Kolby J Jardine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1673156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stem respiration and growth in a central Amazon rainforest. Trees - Structure and Function, 2022, 36, 991-1004.	1.9	2
2	Dry Season Transpiration and Soil Water Dynamics in the Central Amazon. Frontiers in Plant Science, 2022, 13, 825097.	3.6	4
3	Soil moisture thresholds explain a shift from light-limited to water-limited sap velocity in the Central Amazon during the 2015–16 El Niño drought. Environmental Research Letters, 2022, 17, 064023.	5.2	5
4	Near-canopy horizontal concentration heterogeneity of semivolatile oxygenated organic compounds and implications for 2-methyltetrols primary emissions. Environmental Science Atmospheres, 2021, 1, 8-20.	2.4	4
5	Are Methanol-Derived Foliar Methyl Acetate Emissions a Tracer of Acetate-Mediated Drought Survival in Plants?. Plants, 2021, 10, 411.	3.5	3
6	A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics, 2021, 61, 101232.	5.2	22
7	High Temperature Acclimation of Leaf Gas Exchange, Photochemistry, and Metabolomic Profiles in <i>Populus trichocarpa</i> . ACS Earth and Space Chemistry, 2021, 5, 1813-1828.	2.7	7
8	Canopy Position Influences the Degree of Light Suppression of Leaf Respiration in Abundant Tree Genera in the Amazon Forest. Frontiers in Forests and Global Change, 2021, 4, .	2.3	3
9	Stability of tropical forest tree carbonâ€water relations in a rainfall exclusion treatment through shifts in effective water uptake depth. Global Change Biology, 2021, 27, 6454-6466.	9.5	17
10	Development of a portable leaf photosynthesis and volatile organic compounds emission system. MethodsX, 2020, 7, 100880.	1.6	2
11	Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol. PLoS ONE, 2020, 15, e0227591.	2.5	8
12	Stimulation of isoprene emissions and electron transport rates as key mechanisms of thermal tolerance in the tropical species <i>Vismia guianensis</i> . Global Change Biology, 2020, 26, 5928-5941.	9.5	20
13	Do Cell Wall Esters Facilitate Forest Response to Climate?. Trends in Plant Science, 2020, 25, 729-732.	8.8	5
14	Leaf isoprene and monoterpene emission distribution across hyperdominant tree genera in the Amazon basin. Phytochemistry, 2020, 175, 112366.	2.9	21
15	Title is missing!. , 2020, 15, e0227591.		0
16	Title is missing!. , 2020, 15, e0227591.		0
17	Title is missing!. , 2020, 15, e0227591.		0

Kolby J Jardine

#	Article	IF	CITATIONS
19	Species-Specific Shifts in Diurnal Sap Velocity Dynamics and Hysteretic Behavior of Ecophysiological Variables During the 2015–2016 El Niño Event in the Amazon Forest. Frontiers in Plant Science, 2019, 10, 830.	3.6	17
20	Reassimilation of Leaf Internal CO2 Contributes to Isoprene Emission in the Neotropical Species Inga edulis Mart Forests, 2019, 10, 472.	2.1	13
21	Intermediate-scale horizontal isoprene concentrations in the near-canopy forest atmosphere and implications for emission heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19318-19323.	7.1	28
22	Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics. Oecologia, 2019, 191, 519-530.	2.0	14
23	Volatile monoterpene â€~fingerprints' of resinous Protium tree species in the Amazon rainforest. Phytochemistry, 2019, 160, 61-70.	2.9	8
24	Dry and hot: the hydraulic consequences of a climate change–type drought for Amazonian trees. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180209.	4.0	49
25	Below versus above Ground Plant Sources of Abscisic Acid (ABA) at the Heart of Tropical Forest Response to Warming. International Journal of Molecular Sciences, 2018, 19, 2023.	4.1	14
26	Monoterpene â€~ <i>thermometer</i> ' of tropical forestâ€atmosphere response to climate warming. Plant, Cell and Environment, 2017, 40, 441-452.	5.7	52
27	A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations. Ecological Informatics, 2017, 42, 148-158.	5.2	18
28	The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest. Bulletin of the American Meteorological Society, 2017, 98, 981-997.	3.3	128
29	Integration of C1 and C2 Metabolism in Trees. International Journal of Molecular Sciences, 2017, 18, 2045.	4.1	25
30	Seasonality of isoprenoid emissions from a primary rainforest inÂcentral Amazonia. Atmospheric Chemistry and Physics, 2016, 16, 3903-3925.	4.9	52
31	Methanol and isoprene emissions from the fast growing tropical pioneer species <i>Vismia guianensis</i> (Aubl.) Pers. (Hypericaceae) in the central Amazon forest. Atmospheric Chemistry and Physics, 2016, 16, 6441-6452.	4.9	31
32	Biogenic Volatile Organic Compounds in Amazonian Forest Ecosystems. Ecological Studies, 2016, , 19-33.	1.2	3
33	Diurnal Pattern of Leaf, Flower and Fruit Specific Ambient Volatiles above an Oil Palm Plantation in ParÃ _i State, Brazil. Journal of the Brazilian Chemical Society, 2016, , .	0.6	1
34	Dimethyl sulfide in the Amazon rain forest. Global Biogeochemical Cycles, 2015, 29, 19-32.	4.9	58
35	Diel and seasonal changes of biogenic volatile organic compounds within and above an Amazonian rainforest. Atmospheric Chemistry and Physics, 2015, 15, 3359-3378.	4.9	83
36	Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest. Plants, 2015, 4, 678-690.	3.5	41

Kolby J Jardine

#	Article	IF	CITATIONS
37	Highly reactive lightâ€dependent monoterpenes in the Amazon. Geophysical Research Letters, 2015, 42, 1576-1583.	4.0	71
38	Atmospheric benzenoid emissions from plants rival those from fossil fuels. Scientific Reports, 2015, 5, 12064.	3.3	104
39	Effects of light and temperature on isoprene emission at different leaf developmental stages of eschweilera coriacea in central Amazon. Acta Amazonica, 2014, 44, 9-18.	0.7	36
40	Dynamic Balancing of Isoprene Carbon Sources Reflects Photosynthetic and Photorespiratory Responses to Temperature Stress. Plant Physiology, 2014, 166, 2051-2064.	4.8	41
41	Phytogenic biosynthesis and emission of methyl acetate. Plant, Cell and Environment, 2014, 37, 414-424.	5.7	17
42	Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition. Plant, Cell and Environment, 2014, 37, 1790-1809.	5.7	107
43	Emissions of putative isoprene oxidation products from mango branches under abiotic stress. Journal of Experimental Botany, 2013, 64, 3669-3679.	4.8	72
44	Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light–dark transitions. Photosynthesis Research, 2012, 113, 321-333.	2.9	46
45	Withinâ€plant isoprene oxidation confirmed by direct emissions of oxidation products methyl vinyl ketone and methacrolein. Global Change Biology, 2012, 18, 973-984.	9.5	107
46	Ecosystem-scale compensation points of formic and acetic acid in the central Amazon. Biogeosciences, 2011, 8, 3709-3720.	3.3	36
47	Within-canopy sesquiterpene ozonolysis in Amazonia. Journal of Geophysical Research, 2011, 116, .	3.3	73
48	Volatile organic compound emissions from <i>Larrea tridentata</i> (creosotebush). Atmospheric Chemistry and Physics, 2010, 10, 12191-12206.	4.9	73
49	Dynamic Solution Injection: a new method for preparing pptv–ppbv standard atmospheres of volatile organic compounds. Atmospheric Measurement Techniques, 2010, 3, 1569-1576.	3.1	33
50	Efficient Atmospheric Cleansing of Oxidized Organic Trace Gases by Vegetation. Science, 2010, 330, 816-819.	12.6	213
51	Gas Phase Measurements of Pyruvic Acid and Its Volatile Metabolites. Environmental Science & Technology, 2010, 44, 2454-2460.	10.0	63
52	Carbon isotope analysis of acetaldehyde emitted from leaves following mechanical stress and anoxia. Plant Biology, 2009, 11, 591-597.	3.8	33
53	Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere. Biogeosciences, 2008, 5, 1559-1572.	3.3	49
54	Chemical sensing of plant stress at the ecosystem scale. Biogeosciences, 2008, 5, 1287-1294.	3.3	93

#	Article	IF	CITATIONS
55	The bi-directional exchange of oxygenated VOCs between a loblolly pine (<l>Pinus) Tj ETQq1 I</l>	0.784314	rgBT /Overlock
	3015-3031.	4.9	109