Zhisheng Zhao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1673193/zhisheng-zhao-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 25 142 4,274 h-index g-index citations papers 5.38 151 5,229 7.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
142	Hard and tough ultrafine-grained B4C-cBN composites prepared by high-pressure sintering. <i>Journal of the European Ceramic Society</i> , 2022 , 42, 2015-2020	6	O
141	Superconductivity in graphite-diamond hybrid. Materials Today Physics, 2022, 23, 100630	8	2
140	Discovery of carbon-based strongest and hardest amorphous material <i>National Science Review</i> , 2022 , 9, nwab140	10.8	16
139	Nanocrystalline high-entropy carbide ceramics with improved mechanical properties. <i>Journal of the American Ceramic Society</i> , 2022 , 105, 606	3.8	2
138	Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic. <i>Journal of Materials Science and Technology</i> , 2022 , 97, 169-175	9.1	2
137	Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure. <i>Chinese Physics Letters</i> , 2022 , 39, 036301	1.8	0
136	Ultrasensitive biochemical sensors based on controllably grown films of high-density edge-rich multilayer WS2 islands. <i>Sensors and Actuators B: Chemical</i> , 2021 , 131081	8.5	O
135	Extreme mechanical anisotropy in diamond with preferentially oriented nanotwin bundles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
134	Proximity Enhanced Hydrogen Evolution Reactivity of Substitutional Doped Monolayer WS. <i>ACS Applied Materials & Applied & Appl</i>	9.5	6
133	Grain-boundary-rich polycrystalline monolayer WS film for attomolar-level Hg sensors. <i>Nature Communications</i> , 2021 , 12, 3870	17.4	11
132	Rapid fabrication of hierarchical porous SiC/C hybrid structure: toward high-performance capacitive energy storage with ultrahigh cyclability. <i>Journal of Materials Science</i> , 2021 , 56, 16068-16081	4.3	1
131	The rise of plastic deformation in boron nitride ceramics. Science China Materials, 2021, 64, 46-51	7.1	3
130	Heat-treated glassy carbon under pressure exhibiting superior hardness, strength and elasticity. Journal of Materiomics, 2021 , 7, 177-184	6.7	4
129	Strong amorphous carbon prepared by spark-plasma sintering C60. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 1655-1660	3.8	1
128	Porous bismuth antimony telluride alloys with excellent thermoelectric and mechanical properties. Journal of Materials Chemistry A, 2021 , 9, 4990-4999	13	8
127	Design of a Series of Metallic BN with Tunable Mechanical Properties. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 1979-1984	6.4	О
126	Design of a Class of New sp 2	1.8	6

(2020-2021)

125	Preparation of dense B4C ceramics by spark plasma sintering of high-purity nanoparticles. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 3929-3936	6	8
124	Design and theoretical study of novel multifunctional 3D-BC2N polymorphs. <i>Chemical Physics Letters</i> , 2021 , 774, 138610	2.5	1
123	Columbite-rich multiphase TiO2 nanoceramic with superior mechanical and dielectric properties. Journal of the European Ceramic Society, 2021 , 41, 4951-4957	6	О
122	Strengthening effects of penetrating twin boundary and phase boundary in polycrystalline diamond. <i>Diamond and Related Materials</i> , 2021 , 117, 108436	3.5	2
121	Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene. <i>Cell Reports Physical Science</i> , 2021 , 2, 100575	6.1	7
120	In Situ Grown Ultrafine RuO Nanoparticles on GeP Nanosheets as the Electrode Material for Flexible Planar Micro-Supercapacitors with High Specific Capacitance and Cyclability. <i>ACS Applied Materials & Capacitance and Cyclability</i> . ACS Applied Materials & Capacitance and Cyclability. ACS Applied Materials & Capacitance and Cyclability.	9.5	1
119	High-sensitivity and versatile plasmonic biosensor based on grain boundaries in polycrystalline 1L WS films. <i>Biosensors and Bioelectronics</i> , 2021 , 194, 113596	11.8	2
118	Structural diversity, large interlayer spacing and switchable electronic properties of graphitic systems. <i>Journal of Materials Science</i> , 2021 , 56, 5509-5519	4.3	1
117	Structural Determination of a Graphite/Hexagonal Boron Nitride Superlattice Observed in the Experiment. <i>Inorganic Chemistry</i> , 2021 , 60, 2598-2603	5.1	1
116	Superhard and superconductive nondiamond-like BC structure. <i>Diamond and Related Materials</i> , 2020 , 110, 108142	3.5	
115	Pentadiamond-like Metallic Hard Carbon Nitride. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 24978-249	83 .8	9
114	Ab initio study of pressureInduced metallization and superconductivity in orthorhombic LiBH2 phase under ultra-high pressure. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126525	2.3	4
113	Application of hard ceramic materials B4C in energy storage: Design B4C@C core-shell nanoparticles as electrodes for flexible all-solid-state micro-supercapacitors with ultrahigh cyclability. <i>Nano Energy</i> , 2020 , 75, 104947	17.1	21
112	Mechanochemically assisted synthesis of titanium carbonitride from metal and organic precursor. Journal of the American Ceramic Society, 2020 , 103, 6112-6119	3.8	О
111	Universal Phase Transitions of AlB-Type Transition-Metal Diborides. <i>ACS Omega</i> , 2020 , 5, 4620-4625	3.9	5
110	Synthesis of twin-structured nanodiamond particles. <i>AIP Advances</i> , 2020 , 10, 015240	1.5	3
109	Mechanical polishing of ultrahard nanotwinned diamond via transition into hard sp2-sp3 amorphous carbon. <i>Carbon</i> , 2020 , 161, 1-6	10.4	15
108	Influence of van der Waals epitaxy on phase transformation behaviors in 2D heterostructure. <i>Applied Physics Letters</i> , 2020 , 116, 021602	3.4	4

107	Potential high-T superconductivity in ZrB2 polymorph under pressure. <i>Computational Materials Science</i> , 2020 , 176, 109517	3.2	2
106	Superhard conductive orthorhombic carbon polymorphs. <i>Carbon</i> , 2020 , 158, 546-552	10.4	16
105	Three metallic BN polymorphs: 1D multi-threaded conduction in a 3D network. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 489-496	3.6	3
104	High-Pressure Synthesis of cBN Nanoparticles with High-Density Nanotwin Substructures. <i>ACS Omega</i> , 2020 , 5, 650-654	3.9	1
103	Restacked melon as highly-efficient photocatalyst. <i>Nano Energy</i> , 2020 , 77, 105124	17.1	2
102	Superhard sp-sp hybridized BCN with 2D metallicity. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 229	18-2629	22)
101	High-Performance Broadband Photodetectors of Heterogeneous 2D Inorganic Molecular Sb2O3/Monolayer MoS2 Crystals Grown via Chemical Vapor Deposition. <i>Advanced Optical Materials</i> , 2020 , 8, 2000168	8.1	4
100	Photoluminescence and Raman Spectra Oscillations Induced by Laser Interference in Annealing-Created Monolayer WS2 Bubbles. <i>Advanced Optical Materials</i> , 2019 , 7, 1801373	8.1	14
99	Effect of layer and stacking sequence in simultaneously grown 2H and 3R WS atomic layers. <i>Nanotechnology</i> , 2019 , 30, 345203	3.4	7
98	In-Situ Observation of the Formation of Fibrous Sulfur under High Pressure. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 14696-14700	3.8	4
97	Electronic structure and superconductivity in hexagonal Li3B2 and Li2B2H phases under pressure. Journal of Applied Physics, 2019 , 125, 223902	2.5	
96	One-Step Growth of Spatially Graded MoW S Monolayers with a Wide Span in Composition (from x = 0 to 1) at a Large Scale. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 20979-20986	9.5	7
95	High-pressure phases of boron arsenide with potential high thermal conductivity. <i>Physical Review B</i> , 2019 , 99,	3.3	11
94	First-principles studies of superhard BC8N structures. <i>Journal of Applied Physics</i> , 2019 , 125, 175108	2.5	7
93	Direct large-scale fabrication of C-encapsulated B4C nanoparticles with tunable dielectric properties as excellent microwave absorbers. <i>Carbon</i> , 2019 , 148, 504-511	10.4	16
92	Accelerated Degradation of CrCl3 Nanoflakes Induced by Metal Electrodes: Implications for Remediation in Nanodevice Fabrication. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1597-1603	5.6	7
91	Potential high-Tc superconductivity in CaYH12 under pressure. <i>Physical Review B</i> , 2019 , 99,	3.3	53
90	Small onion-like BN leads to ultrafine-twinned cubic BN. <i>Science China Materials</i> , 2019 , 62, 1169-1176	7.1	9

89	Mechanical properties of boron arsenide single crystal. Applied Physics Letters, 2019, 114, 131903	3.4	15
88	Modifying Carbon Nitride through Extreme Phosphorus Substitution 2019 , 1, 14-19		7
87	Layered porous materials indium triphosphide InP3 for high-performance flexible all-solid-state supercapacitors. <i>Journal of Power Sources</i> , 2019 , 438, 227010	8.9	10
86	Tribological properties of oleylamine-modified nickel nanoparticles as lubricating oil additive. <i>Materials Research Express</i> , 2019 , 6, 105037	1.7	3
85	Lateral Bilayer MoS2IWS2 Heterostructure Photodetectors with High Responsivity and Detectivity. <i>Advanced Optical Materials</i> , 2019 , 7, 1900815	8.1	39
84	Discovery of superhard materials via CALYPSO methodology. <i>Chinese Physics B</i> , 2019 , 28, 106104	1.2	9
83	First-principles study of crystal structures and superconductivity of ternary YSH6 and LaSH6 at high pressures. <i>Physical Review B</i> , 2019 , 100,	3.3	16
82	Continuous strengthening in nanotwinned diamond. Npj Computational Materials, 2019, 5,	10.9	17
81	Atomically Resolving Polymorphs and Crystal Structures of In2Se3. <i>Chemistry of Materials</i> , 2019 , 31, 10 ⁻⁷	1 4 3610	149
80	One-step synthetic route and sintering for carbon-coated B4C nanoparticles. <i>Journal of Alloys and Compounds</i> , 2019 , 782, 263-269	5.7	10
79	Prediction of Li2B novel phases and superconductivity under varying pressures. <i>Computational Materials Science</i> , 2019 , 158, 255-259	3.2	5
78	Enhanced thermoelectric performance of high pressure synthesized Sb-doped Mg2Si. <i>Journal of Alloys and Compounds</i> , 2018 , 741, 1148-1152	5.7	13
77	Grain wall boundaries in centimeter-scale continuous monolayer WS film grown by chemical vapor deposition. <i>Nanotechnology</i> , 2018 , 29, 255705	3.4	8
76	Low-energy 3D sp carbons with versatile properties beyond graphite and graphene. <i>Dalton Transactions</i> , 2018 , 47, 6233-6239	4.3	6
75	Novel carbon polymorphs with cumulative double bonds in three-dimensional sp-sp hybrid framework. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 15022-15029	3.6	6
74	3D hybrid carbon composed of multigraphene bridged by carbon chains. <i>AIP Advances</i> , 2018 , 8, 015019	1.5	
73	Enhanced Stability of Black Phosphorus Field-Effect Transistors via Hydrogen Treatment. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700455	6.4	15
72	Enhanced thermoelectric performance of Na-doped PbTe synthesized under high pressure. <i>Science China Materials</i> , 2018 , 61, 1218-1224	7.1	20

71	First principles studies of superhard BC6N phases with unexpected 1D metallicity. <i>Computational Materials Science</i> , 2018 , 148, 157-164	3.2	9
70	Predicting the ground-state structure of sodium boride. <i>Physical Review B</i> , 2018 , 97,	3.3	16
69	Enhanced thermoelectric performance of bismuth-doped magnesium silicide synthesized under high pressure. <i>Journal of Materials Science</i> , 2018 , 53, 9091-9098	4.3	9
68	Two-dimensional boron on Pb (1 1 0) surface. <i>FlatChem</i> , 2018 , 7, 34-41	5.1	5
67	Hard three-dimensional BN framework with one-dimensional metallicity. <i>Journal of Alloys and Compounds</i> , 2018 , 731, 364-368	5.7	19
66	Investigation on the Stability of Derivative Melam from Melamine Pyrolysis under High Pressure. <i>Nanomaterials</i> , 2018 , 8,	5.4	10
65	Mechanically ductile 3D splip 2 microporous carbon. <i>Journal of Materials Science</i> , 2018 , 53, 4316-4322	4.3	10
64	Multithreaded conductive carbon: 1D conduction in 3D carbon. <i>Carbon</i> , 2017 , 115, 584-588	10.4	13
63	Properties of the exotic metastable ST12 germanium allotrope. <i>Nature Communications</i> , 2017 , 8, 13909	17.4	27
62	Role of plastic deformation in tailoring ultrafine microstructure in nanotwinned diamond for enhanced hardness. <i>Science China Materials</i> , 2017 , 60, 178-185	7.1	18
61	Superhard three-dimensional B3N4 with two-dimensional metallicity. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5897-5901	7.1	14
60	New hexagonal boron nitride polytypes with triple-layer periodicity. <i>Journal of Applied Physics</i> , 2017 , 121, 165102	2.5	10
59	Pressure-induced boron nitride nanotube derivatives: 3D metastable allotropes. <i>Journal of Applied Physics</i> , 2017 , 121, 165106	2.5	14
58	Strengthening mechanism of EZr. Computational Materials Science, 2017, 135, 134-140	3.2	4
57	Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network. <i>Science Advances</i> , 2017 , 3, e1603213	14.3	77
56	Superhard sp2-sp3 hybridized BC2N: A 3D crystal with 1D and 2D alternate metallicity. <i>Journal of Applied Physics</i> , 2017 , 121, 225103	2.5	11
55	Metastable phases, phase transformation and properties of AlAs based on first-principle study. <i>Computational Materials Science</i> , 2017 , 128, 337-342	3.2	17
54	A superhard sp3 microporous carbon with direct bandgap. <i>Chemical Physics Letters</i> , 2017 , 689, 68-73	2.5	29

(2015-2017)

53	Pressure-Induced Polymerization and Disproportionation of LiC Accompanied with Irreversible Conductivity Enhancement. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 4241-4245	6.4	11
52	Strain Release Induced Novel Fluorescence Variation in CVD-Grown Monolayer WS Crystals. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 34071-34077	9.5	13
51	Strengthening in high-pressure quenched Zr. High Pressure Research, 2017, 37, 278-286	1.6	5
50	Flexible Black-Phosphorus Nanoflake/Carbon Nanotube Composite Paper for High-Performance All-Solid-State Supercapacitors. <i>ACS Applied Materials & Early Interfaces</i> , 2017 , 9, 44478-44484	9.5	69
49	Preparation of pure P-phase titanium alloys with low moduli via high pressure solution treatment. <i>Journal of Alloys and Compounds</i> , 2017 , 695, 45-51	5.7	12
48	Superhard orthorhombic phase of B2CO compound. <i>Diamond and Related Materials</i> , 2017 , 73, 87-92	3.5	13
47	Recent Advances in Superhard Materials. Annual Review of Materials Research, 2016, 46, 383-406	12.8	80
46	Anomalous melting behavior of polycrystalline bismuth quenched at high temperature and high pressure. <i>Materials Letters</i> , 2016 , 168, 36-39	3.3	2
45	Flexible All-Solid-State Supercapacitors based on Liquid-Exfoliated Black-Phosphorus Nanoflakes. <i>Advanced Materials</i> , 2016 , 28, 3194-201	24	249
44	Novel high-pressure phases of AlP from first principles. <i>Journal of Applied Physics</i> , 2016 , 119, 185101	2.5	10
43	Superhard sp28p3 hybrid carbon allotropes with tunable electronic properties. <i>AIP Advances</i> , 2016 , 6, 055020	1.5	17
42	Interpenetrating graphene networks: Three-dimensional node-line semimetals with massive negative linear compressibilities. <i>Physical Review B</i> , 2016 , 94,	3.3	13
41	Coexistence of multiple metastable polytypes in rhombohedral bismuth. Scientific Reports, 2016 , 6, 203	33 7.9	12
40	Novel high-pressure phases of AlN: A first-principles study. <i>Computational Materials Science</i> , 2016 , 117, 496-501	3.2	23
39	Superhard superstrong carbon clathrate. <i>Carbon</i> , 2016 , 105, 151-155	10.4	23
38	Te-Doped Black Phosphorus Field-Effect Transistors. <i>Advanced Materials</i> , 2016 , 28, 9408-9415	24	195
37	Si10: A sp3 Silicon Allotrope with Spirally Connected Si5 Tetrahedrons. <i>Chemistry of Materials</i> , 2016 , 28, 6441-6445	9.6	14
36	Deterministic Polarization Entanglement Purification of Cluster State in Multiple Degrees of Freedom. <i>International Journal of Theoretical Physics</i> , 2015 , 54, 1184-1192	1.1	

35	Is orthorhombic iron tetraboride superhard?. Journal of Materiomics, 2015, 1, 45-51	6.7	23
34	Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties. <i>Nature Communications</i> , 2015 , 6, 6212	17.4	43
33	Carbon coated face-centered cubic Ru-C nanoalloys. <i>Nanoscale</i> , 2014 , 6, 10370-6	7.7	16
32	Novel three-dimensional boron nitride allotropes from compressed nanotube bundles. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 7022	7.1	17
31	On implementing nondestructive triplet Toffoli gate with entanglement swapping operations via the GHZ state analysis. <i>Quantum Information Processing</i> , 2014 , 13, 2039-2047	1.6	5
30	Direct band gap silicon allotropes. <i>Journal of the American Chemical Society</i> , 2014 , 136, 9826-9	16.4	120
29	Superhard and high-strength yne-diamond semimetals. <i>Diamond and Related Materials</i> , 2014 , 46, 15-20	3.5	14
28	Nanotwinned diamond with unprecedented hardness and stability. <i>Nature</i> , 2014 , 510, 250-3	50.4	440
27	An ab initio study on the transition paths from graphite to diamond under pressure. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 145402	1.8	13
26	Compressed carbon nanotubes: a family of new multifunctional carbon allotropes. Scientific Reports		
20	, 2013 , 3, 1331	4.9	73
25			
	, 2013 , 3, 1331		2
25	, 2013 , 3, 1331 A novel layer-structured PtN2: First-principles calculations. <i>Journal of Superhard Materials</i> , 2013 , 35, 339	96149	2
25 24	A novel layer-structured PtN2: First-principles calculations. <i>Journal of Superhard Materials</i> , 2013 , 35, 339 Ultrahard nanotwinned cubic boron nitride. <i>Nature</i> , 2013 , 493, 385-8	9द149 50.4	519
25 24 23	A novel layer-structured PtN2: First-principles calculations. <i>Journal of Superhard Materials</i> , 2013 , 35, 339 Ultrahard nanotwinned cubic boron nitride. <i>Nature</i> , 2013 , 493, 385-8 Tian et al. reply. <i>Nature</i> , 2013 , 502, E2-3 Microscopic theory of hardness and design of novel superhard crystals. <i>International Journal of</i>	9 a49 50.4 50.4	2 519 10
25 24 23 22	A novel layer-structured PtN2: First-principles calculations. <i>Journal of Superhard Materials</i> , 2013 , 35, 339 Ultrahard nanotwinned cubic boron nitride. <i>Nature</i> , 2013 , 493, 385-8 Tian et al. reply. <i>Nature</i> , 2013 , 502, E2-3 Microscopic theory of hardness and design of novel superhard crystals. <i>International Journal of Refractory Metals and Hard Materials</i> , 2012 , 33, 93-106	9 349 50.4 50.4 4.1	2 519 10 563
25 24 23 22 21	A novel layer-structured PtN2: First-principles calculations. <i>Journal of Superhard Materials</i> , 2013 , 35, 339 Ultrahard nanotwinned cubic boron nitride. <i>Nature</i> , 2013 , 493, 385-8 Tian et al. reply. <i>Nature</i> , 2013 , 502, E2-3 Microscopic theory of hardness and design of novel superhard crystals. <i>International Journal of Refractory Metals and Hard Materials</i> , 2012 , 33, 93-106 Exotic Cubic Carbon Allotropes. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24233-24238	96349 50.4 50.4 4.1 3.8	2 519 10 563 48

LIST OF PUBLICATIONS

17	Superhard F-carbon predicted by ab initio particle-swarm optimization methodology. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 165504	1.8	39
16	Tetragonal allotrope of group 14 elements. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12362	-516.4	146
15	POLARIZATION ENTANGLEMENT CONCENTRATIONS WITH LESS-HYPERENTANGLED PHOTON PAIRS IN MULTIPLE DEGREES OF FREEDOM. <i>International Journal of Quantum Information</i> , 2012 , 10, 1250075	0.8	2
14	High-pressure phases of NaAlH4 from first principles. <i>Applied Physics Letters</i> , 2012 , 100, 061905	3.4	8
13	Prediction of a superconductive superhard material: Diamond-like BC7. <i>Journal of Applied Physics</i> , 2011 , 110, 013501	2.5	20
12	Three dimensional carbon-nanotube polymers. ACS Nano, 2011 , 5, 7226-34	16.7	94
11	Novel superhard carbon: C-centered orthorhombic C8. <i>Physical Review Letters</i> , 2011 , 107, 215502	7.4	198
10	Universal phase transitions of B1-structured stoichiometric transition metal carbides. <i>Inorganic Chemistry</i> , 2011 , 50, 9266-72	5.1	11
9	Superconducting ultraincompressible hard cubic Re4C. Computational Materials Science, 2011, 50, 1592	-3,5296	12
8	Properties of CaB6 single crystals synthesized under high pressure and temperature. <i>Science China: Physics, Mechanics and Astronomy</i> , 2011 , 54, 1791-1795	3.6	6
7	Novel High-Pressure Phase of RhB: First-Principles Calculations. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 19910-19915	3.8	16
6	Semiconducting Superhard Ruthenium Monocarbide. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 9961-9	9 6. &	36
5	Prediction of a Three-Dimensional Conductive Superhard Material: Diamond-like BC2. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 22688-22690	3.8	31
4	Bulk Re2C: Crystal Structure, Hardness, and Ultra-incompressibility. <i>Crystal Growth and Design</i> , 2010 , 10, 5024-5026	3.5	40
3	Prediction of a conducting hard ductile cubic IrC. <i>Physica Status Solidi - Rapid Research Letters</i> , 2010 , 4, 230-232	2.5	7
2	Controllable growth of multilayered XSe2 (X=W and Mo) for nonlinear optical and optoelectronic applications. 2D Materials,	5.9	1
1	Heterogeneous Diamond-cBN Composites with Superb Toughness and Hardness. <i>Nano Letters</i> ,	11.5	0