Kurt W Runge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1673212/publications.pdf Version: 2024-02-01

KUDT W RUNCE

#	Article	IF	CITATIONS
1	Vitamin K-Dependent Protein Activation: Normal Gamma-Glutamyl Carboxylation and Disruption in Disease. International Journal of Molecular Sciences, 2022, 23, 5759.	1.8	13
2	GGCX mutants that impair hemostasis reveal the importance of processivity and full carboxylation toÂVKD protein function. Blood, 2022, 140, 1710-1722.	0.6	3
3	Telomere Formation Systems in Budding and Fission Yeasts. , 2020, , .		Ο
4	Telomere-binding proteins Taz1 and Rap1 regulate DSB repair and suppress gross chromosomal rearrangements in fission yeast. PLoS Genetics, 2019, 15, e1008335.	1.5	7
5	ExonÂ2 skipping eliminates γâ€glutamyl carboxylase activity, indicating a partial splicing defect in a patient with vitaminÂK clotting factor deficiency. Journal of Thrombosis and Haemostasis, 2019, 17, 1053-1063.	1.9	3
6	Warfarin alters vitamin K metabolism: a surprising mechanism of VKORC1 uncoupling necessitates an additional reductase. Blood, 2018, 131, 2826-2835.	0.6	19
7	Rif1 phosphorylation site analysis in telomere length regulation and the response to damaged telomeres. DNA Repair, 2018, 65, 26-33.	1.3	11
8	A curious new role for MRN in Schizosaccharomyces pombe non-homologous end-joining. Current Genetics, 2018, 64, 359-364.	0.8	9
9	A Heterochromatin Domain Forms Gradually at a New Telomere and Is Dynamic at Stable Telomeres. Molecular and Cellular Biology, 2018, 38, .	1.1	8
10	The Budding and Fission Yeast Model Systems for Aging Biology. , 2018, , 417-430.		0
11	The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2). F1000Research, 2018, 7, 1027.	0.8	2
12	The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2). F1000Research, 2018, 7, 1027.	0.8	2
13	Nonhomologous End-Joining with Minimal Sequence Loss Is Promoted by the Mre11-Rad50-Nbs1-Ctp1 Complex in <i>Schizosaccharomyces pombe</i> . Genetics, 2017, 206, 481-496.	1.2	12
14	Editorial: The Evolving Telomeres. Frontiers in Genetics, 2016, 7, 50.	1.1	1
15	Roles of the novel coiled-coil protein Rng10 in septum formation during fission yeast cytokinesis. Molecular Biology of the Cell, 2016, 27, 2528-2541.	0.9	9
16	Zinc finger protein Loz1 is required for zinc-responsive regulation of gene expression in fission yeast. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15371-15376.	3.3	42
17	The Vitamin K Oxidoreductase Is a Multimer That Efficiently Reduces Vitamin K Epoxide to Hydroquinone to Allow Vitamin K-dependent Protein Carboxylation. Journal of Biological Chemistry, 2013, 288, 31556-31566.	1.6	34
18	Identification of a Lifespan Extending Mutation in the Schizosaccharomyces pombe Cyclin Gene clg1+ by Direct Selection of Long-Lived Mutants. PLoS ONE, 2013, 8, e69084.	1.1	22

Kurt W Runge

#	Article	IF	CITATIONS
19	Roles of putative Rho-GEF Gef2 in division-site positioning and contractile-ring function in fission yeast cytokinesis. Molecular Biology of the Cell, 2012, 23, 1181-1195.	0.9	42
20	Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe. BMC Genomics, 2012, 13, 161.	1.2	14
21	A new method to efficiently induce a siteâ€specific doubleâ€strand break in the fission yeast <i>Schizosaccharomyces pombe</i> . Yeast, 2012, 29, 275-291.	0.8	19
22	Mec1p associates with functionally compromised telomeres. Chromosoma, 2012, 121, 277-290.	1.0	12
23	A Novel Role for the MRNâ€CtIP complex in Schizosaccharomyces pombe Nonâ€Homologous Endâ€Joining (NHEJ). FASEB Journal, 2012, 26, 539.3.	0.2	Ο
24	Genetic Approaches to Aging in Budding and Fission Yeasts: New Connections and New Opportunities. Sub-Cellular Biochemistry, 2011, 57, 291-314.	1.0	8
25	A new Schizosaccharomyces pombe chronological lifespan assay reveals that caloric restriction promotes efficient cell cycle exit and extends longevity. Experimental Gerontology, 2009, 44, 493-502.	1.2	42
26	A two-step model for senescence triggered by a single critically short telomere. Nature Cell Biology, 2009, 11, 988-993.	4.6	151
27	Tel1p Preferentially Associates with Short Telomeres to Stimulate Their Elongation. Molecular Cell, 2007, 27, 851-858.	4.5	114
28	r-VKORC1 Expression in Factor IX BHK Cells Increases the Extent of Factor IX Carboxylation but Is Limited by Saturation of Another Carboxylation Component or by a Shift in the Rate-Limiting Step. Biochemistry, 2006, 45, 5587-5598.	1.2	41
29	BrÃ,nsted Analysis Reveals Lys218 as the Carboxylase Active Site Base That Deprotonates Vitamin K Hydroquinone To Initiate Vitamin K-Dependent Protein Carboxylationâ€. Biochemistry, 2006, 45, 13239-13248.	1.2	36
30	Telomeres and Aging in the Yeast Model System. , 2006, , 191-205.		1
31	The Vitamin K-dependent Carboxylase Has Been Acquired by Leptospira Pathogens and Shows Altered Activity That Suggests a Role Other than Protein Carboxylation. Journal of Biological Chemistry, 2005, 280, 34870-34877.	1.6	20
32	A new model for vitamin K-dependent carboxylation: The catalytic base that deprotonates vitamin K hydroquinone is not Cys but an activated amine. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13732-13737.	3.3	31
33	The physiology of vitamin K nutriture and vitamin K-dependent protein function in atherosclerosis. Journal of Thrombosis and Haemostasis, 2004, 2, 2118-2132.	1.9	151
34	Sir3p phosphorylation by the Slt2p pathway effects redistribution of silencing function and shortened lifespan. Nature Genetics, 2003, 33, 522-526.	9.4	48
35	Yeast telomerase appears to frequently copy the entire template in vivo. Nucleic Acids Research, 2001, 29, 2382-2394.	6.5	11
36	Two paralogs involved in transcriptional silencing that antagonistically control yeast life span. Current Biology, 2000, 10, 111-114.	1.8	77

Kurt W Runge

#	Article	IF	CITATIONS
37	Varying the number of telomere-bound proteins does not alter telomere length in tel1Delta cells. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 15044-15049.	3.3	41
38	The ZDS1 and ZDS2 proteins require the Sir3p component of yeast silent chromatin to enhance the stability of short linear centromeric plasmids. Chromosoma, 1999, 108, 146-161.	1.0	28
39	Tel2p, a regulator of yeast telomeric length in vivo, binds to single-stranded telomeric DNA in vitro. Chromosoma, 1999, 108, 278-290.	1.0	28
40	The Yeast Telomere Length Counting Machinery Is Sensitive to Sequences at the Telomere-Nontelomere Junction. Molecular and Cellular Biology, 1999, 19, 31-45.	1.1	78
41	The yeast telomere length regulator TEL2 encodes a protein that binds to telomeric DNA. Nucleic Acids Research, 1998, 26, 1528-1535.	6.5	30
42	The C Terminus of the Major Yeast Telomere Binding Protein Rap1p Enhances Telomere Formation. Molecular and Cellular Biology, 1998, 18, 1284-1295.	1.1	31
43	<i>TEL2</i> , an Essential Gene Required for Telomere Length Regulation and Telomere Position Effect in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1996, 16, 3094-3105.	1.1	95
44	Saccharomyces cerevisiae linear chromosome stability (lcs) mutants increase the loss rate of artificial and natural linear chromosomes. Chromosoma, 1993, 102, 207-217.	1.0	11
45	Effects of excess centromeres and excess telomeres on chromosome loss rates Molecular and Cellular Biology, 1991, 11, 2919-2928.	1.1	42
46	How does the end begin?. Trends in Genetics, 1990, 6, 12-16.	2.9	61
47	Properties of the transcriptional enhancer inSaccharomyces cerevisiaetelomeres. Nucleic Acids Research, 1990, 18, 1783-1787.	6.5	18
48	Introduction of extra telomeric DNA sequences into Saccharomyces cerevisiae results in telomere elongation Molecular and Cellular Biology, 1989, 9, 1488-1497.	1.1	108
49	Posttranslational Modification during Protein Secretion. , 1988, , 159-208.		1
50	The Evolving Telomeres. Frontiers Research Topics, 0, , .	0.2	0