
Paul J Sullivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1673190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of codeposition on the performance of CuPc–C60 heterojunction photovoltaic devices. Applied Physics Letters, 2004, 84, 1210-1212.	1.5	161
2	Halogenated Boron Subphthalocyanines as Light Harvesting Electron Acceptors in Organic Photovoltaics. Advanced Energy Materials, 2011, 1, 352-355.	10.2	140
3	Influence of molecular architecture and intermixing on the photovoltaic, morphological and spectroscopic properties of CuPc–C60 heterojunctions. Solar Energy Materials and Solar Cells, 2004, 83, 229-245.	3.0	130
4	Structural templating as a route to improved photovoltaic performance in copper phthalocyanine/fullerene (C60) heterojunctions. Applied Physics Letters, 2007, 91, .	1.5	130
5	Thin-film organic photodiodes as integrated detectors for microscale chemiluminescence assays. Sensors and Actuators B: Chemical, 2005, 106, 878-884.	4.0	126
6	Electronic Structure of C ₆₀ /Phthalocyanine/ITO Interfaces Studied using Soft X-ray Spectroscopies. Journal of Physical Chemistry C, 2010, 114, 1928-1933.	1.5	98
7	The effect of a MoOx hole-extracting layer on the performance of organic photovoltaic cells based on small molecule planar heterojunctions. Organic Electronics, 2010, 11, 2019-2025.	1.4	92
8	Boron Subphthalocyanine Chloride as an Electron Acceptor for Highâ€Voltage Fullereneâ€Free Organic Photovoltaics. Advanced Functional Materials, 2012, 22, 561-566.	7.8	89
9	Pentacene/fullerene (C60) heterojunction solar cells: Device performance and degradation mechanisms. Organic Electronics, 2008, 9, 656-660.	1.4	74
10	Efficient Organic Photovoltaic Cells through Structural Modification of Chloroaluminum Phthalocyanine/Fullerene Heterojunctions. Journal of Physical Chemistry C, 2010, 114, 3304-3308.	1.5	73
11	Increased efficiency in small molecule organic photovoltaic cells through electrode modification with self-assembled monolayers. Energy and Environmental Science, 2011, 4, 1708.	15.6	68
12	Acceptor Properties of Boron Subphthalocyanines in Fullerene Free Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 14813-14823.	1.5	66
13	Optimization of a High Work Function Solution Processed Vanadium Oxide Hole-Extracting Layer for Small Molecule and Polymer Organic Photovoltaic Cells. Journal of Physical Chemistry C, 2013, 117, 49-57.	1.5	64
14	Increased efficiency of small molecule photovoltaic cells by insertion of a MoO ₃ hole-extracting layer. Energy and Environmental Science, 2010, 3, 107-110.	15.6	63
15	Comparison of dimethyl sulfoxide treated highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) electrodes for use in indium tin oxide-free organic electronic photovoltaic devices. Organic Electronics, 2014, 15, 2624-2631.	1.4	40
16	Ultraâ€High Voltage Multijunction Organic Solar Cells for Lowâ€Power Electronic Applications. Advanced Energy Materials, 2013, 3, 239-244.	10.2	34
17	The role of molecular architecture and layer composition on the properties and performance of CuPc-C60 photovoltaic devices. Materials Science and Engineering C, 2005, 25, 858-865.	3.8	27
18	Elucidating the factors that determine the open circuit voltage in discrete heterojunction organic photovoltaic cells. Journal of Materials Chemistry, 2010, 20, 1173-1178.	6.7	25

PAUL J SULLIVAN

#	Article	IF	CITATIONS
19	Exploring high temperature templating in non-planar phthalocyanine/copper iodide (111) bilayers. Journal of Materials Chemistry C, 2015, 3, 461-465.	2.7	23
20	Small molecule tandem organic photovoltaic cells incorporating an α-NPD optical spacer layer. Organic Electronics, 2013, 14, 2353-2359.	1.4	20
21	An N-ethylated barbituric acid end-capped bithiophene as an electron-acceptor material in fullerene-free organic photovoltaics. Chemical Communications, 2015, 51, 6222-6225.	2.2	20
22	High voltage hybrid organic photovoltaics using a zinc oxide acceptor and a subphthalocyanine donor. Physical Chemistry Chemical Physics, 2014, 16, 18926-18932.	1.3	17
23	Highly conductive spray deposited poly(3, 4-ethylenedioxythiophene):poly (styrenesulfonate) electrodes for indium tin oxide-free small molecule organic photovoltaic devices. Applied Physics Letters, 2013, 103, 173304.	1.5	10
24	An External Quantum Efficiency Technique to Directly Observe Current Balancing in Tandem Organic Photovoltaics. Advanced Energy Materials, 2011, 1, 1085-1088.	10.2	5
25	Molecular Thin Films for Optoelectronic Applications. Solid State Phenomena, 2007, 121-123, 373-376.	0.3	3