water Sowing and Harvesting Systems: The Case of the Paltas Catacocha Ecohydrology Demonstration Site, Ecuador. Ecohydrology and Hydrobiology, 2021, 21, 454-466.	2.3	5
2	Constraints on the evolution of sulfuric acid speleogenesis within carbonate rocks partially covered by evaporites (Sierra de Mollina, southern Spain). Geomorphology, 2021, 390, 107866.	2.6	3
3	The oldest managed aquifer recharge system in Europe: New insights from the Espino recharge channel (Sierra Nevada, southern Spain). Journal of Hydrology, 2019, 578, 124047.	5.4	30
4	Contribution of isotopic research techniques to characterize high-mountain-Mediterranean karst aquifers: The Port del Comte (Eastern Pyrenees) aquifer. Science of the Total Environment, 2019, 656, 209-230.	8.0	14
5	Epikarst mapping by remote sensing. Catena, 2018, 165, 1-11.	5.0	16
6	Combination of lumped hydrological and remote-sensing models to evaluate water resources in a semi-arid high altitude ungauged watershed of Sierra Nevada (Southern Spain). Science of the Total Environment, 2018, 625, 285-300.	8.0	41
7	SAR interferometry monitoring of subsidence in a detritic basin related to water depletion in the underlying confined carbonate aquifer (Torremolinos, southern Spain). Science of the Total Environment, 2018, 636, 670-687.	8.0	13
8	SlugIn 1.0: A Free Tool for Automated Slug Test Analysis. Ground Water, 2018, 56, 362-365.	1.3	3
9	Monitoring continuous subsidence in the Costa del Sol (Málaga province, southern Spanish coast) using ERS-1/2, Envisat, and Sentinel-1A/B SAR interferometry. Procedia Computer Science, 2018, 138, 354-361.	2.0	7
10	Factors determining subsidence in urbanized floodplains: evidence from MTâ€InSAR in Seville (southern) Tj ETQq0	0 0 0 rgBT 2.5	/Qverlock 2
11	Groundwater discharge in high-mountain watersheds: A valuable resource for downstream semi-arid zones. The case of the Bérchules River in Sierra Nevada (Southern Spain). Science of the Total Environment, 2017, 593-594, 760-772.	8.0	32
12	Concurrent temporal stability of the apparent electrical conductivity and soil water content. Journal of Hydrology, 2017, 544, 319-326.	5.4	23
13	Unravelling aquifer-wetland interaction using CSAMT and gravity methods: the Mollina-Camorra aquifer and the Fuente de Piedra playa -lake, southern Spain. Journal of Applied Geophysics, 2016, 129, 17-27.	2.1	12

Vertical variation in the amplitude of the seasonal isotopic content of rainfall as a tool to jointly 14 estimate the groundwater recharge zone and transit times in the Ordesa and Monte Perdido National 8.0 27 Park aquifer system, north-eastern Spain. Science of the Total Environment, 2016, 573, 505-517.

Hydrogeological behaviour of the Fuente-de-Piedra playa lake and tectonic origin of its basin (Malaga,) Tj ETQq1 1 0.7484314 gBT /Ov

16	Correlation of the seasonal isotopic amplitude of precipitation with annual evaporation and altitude in alpine regions. Science of the Total Environment, 2016, 550, 27-37.	8.0	13
17	Multi-temporal InSAR evidence of ground subsidence induced by groundwater withdrawal: the Montellano aquifer (SW Spain). Environmental Earth Sciences, 2016, 75, 1.	2.7	15
18	Karst massif susceptibility from rock matrix, fracture and conduit porosities: a case study of the Sierra de las Nieves (Málaga, Spain). Environmental Earth Sciences, 2015, 74, 7583-7592.	2.7	12

#	Article	IF	CITATIONS
19	Structural controls on karstic conduits in a collisional orogen (Sierra de las Nieves, Betic) Tj ETQq1 1 0.784314 r	gBT /Ovei 2.6	rlock 10 Tf 50
20	Hydrochemical changes due to intensive use of groundwater in the carbonate aquifers of Sierra de Estepa (Seville, Southern Spain). Journal of Hydrology, 2015, 528, 249-263.	5.4	16
21	Ratosa playa lake in southern Spain. Karst pan or compound sink?. Environmental Monitoring and Assessment, 2015, 187, 175.	2.7	6
22	Comparison of Recharge Estimation Methods During a Wet Period in a Karst Aquifer. Ground Water, 2015, 53, 885-895.	1.3	11
23	Methodology to evaluate the renewal period of carbonate aquifers: a key tool for their management in arid and semiarid regions, with the example of Becerrero aquifer, Spain. Hydrogeology Journal, 2014, 22, 679-689.	2.1	11
24	Groundwater recharge in semi-arid carbonate aquifers under intensive use: the Estepa Range aquifers (Seville, southern Spain). Environmental Earth Sciences, 2013, 70, 2453-2468.	2.7	22
25	Hydrogeological research on intensively exploited deep aquifers in the â€~Loma de Úbeda' area (Jaén,) Tj	ETQq11	0.784314 rg8 7
26	Combined microgravity, electrical resistivity tomography and induced polarization to detect deeply buried caves: Algaidilla cave (Southern Spain). Engineering Geology, 2013, 162, 67-78.	6.3	55
27	Curved foldâ€∎ndâ€thrust accretion during the extrusion of a synorogenic viscous allochthonous sheet: The Estepa Range (External Zones, Western Betic Cordillera, Spain). Tectonics, 2012, 31, .	2.8	20
28	The Social Sustainable Aquifer Yield: An Indicator for the Analysis and Assessment of the Integrated Aquifers Management. Water Resources Management, 2012, 26, 2951-2971.	3.9	13
29	Changes in water level, land use, and hydrological budget in a semi-permanent playa lake, Southwest Spain. Environmental Monitoring and Assessment, 2012, 184, 797-810.	2.7	13
30	Analysis of groundwater mining in two carbonate aquifers in Sierra de Estepa (SE Spain) based on hydrodynamic and hydrochemical data. Hydrogeology Journal, 2009, 17, 1617-1627.	2.1	13
31	Use of canopy coefficients obtained from satellite data to estimate evapotranspiration over high mountain Mediterranean watersheds. Proceedings of the International Association of Hydrological Sciences, 0, 380, 23-28.	1.0	2
32	MONITORING CRITICAL INFRASTRUCTURE EXPOSED TO ANTHROPOGENIC AND NATURAL HAZARDS USING SATELLITE RADAR INTERFEROMETRY. , 0, , .		0