# Kjell Fuxe

# List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1672914/kjell-fuxe-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

813
papers

46,487
citations

108
h-index

9-index

48,868
ext. papers

48,868
avg, IF

L-index

| #   | Paper                                                                                                                                                                                                                                                                    | IF  | Citations |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 813 | The integrative role of G protein-coupled receptor heterocomplexes in Parkinson's disease <i>Neural Regeneration Research</i> , <b>2022</b> , 17, 2211-2212                                                                                                              | 4.5 |           |
| 812 | Intranasal Delivery of Galanin 2 and Neuropeptide Y1 Agonists Enhanced Spatial Memory Performance and Neuronal Precursor Cells Proliferation in the Dorsal Hippocampus in Rats <i>Frontiers in Pharmacology</i> , <b>2022</b> , 13, 820210                               | 5.6 | 1         |
| 811 | Increased density and antagonistic allosteric interactions in A2AR-D2R heterocomplexes in extinction from cocaine use, lost in cue induced reinstatement of cocaine seeking <i>Pharmacology Biochemistry and Behavior</i> , <b>2022</b> , 215, 173375                    | 3.9 |           |
| 810 | Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. <i>Cells</i> , <b>2022</b> , 11, 1826                                                                                                               | 7.9 | O         |
| 809 | Galanin and Neuropeptide Y Interaction Enhances Proliferation of Granule Precursor Cells and Expression of Neuroprotective Factors in the Rat Hippocampus with Consequent Augmented Spatial Memory. <i>Biomedicines</i> , <b>2022</b> , 10, 1297                         | 4.8 | 1         |
| 808 | Susceptibility of GPCR Heteroreceptor Complexes to Neurotoxins. Relevance for Neurodegenerative and Psychiatric Disorders <b>2022</b> , 1-11                                                                                                                             |     |           |
| 807 | Molecular Integration in Adenosine Heteroreceptor Complexes Through Allosteric and De-Phosphorylation (STEP) Mechanisms and its Role in Brain Disease <i>Frontiers in Pharmacology</i> , <b>2021</b> , 12, 781381                                                        | 5.6 | 2         |
| 806 | Galanin(1-15) Potentiates the Antidepressant-like Effects Induced by Escitalopram in a Rat Model of Depression. <i>International Journal of Molecular Sciences</i> , <b>2021</b> , 22,                                                                                   | 6.3 | 3         |
| 805 | The Balance of MU-Opioid, Dopamine D2 and Adenosine A2A Heteroreceptor Complexes in the Ventral Striatal-Pallidal GABA Antireward Neurons May Have a Significant Role in Morphine and Cocaine Use Disorders. <i>Frontiers in Pharmacology</i> , <b>2021</b> , 12, 627032 | 5.6 | 5         |
| 804 | Amplification of potential thermogenetic mechanisms in cetacean brains compared to artiodactyl brains. <i>Scientific Reports</i> , <b>2021</b> , 11, 5486                                                                                                                | 4.9 | 5         |
| 803 | Adenosine and Kynurenic Acid Interactions: Possible Relevance for Schizophrenia Treatment?. <i>Frontiers in Pharmacology</i> , <b>2021</b> , 12, 654426                                                                                                                  | 5.6 | 2         |
| 802 | Galanin and neuropeptide Y interactions elicit antidepressant activity linked to neuronal precursor cells of the dentate gyrus in the ventral hippocampus. <i>Journal of Cellular Physiology</i> , <b>2021</b> , 236, 3565-35                                            | 578 | 5         |
| 801 | Molecular, biochemical and behavioural evidence for a novel oxytocin receptor and serotonin 2C receptor heterocomplex. <i>Neuropharmacology</i> , <b>2021</b> , 183, 108394                                                                                              | 5.5 | 7         |
| 800 | Study of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity Ligation Assay. <i>Neuromethods</i> , <b>2021</b> , 117-134                                                                                           | 0.4 | 1         |
| 799 | The Role of Central Serotonin Neurons and 5-HT Heteroreceptor Complexes in the Pathophysiology of Depression: A Historical Perspective and Future Prospects. <i>International Journal of Molecular Sciences</i> , <b>2021</b> , 22,                                      | 6.3 | 19        |
| 798 | Serotonin Heteroreceptor Complexes and Their Integration of Signals in Neurons and Astroglia-Relevance for Mental Diseases. <i>Cells</i> , <b>2021</b> , 10,                                                                                                             | 7.9 | 3         |
| 797 | The coming together of allosteric and phosphorylation mechanisms in the molecular integration of A2A heteroreceptor complexes in the dorsal and ventral striatal-pallidal GABA neurons. <i>Pharmacological Reports</i> , <b>2021</b> , 73, 1096-1108                     | 3.9 | 4         |

| 796 | Co-Immunoprecipitation from Brain. <i>Neuromethods</i> , <b>2021</b> , 19-30                                                                                                                                                                                            | 0.4    | O  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|
| 795 | GALANIN (1-15) ENHANCES THE BEHAVIORAL EFFECTS OF FLUOXETINE IN THE OLFACTORY BULBECTOMY RAT SUGGESTING A NEW AUGMENTATION STRATEGY IN DEPRESSION. <i>International Journal of Neuropsychopharmacology</i> , <b>2021</b> ,                                              | 5.8    | 1  |
| 794 | Adenosine AReceptors in Substance Use Disorders: A Focus on Cocaine. <i>Cells</i> , <b>2020</b> , 9,                                                                                                                                                                    | 7.9    | 9  |
| 793 | Acute cocaine treatment enhances the antagonistic allosteric adenosine A2A-dopamine D2 receptor-receptor interactions in rat dorsal striatum without increasing significantly extracellular dopamine levels. <i>Pharmacological Reports</i> , <b>2020</b> , 72, 332-339 | 3.9    | 6  |
| 79² | Evidence for the existence of A2AR-TrkB heteroreceptor complexes in the dorsal hippocampus of the rat brain: Potential implications of A2AR and TrkB interplay upon ageing. <i>Mechanisms of Ageing and Development</i> , <b>2020</b> , 190, 111289                     | 5.6    | 3  |
| 791 | Multiple Adenosine-Dopamine (A2A-D2 Like) Heteroreceptor Complexes in the Brain and Their Role in Schizophrenia. <i>Cells</i> , <b>2020</b> , 9,                                                                                                                        | 7.9    | 13 |
| 790 | Existence of FGFR1-5-HT1AR heteroreceptor complexes in hippocampal astrocytes. Putative link to 5-HT and FGF2 modulation of hippocampal gamma oscillations. <i>Neuropharmacology</i> , <b>2020</b> , 170, 108070                                                        | 5.5    | 13 |
| 789 | OSU-6162, a Sigma1R Ligand in Low Doses, Can Further Increase the Effects of Cocaine Self-Administration on Accumbal D2R Heteroreceptor Complexes. <i>Neurotoxicity Research</i> , <b>2020</b> , 37, 433                                                                | 3-4:44 | 6  |
| 788 | On the G Protein-Coupled Receptor Neuromodulation of the Claustrum. <i>Neurochemical Research</i> , <b>2020</b> , 45, 5-15                                                                                                                                              | 4.6    | 4  |
| 787 | Conventional and Novel Pharmacological Approaches to Treat Dopamine-Related Disorders: Focus on Parkinson's Disease and Schizophrenia. <i>Neuroscience</i> , <b>2020</b> , 439, 301-318                                                                                 | 3.9    | 9  |
| 786 | Can Allosteric Receptor-Protein Interactions in Receptor Complexes Be a Molecular Mechanism Involved in Cancer Immune Therapy?. <i>Frontiers in Endocrinology</i> , <b>2019</b> , 10, 574                                                                               | 5.7    |    |
| 785 | Increased Ethanol Consumption and Locomotion Develop upon Ethanol Deprivation in Rats Overexpressing the Adenosine (A) Receptor. <i>Neuroscience</i> , <b>2019</b> , 418, 133-148                                                                                       | 3.9    | 2  |
| 784 | Oligomeric Receptor Complexes and Their Allosteric Receptor-Receptor Interactions in the Plasma Membrane Represent a New Biological Principle for Integration of Signals in the CNS. <i>Frontiers in Molecular Neuroscience</i> , <b>2019</b> , 12, 230                 | 6.1    | 17 |
| 783 | Galanin (1-15)-fluoxetine interaction in the novel object recognition test. Involvement of 5-HT1A receptors in the prefrontal cortex of the rats. <i>Neuropharmacology</i> , <b>2019</b> , 155, 104-112                                                                 | 5.5    | 10 |
| 782 | Role of the galanin N-terminal fragment (1-15) in anhedonia: Involvement of the dopaminergic mesolimbic system. <i>Journal of Psychopharmacology</i> , <b>2019</b> , 33, 737-747                                                                                        | 4.6    | 6  |
| 781 | Attenuation of Oxytocin and Serotonin 2A Receptor Signaling through Novel Heteroreceptor Formation. <i>ACS Chemical Neuroscience</i> , <b>2019</b> , 10, 3225-3240                                                                                                      | 5.7    | 14 |
| 78o | Acute Cocaine Enhances Dopamine DR Recognition and Signaling and Counteracts DR Internalization in Sigma1R-DR Heteroreceptor Complexes. <i>Molecular Neurobiology</i> , <b>2019</b> , 56, 7045-7055                                                                     | 6.2    | 8  |
| 779 | Potentiation of cannabinoid signaling in microglia by adenosine A receptor antagonists. <i>Glia</i> , <b>2019</b> , 67, 2410-2423                                                                                                                                       | 9      | 24 |

| 778 | Heterodimerization of Mu Opioid Receptor Protomer with Dopamine D Receptor Modulates Agonist-Induced Internalization of Mu Opioid Receptor. <i>Biomolecules</i> , <b>2019</b> , 9,                                                                                       | 5.9               | 8  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----|
| 777 | Desipramine restores the alterations in circadian entrainment induced by prenatal exposure to glucocorticoids. <i>Translational Psychiatry</i> , <b>2019</b> , 9, 263                                                                                                    | 8.6               | 1  |
| 776 | Differential allosteric modulation within dopamine DR - neurotensin NTS1R and DR - serotonin 5-HTR receptor complexes gives bias to intracellular calcium signalling. <i>Scientific Reports</i> , <b>2019</b> , 9, 1631.                                                 | 2 <sup>4.9</sup>  | 11 |
| 775 | Coimmunoprecipitation (co-IP) Analysis for Protein-Protein Interactions in the Neurons of the Cerebral Ganglia of the Land Snails of the Genus Polymita During Aestivation. <i>Neuromethods</i> , <b>2019</b> , 147                                                      | -9 <del>5</del> 6 |    |
| 774 | Isolation and Detection of G Protein-Coupled Receptor (GPCR) Heteroreceptor Complexes in Rat Brain Synaptosomal Preparation Using a Combined Brain Subcellular Fractionation/Co-immunoprecipitation (Co-IP) Procedures. <i>Neuromethods</i> , <b>2019</b> , 123-135      | 0.4               |    |
| 773 | Co-immunoprecipitation (Co-IP) of G Protein-Coupled Receptor (GPCR)-Receptor Tyrosine Kinase (RTK) Complexes from the Dorsal Hippocampus of the Rat Brain. <i>Neuromethods</i> , <b>2019</b> , 157-164                                                                   | 0.4               | 1  |
| 772 | A2AR Transmembrane 2 Peptide Administration Disrupts the A2AR-A2AR Homoreceptor but Not the A2AR-D2R Heteroreceptor Complex: Lack of Actions on Rodent Cocaine Self-Administration. <i>International Journal of Molecular Sciences</i> , <b>2019</b> , 20,               | 6.3               | 3  |
| 771 | Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson's disease and its treatment. <i>Journal of Neural Transmission</i> , <b>2019</b> , 126, 455-471                                                                                      | 4.3               | 24 |
| 770 | Central administration of galanin N-terminal fragment 1-15 decreases the voluntary alcohol intake in rats. <i>Addiction Biology</i> , <b>2019</b> , 24, 76-87                                                                                                            | 4.6               | 4  |
| 769 | Disruption of A2AR-D2R Heteroreceptor Complexes After A2AR Transmembrane 5 Peptide Administration Enhances Cocaine Self-Administration in Rats. <i>Molecular Neurobiology</i> , <b>2018</b> , 55, 7038-70                                                                | 04 <del>8</del>   | 34 |
| 768 | Differential activation of arginine-vasopressin receptor subtypes in the amygdaloid modulation of anxiety in the rat by arginine-vasopressin. <i>Psychopharmacology</i> , <b>2018</b> , 235, 1015-1027                                                                   | 4.7               | 6  |
| 767 | Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB and CB receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia.<br>Brain, Behavior, and Immunity, <b>2018</b> , 67, 139-151               | 16.6              | 65 |
| 766 | Dopamine D Receptor Supersensitivity as a Spectrum of Neurotoxicity and Status in Psychiatric Disorders. <i>Journal of Pharmacology and Experimental Therapeutics</i> , <b>2018</b> , 366, 519-526                                                                       | 4.7               | 12 |
| 765 | Analysis and Quantification of GPCR Allosteric Receptor Receptor Interactions Using Radioligand Binding Assays: The A2AR-D2R Heteroreceptor Complex Example. <i>Neuromethods</i> , <b>2018</b> , 1-14                                                                    | 0.4               |    |
| 764 | Methods to Identify the Signature of Trimers Formed by Three G Protein-Coupled Receptors or by Two G Protein-Coupled and One Ionotropic Receptor with Special Emphasis in the Functional Role in the Central Nervous System. <i>Neuromethods</i> , <b>2018</b> , 187-203 | 0.4               | 1  |
| 763 | Brain Dopamine Transmission in Health and Parkinson's Disease: Modulation of Synaptic Transmission and Plasticity Through Volume Transmission and Dopamine Heteroreceptors. <i>Frontiers in Synaptic Neuroscience</i> , <b>2018</b> , 10, 20                             | 3.5               | 27 |
| 762 | A Novel Integrative Mechanism in Anxiolytic Behavior Induced by Galanin 2/Neuropeptide Y Y1 Receptor Interactions on Medial Paracapsular Intercalated Amygdala in Rats. <i>Frontiers in Cellular Neuroscience</i> , <b>2018</b> , 12, 119                                | 6.1               | 6  |
| 761 | Understanding the Role of Adenosine A2AR Heteroreceptor Complexes in Neurodegeneration and Neuroinflammation. <i>Frontiers in Neuroscience</i> , <b>2018</b> , 12, 43                                                                                                    | 5.1               | 31 |

#### (2018-2018)

| Receptor?Receptor Interactions in Multiple 5-H11A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment. <i>Molecules</i> , <b>2018</b> , 23,                                                        | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transcriptomic integration of DR and MOR signaling in the rat caudate putamen. <i>Scientific Reports</i> , <b>2018</b> , 8, 7337                                                                                                                                    | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Glutamate heteroreceptor complexes in the brain. <i>Pharmacological Reports</i> , <b>2018</b> , 70, 936-950                                                                                                                                                         | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Brain of the tree pangolin (Manis tricuspis). III. The unusual locus coeruleus complex. <i>Journal of Comparative Neurology</i> , <b>2018</b> , 526, 2570-2684                                                                                                      | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Effects of Long-Term Alcohol Drinking on the Dopamine D2 Receptor: Gene Expression and Heteroreceptor Complexes in the Striatum in Rats. <i>Alcoholism: Clinical and Experimental Research</i> , <b>2018</b> , 42, 338-351                                          | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Use of Superfused Synaptosomes to Understand the Role of Receptor Receptor Interactions as Integrative Mechanisms in Nerve Terminals from Selected Brain Region. <i>Neuromethods</i> , <b>2018</b> , 41-55                                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Analysis and Quantification of GPCR Heteroreceptor Complexes and Their Allosteric Receptor Receptor Interactions Using Radioligand Binding Autoradiography. <i>Neuromethods</i> , <b>2018</b> , 15-23                                                               | 3 <sup>0.4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Searching the GPCR Heterodimer Network (GPCR-hetnet) Database for Information to Deduce the Receptor Receptor Interface and Its Role in the Integration of Receptor Heterodimer Functions. <i>Neuromethods</i> , <b>2018</b> , 283-298                              | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| On the Study of D4R-MOR Receptor Receptor Interaction in the Rat Caudate Putamen: Relevance on Morphine Addiction. <i>Neuromethods</i> , <b>2018</b> , 25-39                                                                                                        | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Detection of Fibroblast Growth Factor Receptor 1 (FGFR1) Transactivation by Muscarinic Acetylcholine Receptors (mAChRs) in Primary Neuronal Hippocampal Cultures Through Use of Biochemical and Morphological Approaches. <i>Neuromethods</i> , <b>2018</b> , 57-70 | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Behavioral Methods to Study the Impact of Receptor Receptor Interactions in Fear and Anxiety. <i>Neuromethods</i> , <b>2018</b> , 109-131                                                                                                                           | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| In Vivo Microdialysis Technique Applications to Understand the Contribution of Receptor Interactions to the Central Nervous System Signaling. <i>Neuromethods</i> , <b>2018</b> , 91-107                                                                            | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Detection, Analysis, and Quantification of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity Ligation Assay. <i>Neuromethods</i> , <b>2018</b> , 299-315                                                    | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Electrophysiological Approach to GPCR <b>R</b> TK Interaction Study in Hippocampus of Adult Rats. <i>Neuromethods</i> , <b>2018</b> , 71-90                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Small Interference RNA Knockdown Rats in Behavioral Functions: GALR1/GALR2 Heteroreceptor in Anxiety and Depression-Like Behavior. <i>Neuromethods</i> , <b>2018</b> , 133-148                                                                                      | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Adenosine A receptor ligand recognition and signaling is blocked by A receptors. <i>Oncotarget</i> , <b>2018</b> , 9, 13593-13611                                                                                                                                   | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A2AR-D2R Heteroreceptor Complexes in Cocaine Reward and Addiction. <i>Trends in Pharmacological Sciences</i> , <b>2018</b> , 39, 1008-1020                                                                                                                          | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mapping the Interface of a GPCR Dimer: A Structural Model of the A Adenosine and D Dopamine Receptor Heteromer. <i>Frontiers in Pharmacology</i> , <b>2018</b> , 9, 829                                                                                             | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                     | Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment.  Molecules, 2018, 23,  Transcriptomic integration of DR and MOR signaling in the rat caudate putamen. Scientific Reports, 2018, 8, 7337  Glutamate heteroreceptor complexes in the brain. Pharmacological Reports, 2018, 70, 936-950  Brain of the tree pangolin (Manis tricuspis). III. The unusual locus coeruleus complex. Journal of Comparative Neurology, 2018, 526, 2570-2684  Effects of Long-Term Alcohol Drinking on the Dopamine D2 Receptor: Gene Expression and Heteroreceptor Complexes in the Striatum in Rats. Alcoholism: Clinical and Experimental Research, 2018, 42, 338-351  Use of Superfused Synaptosomes to Understand the Role of Receptor Receptor Interactions as Integrative Mechanisms in Nerve Terminals from Selected Brain Region. Neuromethods, 2018, 41-55  Analysis and Quantification of GPCR Heteroreceptor Complexes and Their Allosteric Receptor Receptor Interactions Using Radioligand Binding Autoradiography. Neuromethods, 2018, 15-23  Searching the GPCR Heterodimer Network (GPCR-henet) Database for Information to Deduce the ReceptorReceptor Interface and Its Role in the Integration of Receptor Heterodimer Functions. Neuromethods, 2018, 203-298  Detection of Fibroblast Growth Factor Receptor Interaction in the Rat Caudate Putamen: Relevance on Morphine Addiction. Neuromethods, 2018, 25-39  Detection of Fibroblast Growth Factor Receptor 1 (FGFR1) Transactivation by Muscarinic Acetylcholine Receptors (mAChRs) in Primary Neuronal Hippocampal Cultures Through Use of Biochemical and Morphological Approachs. Neuromethods, 2018, 17-70  Behavioral Methods to Study the Impact of ReceptorReceptor Interactions in Fear and Anxiety. Neuromethods, 2018, 109-131  In Vivo Microdialysis Technique Applications to Understand the Contribution of Receptor Receptor Interactions to the Central Nervous System Signaling. Neuromethods, 2018, 91-107  Detection, Analysis, and Quantification of GPCR Homo- and Heteroreceptor Complexes in Specific Neuron | Raphe Hippocampal S+IT Transmission and Their Relevance for Depression and Its Treatment. Molecules, 2018, 23,  Transcriptomic integration of DR and MOR signaling in the rat caudate putamen. Scientific Reports, 2018, 8, 7337  Glutamate heteroreceptor complexes in the brain. Pharmacological Reports, 2018, 70, 936-950  3-9  Brain of the tree pangolin (Manis tricuspis). III. The unusual locus coeruleus complex. Journal of Comparative Neurology, 2018, 526, 2570-2684  Effects of Long-Term Alcohol Drinking on the Dopamine D2 Receptor: Gene Expression and Heteroreceptor Complexes in the Striatum in Rats. Alcoholism: Clinical and Experimental Research, 2018, 42, 338-351  Use of Superfused Synaptosomes to Understand the Role of ReceptorReceptor Interactions as Integrative Mechanisms in Nerve Terminals from Selected Brain Region. Neuromethods, 2018, 41-55  Analysis and Quantification of GPCR Heteroreceptor Complexes and Their Allosteric ReceptorReceptor Interactions Using Radioligand Binding Autoradiography. Neuromethods, 2018, 15-23  Analysis and Quantification of GPCR Heteroreceptor Complexes and Their Allosteric ReceptorReceptor Interface and Its Role in the Integration of Receptor Heterodimer Functions. Neuromethods, 2018, 283-298  On the Study of D4R-MOR ReceptorReceptor Interaction in the Rat Caudate Putamen: Relevance on Morphine Addiction. Neuromethods, 2018, 25-39  On the Study of D4R-MOR ReceptorReceptor Interaction in the Rat Caudate Putamen: Relevance on Morphine Addiction. Neuromethods, 2018, 25-39  Detection of Fibroblast Growth Factor Receptor (FGFR) Transactivation by Muscarinic Acetylcholine Receptors (mAChRs) in Primary Neuronal Hippocampal Cultures Through Use of Blochemical and Morphological Approaches. Neuromethods, 2018, 39-107  Behavioral Methods to Study the Impact of ReceptorReceptor Interactions in Fear and Anxiety. Neuromethods, 2018, 109-131  In Vivo Microdialysis Technique Applications to Understand the Contribution of ReceptorReceptor Interactions to the Central Nervous System Signaling. Neu |

| 742 | Neuronal adenosine A receptor overexpression is neuroprotective towards 3-nitropropionic acid-induced striatal toxicity: a rat model of Huntington's disease. <i>Purinergic Signalling</i> , <b>2018</b> , 14, 235-24                                                                | 4 <b>3</b> .8 | 8  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|
| 741 | Dopamine D receptor stimulation prevents nigrostriatal dopamine pathway activation by morphine: relevance for drug addiction. <i>Addiction Biology</i> , <b>2017</b> , 22, 1232-1245                                                                                                 | 4.6           | 21 |
| 740 | Is There Volume Transmission Along Extracellular Fluid Pathways Corresponding to the Acupuncture Meridians?. <i>JAMS Journal of Acupuncture and Meridian Studies</i> , <b>2017</b> , 10, 5-19                                                                                        | 1.2           | 3  |
| 739 | The neuropeptides Galanin and Galanin(1-15) in depression-like behaviours. <i>Neuropeptides</i> , <b>2017</b> , 64, 39-45                                                                                                                                                            | 3.3           | 20 |
| 738 | Cocaine self-administration specifically increases A2AR-D2R and D2R-sigma1R heteroreceptor complexes in the rat nucleus accumbens shell. Relevance for cocaine use disorder. <i>Pharmacology Biochemistry and Behavior</i> , <b>2017</b> , 155, 24-31                                | 3.9           | 41 |
| 737 | Galanin (1-15) enhancement of the behavioral effects of Fluoxetine in the forced swimming test gives a new therapeutic strategy against depression. <i>Neuropharmacology</i> , <b>2017</b> , 118, 233-241                                                                            | 5.5           | 27 |
| 736 | Cocaine modulates allosteric D-l'eceptor-receptor interactions on dopamine and glutamate nerve terminals from rat striatum. <i>Cellular Signalling</i> , <b>2017</b> , 40, 116-124                                                                                                   | 4.9           | 19 |
| 735 | Existence of Brain 5-HT1A-5-HT2A Isoreceptor Complexes with Antagonistic Allosteric Receptor-Receptor Interactions Regulating 5-HT1A Receptor Recognition. <i>ACS Omega</i> , <b>2017</b> , 2, 4779-4                                                                                | 7 <b>8</b> 9  | 34 |
| 734 | Heteroreceptor Complexes Implicated in Parkinson® Disease <b>2017</b> , 477-501                                                                                                                                                                                                      |               | 1  |
| 733 | A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes. <i>Journal of Neurochemistry</i> , <b>2017</b> , 140, 268-279                                                                                                              | 6             | 38 |
| 732 | Diversity and bias through dopamine D2R heteroreceptor complexes. <i>Current Opinion in Pharmacology</i> , <b>2017</b> , 32, 16-22                                                                                                                                                   | 5.1           | 22 |
| 731 | IL1R2, CCR2, and CXCR4 May Form Heteroreceptor Complexes with NMDAR and D2R: Relevance for Schizophrenia. <i>Frontiers in Psychiatry</i> , <b>2017</b> , 8, 24                                                                                                                       | 5             | 6  |
| 730 | Understanding the Role of GPCR Heteroreceptor Complexes in Modulating the Brain Networks in Health and Disease. <i>Frontiers in Cellular Neuroscience</i> , <b>2017</b> , 11, 37                                                                                                     | 6.1           | 82 |
| 729 | Disturbances in the FGFR1-5-HT1A Heteroreceptor Complexes in the Raphe-Hippocampal 5-HT System Develop in a Genetic Rat Model of Depression. <i>Frontiers in Cellular Neuroscience</i> , <b>2017</b> , 11, 309                                                                       | 6.1           | 18 |
| 728 | Role of iso-receptors in receptor-receptor interactions with a focus on dopamine iso-receptor complexes. <i>Reviews in the Neurosciences</i> , <b>2016</b> , 27, 1-25                                                                                                                | 4.7           | 21 |
| 727 | Purinergic signaling in Parkinson's disease. Relevance for treatment. <i>Neuropharmacology</i> , <b>2016</b> , 104, 161-8                                                                                                                                                            | 5.5           | 46 |
| 726 | Alterations in ventral and dorsal striatal allosteric A2AR-D2R receptor-receptor interactions after amphetamine challenge: Relevance for schizophrenia. <i>Life Sciences</i> , <b>2016</b> ,                                                                                         | 6.8           | 9  |
| 725 | Signaling in dopamine D2 receptor-oxytocin receptor heterocomplexes and its relevance for the anxiolytic effects of dopamine and oxytocin interactions in the amygdala of the rat. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , <b>2016</b> , 1862, 2075-2085 | 6.9           | 30 |

# (2016-2016)

| 724 | Galanin (1-15) enhances the antidepressant effects of the 5-H11A receptor agonist 8-OH-DPA1: involvement of the raphe-hippocampal 5-HT neuron system. <i>Brain Structure and Function</i> , <b>2016</b> , 221, 4491-4504                                 | 4    | 35 |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|---|
| 723 | Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors. <i>Journal of Neurochemistry</i> , <b>2016</b> , 136, 907-17                                                                                       | 6    | 20 |   |
| 722 | The multi-facet aspects of cell sentience and their relevance for the integrative brain actions: role of membrane protein energy landscape. <i>Reviews in the Neurosciences</i> , <b>2016</b> , 27, 347-63                                               | 4.7  | 3  |   |
| 721 | Cocaine self-administration differentially affects allosteric A2A-D2 receptor-receptor interactions in the striatum. Relevance for cocaine use disorder. <i>Pharmacology Biochemistry and Behavior</i> , <b>2016</b> , 144, 85-91                        | 3.9  | 31 |   |
| 720 | The fast-off hypothesis revisited: A functional kinetic study of antipsychotic antagonism of the dopamine D2 receptor. <i>European Neuropsychopharmacology</i> , <b>2016</b> , 26, 467-76                                                                | 1.2  | 30 | • |
| 719 | Neurotensin: A role in substance use disorder?. <i>Journal of Psychopharmacology</i> , <b>2016</b> , 30, 112-27                                                                                                                                          | 4.6  | 23 |   |
| 718 | Multiple D2 heteroreceptor complexes: new targets for treatment of schizophrenia. <i>Therapeutic Advances in Psychopharmacology</i> , <b>2016</b> , 6, 77-94                                                                                             | 4.9  | 44 |   |
| 717 | Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the dentate gyrus are related with antidepressant-like effects. <i>Brain Structure and Function</i> , <b>2016</b> , 221, 4129-4139                                                         | 4    | 14 |   |
| 716 | FGFR1-5-HT1A Heteroreceptor Complexes: Implications for Understanding and Treating Major Depression. <i>Trends in Neurosciences</i> , <b>2016</b> , 39, 5-15                                                                                             | 13.3 | 33 |   |
| 715 | Heteroreceptor Complexes and their Allosteric Receptor-Receptor Interactions as a Novel Biological Principle for Integration of Communication in the CNS: Targets for Drug Development. <i>Neuropsychopharmacology</i> , <b>2016</b> , 41, 380-2         | 8.7  | 43 |   |
| 714 | Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication. <i>Neural Regeneration Research</i> , <b>2016</b> , 11, 1220-3                                       | 4.5  | 29 |   |
| 713 | Co-immunoprecipitation from Brain. <i>Neuromethods</i> , <b>2016</b> , 19-29                                                                                                                                                                             | 0.4  | 4  |   |
| 712 | In Situ Proximity Ligation Assay to Study and Understand the Distribution and Balance of GPCR Homo- and Heteroreceptor Complexes in the Brain. <i>Neuromethods</i> , <b>2016</b> , 109-124                                                               | 0.4  | 21 |   |
| 711 | Role of D 2 -like Heteroreceptor Complexes in the Effects of Cocaine, Morphine, and Hallucinogens <b>2016</b> , 93-101                                                                                                                                   |      |    |   |
| 710 | Understanding the Functional Plasticity in Neural Networks of the Basal Ganglia in Cocaine Use Disorder: A Role for Allosteric Receptor-Receptor Interactions in A2A-D2 Heteroreceptor Complexes. <i>Neural Plasticity</i> , <b>2016</b> , 2016, 4827268 | 3.3  | 27 |   |
| 709 | Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping. <i>Frontiers in Neural Circuits</i> , <b>2016</b> , 10, 92                                                           | 3.5  | 40 |   |
| 708 | Functional role of striatal A2A, D2, and mGlu5 receptor interactions in regulating striatopallidal GABA neuronal transmission. <i>Journal of Neurochemistry</i> , <b>2016</b> , 138, 254-64                                                              | 6    | 31 |   |
| 707 | Dopamine D1 receptor activity is involved in the increased anxiety levels observed in STZ-induced diabetes in rats. <i>Behavioural Brain Research</i> , <b>2016</b> , 313, 293-301                                                                       | 3.4  | 6  |   |

| 706 | Telocytes in their context with other intercellular communication agents. <i>Seminars in Cell and Developmental Biology</i> , <b>2016</b> , 55, 9-13                                                                                                                      | 7·5 | 18 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 705 | Characterization of the interaction between the dopamine D4 receptor, KLHL12 and 🗗 restins. <i>Cellular Signalling</i> , <b>2016</b> , 28, 1001-14                                                                                                                        | 4.9 | 6  |
| 704 | Participation of protein kinases in cytotoxic and proapoptotic effects of ethylene glycol ethers and their metabolites in SH-SY5Y cells. <i>Toxicology in Vitro</i> , <b>2016</b> , 36, 153-163                                                                           | 3.6 | 3  |
| 703 | On the role of AIA and Direceptors in control of cocaine and food-seeking behaviors in rats. <i>Psychopharmacology</i> , <b>2015</b> , 232, 1767-78                                                                                                                       | 4.7 | 30 |
| 702 | On the role of adenosine (A) receptors in cocaine-induced reward: a pharmacological and neurochemical analysis in rats. <i>Psychopharmacology</i> , <b>2015</b> , 232, 421-35                                                                                             | 4.7 | 26 |
| 701 | The triplet puzzle theory indicates extensive formation of heteromers between opioid and chemokine receptor subtypes. <i>Journal of Neural Transmission</i> , <b>2015</b> , 122, 1509-14                                                                                  | 4.3 | 5  |
| 700 | Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets. <i>Neurochemical Research</i> , <b>2015</b> , 40, 2600-14                                                                                                                   | 4.6 | 64 |
| 699 | Enhancement of the FGFR1 signaling in the FGFR1-5-HT1A heteroreceptor complex in midbrain raphe 5-HT neuron systems. Relevance for neuroplasticity and depression. <i>Biochemical and Biophysical Research Communications</i> , <b>2015</b> , 463, 180-6                  | 3.4 | 31 |
| 698 | Basimglurant for treatment of major depressive disorder: a novel negative allosteric modulator of metabotropic glutamate receptor 5. <i>Expert Opinion on Investigational Drugs</i> , <b>2015</b> , 24, 1247-60                                                           | 5.9 | 29 |
| 697 | On the role of the extracellular space on the holistic behavior of the brain. <i>Reviews in the Neurosciences</i> , <b>2015</b> , 26, 489-506                                                                                                                             | 4.7 | 30 |
| 696 | Evidence for the existence of FGFR1-5-HT1A heteroreceptor complexes in the midbrain raphe 5-HT system. <i>Biochemical and Biophysical Research Communications</i> , <b>2015</b> , 456, 489-93                                                                             | 3.4 | 40 |
| 695 | Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the amygdala lead to increased anxiolytic actions. <i>Brain Structure and Function</i> , <b>2015</b> , 220, 2289-301                                                                                        | 4   | 18 |
| 694 | In vitro effects of cocaine on tunneling nanotube formation and extracellular vesicle release in glioblastoma cell cultures. <i>Journal of Molecular Neuroscience</i> , <b>2015</b> , 55, 42-50                                                                           | 3.3 | 26 |
| 693 | Evidence for the existence of dopamine D2R and Sigma 1 allosteric receptor-receptor interaction in the rat brain: role in brain plasticity and cocaine action. <i>SpringerPlus</i> , <b>2015</b> , 4,                                                                     |     | 9  |
| 692 | Classic and Modern Meridian Studies: A Review of Low Hydraulic Resistance Channels along Meridians and Their Relevance for Therapeutic Effects in Traditional Chinese Medicine. <i>Evidence-based Complementary and Alternative Medicine</i> , <b>2015</b> , 2015, 410979 | 2.3 | 10 |
| 691 | The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , <b>2015</b> , 370,                                    | 5.8 | 78 |
| 690 | The zinc binding receptor GPR39 interacts with 5-HT1A and GalR1 to form dynamic heteroreceptor complexes with signaling diversity. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , <b>2015</b> , 1852, 2585-92                                        | 6.9 | 23 |
| 689 | Dopamine heteroreceptor complexes as therapeutic targets in Parkinson's disease. <i>Expert Opinion on Therapeutic Targets</i> , <b>2015</b> , 19, 377-98                                                                                                                  | 6.4 | 58 |

# (2014-2015)

| 688 | G-protein-coupled receptor type A heteromers as an emerging therapeutic target. <i>Expert Opinion on Therapeutic Targets</i> , <b>2015</b> , 19, 265-83                                                                                                     | 6.4              | 31  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|
| 687 | Acute isoproterenol induces anxiety-like behavior in rats and increases plasma content of extracellular vesicles. <i>Physiology and Behavior</i> , <b>2015</b> , 142, 79-84                                                                                 | 3.5              | 6   |
| 686 | On the Role of the Balance of GPCR Homo/ Heteroreceptor Complexes in the Brain <b>2015</b> , 2, 36-44                                                                                                                                                       |                  | 22  |
| 685 | A role for galanin N-terminal fragment (1-15) in anxiety- and depression-related behaviors in rats. <i>International Journal of Neuropsychopharmacology</i> , <b>2014</b> , 18,                                                                             | 5.8              | 34  |
| 684 | Endogenous kynurenic acid regulates extracellular GABA levels in the rat prefrontal cortex. <i>Neuropharmacology</i> , <b>2014</b> , 82, 11-8                                                                                                               | 5.5              | 43  |
| 683 | Nuclear organization of cholinergic, catecholaminergic, serotonergic and orexinergic systems in the brain of the Tasmanian devil (Sarcophilus harrisii). <i>Journal of Chemical Neuroanatomy</i> , <b>2014</b> , 61-62, 94-10                               | 0 <del>6</del> 2 | 19  |
| 682 | Preferential activation by galanin 1-15 fragment of the GalR1 protomer of a GalR1-GalR2 heteroreceptor complex. <i>Biochemical and Biophysical Research Communications</i> , <b>2014</b> , 452, 347-53                                                      | 3.4              | 32  |
| 681 | Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field. <i>Neuropsychopharmacology</i> , <b>2014</b> , 39, 131-55                                                                       | 8.7              | 78  |
| 68o | Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , <b>2014</b> , 369, | 5.8              | 46  |
| 679 | Information handling by the brain: proposal of a new "paradigm" involving the roamer type of volume transmission and the tunneling nanotube type of wiring transmission. <i>Journal of Neural Transmission</i> , <b>2014</b> , 121, 1431-49                 | 4.3              | 13  |
| 678 | Dopamine D2 heteroreceptor complexes and their receptor-receptor interactions in ventral striatum: novel targets for antipsychotic drugs. <i>Progress in Brain Research</i> , <b>2014</b> , 211, 113-39                                                     | 2.9              | 34  |
| 677 | Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes. <i>Biochemical and Biophysical Research Communications</i> , <b>2014</b> , 443, 278-84                           | 3.4              | 63  |
| 676 | Adenosine (A)(2A)receptor modulation of nicotine-induced locomotor sensitization. A pharmacological and transgenic approach. <i>Neuropharmacology</i> , <b>2014</b> , 81, 318-26                                                                            | 5.5              | 17  |
| 675 | Neuroglobin as a regulator of mitochondrial-dependent apoptosis: a bioinformatics analysis. <i>International Journal of Molecular Medicine</i> , <b>2014</b> , 33, 111-6                                                                                    | 4.4              | 26  |
| 674 | Life without glutamate: the epigenetic effects of glutamate deletion. <i>Frontiers in Molecular Neuroscience</i> , <b>2014</b> , 7, 14                                                                                                                      | 6.1              |     |
| 673 | Dopamine Direceptor counteracts morphine-induced changes in $\bar{\mu}$ opioid receptor signaling in the striosomes of the rat caudate putamen. <i>International Journal of Molecular Sciences</i> , <b>2014</b> , 15, 1481-98                              | 6.3              | 13  |
| 672 | The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. <i>International Journal of Molecular Sciences</i> , <b>2014</b> , 15, 8570-90                                                                                     | 6.3              | 103 |
| 671 | Potential of caveolae in the therapy of cardiovascular and neurological diseases. <i>Frontiers in Physiology</i> , <b>2014</b> , 5, 370                                                                                                                     | 4.6              | 13  |

| 670 | Diversity and Bias through Receptor-Receptor Interactions in GPCR Heteroreceptor Complexes. Focus on Examples from Dopamine D2 Receptor Heteromerization. <i>Frontiers in Endocrinology</i> , <b>2014</b> , 5, 71                                                  | 5.7              | 41 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|
| 669 | Typical and atypical antipsychotics do not differ markedly in their reversibility of antagonism of the dopamine D2 receptor. <i>International Journal of Neuropsychopharmacology</i> , <b>2014</b> , 17, 149-55                                                    | 5.8              | 15 |
| 668 | G-protein-coupled receptors oligomerization: emerging signaling units and new opportunities for drug design. <i>Current Protein and Peptide Science</i> , <b>2014</b> , 15, 648-58                                                                                 | 2.8              | 8  |
| 667 | Adenosine A2A-D2 receptor-receptor interactions in putative heteromers in the regulation of the striato-pallidal gaba pathway: possible relevance for parkinson's disease and its treatment. <i>Current Protein and Peptide Science</i> , <b>2014</b> , 15, 673-80 | 2.8              | 15 |
| 666 | Neurotensin NTS1-dopamine D2 receptor-receptor interactions in putative receptor heteromers: relevance for Parkinson's disease and schizophrenia. <i>Current Protein and Peptide Science</i> , <b>2014</b> , 15, 681-9                                             | 9 <del>0</del> 8 | 18 |
| 665 | Interactions between cholinergic and fibroblast growth factor receptors in brain trophism and plasticity. <i>Current Protein and Peptide Science</i> , <b>2014</b> , 15, 691-702                                                                                   | 2.8              | 16 |
| 664 | "Neuro-semeiotics" and "free-energy minimization" suggest a unified perspective for integrative brain actions: focus on receptor heteromers and Roamer type of volume transmission. <i>Current Protein and Peptide Science</i> , <b>2014</b> , 15, 703-18          | 2.8              | 6  |
| 663 | Receptor-receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory. <i>Neuroscience Discovery</i> , <b>2014</b> , 2, 6                                                                             | Ο                | 29 |
| 662 | Volume Transmission and the Russian-Doll Organization of Brain Cell Networks: Aspects of Their Integrative Actions <b>2014</b> , 103-119                                                                                                                           |                  | 5  |
| 661 | Effects of cocaine self-administration and extinction on D2 -like and A2A receptor recognition and D2 -like/Gi protein coupling in rat striatum. <i>Addiction Biology</i> , <b>2013</b> , 18, 455-66                                                               | 4.6              | 30 |
| 660 | Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers.<br>Biochemical and Biophysical Research Communications, <b>2013</b> , 435, 140-6                                                                                         | 3.4              | 36 |
| 659 | Accumbal and pallidal dopamine, glutamate and GABA overflow during cocaine self-administration and its extinction in rats. <i>Addiction Biology</i> , <b>2013</b> , 18, 307-24                                                                                     | 4.6              | 59 |
| 658 | G protein-coupled receptor heterodimerization in the brain. <i>Methods in Enzymology</i> , <b>2013</b> , 521, 281-94                                                                                                                                               | 1.7              | 92 |
| 657 | Volume transmission and its different forms in the central nervous system. <i>Chinese Journal of Integrative Medicine</i> , <b>2013</b> , 19, 323-9                                                                                                                | 2.9              | 47 |
| 656 | Dynamic modulation of FGFR1-5-HT1A heteroreceptor complexes. Agonist treatment enhances participation of FGFR1 and 5-HT1A homodimers and recruitment of Enrestin2. <i>Biochemical and Biophysical Research Communications</i> , <b>2013</b> , 441, 387-92          | 3.4              | 28 |
| 655 | Bioluminescence resonance energy transfer methods to study G protein-coupled receptor-receptor tyrosine kinase heteroreceptor complexes. <i>Methods in Cell Biology</i> , <b>2013</b> , 117, 141-64                                                                | 1.8              | 67 |
| 654 | Understanding the balance and integration of volume and synaptic transmission. Relevance for psychiatry. <i>Neurology Psychiatry and Brain Research</i> , <b>2013</b> , 19, 141-158                                                                                | 2.1              | 15 |
| 653 | Kynurenic acid, by targeting ∄ nicotinic acetylcholine receptors, modulates extracellular GABA levels in the rat striatum in vivo. <i>European Journal of Neuroscience</i> , <b>2013</b> , 37, 1470-7                                                              | 3.5              | 42 |

#### (2012-2013)

| 652 | On the g-protein-coupled receptor heteromers and their allosteric receptor-receptor interactions in the central nervous system: focus on their role in pain modulation. <i>Evidence-based Complementary and Alternative Medicine</i> , <b>2013</b> , 2013, 563716                         | 2.3 | 14  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 651 | Architectural organization of the african elephant diencephalon and brainstem. <i>Brain, Behavior and Evolution</i> , <b>2013</b> , 82, 83-128                                                                                                                                            | 1.5 | 40  |
| 650 | Early modulation by the dopamine D4 receptor of morphine-induced changes in the opioid peptide systems in the rat caudate putamen. <i>Journal of Neuroscience Research</i> , <b>2013</b> , 91, 1533-40                                                                                    | 4.4 | 9   |
| 649 | A new interpretative paradigm for Conformational Protein Diseases. <i>Current Protein and Peptide Science</i> , <b>2013</b> , 14, 141-60                                                                                                                                                  | 2.8 | 5   |
| 648 | The vigilance promoting drug modafinil modulates serotonin transmission in the rat prefrontal cortex and dorsal raphe nucleus. Possible relevance for its postulated antidepressant activity. <i>Mini-Reviews in Medicinal Chemistry</i> , <b>2013</b> , 13, 478-92                       | 3.2 | 10  |
| 647 | Neuronal correlates to consciousness. The "Hall of Mirrors" metaphor describing consciousness as an epiphenomenon of multiple dynamic mosaics of cortical functional modules. <i>Brain Research</i> , <b>2012</b> , 1476, 3-21                                                            | 3.7 | 15  |
| 646 | Possible genetic and epigenetic links between human inner speech, schizophrenia and altruism. <i>Brain Research</i> , <b>2012</b> , 1476, 38-57                                                                                                                                           | 3.7 | 16  |
| 645 | Bioinformatics aggregation predictors in the study of protein conformational diseases of the human nervous system. <i>Electrophoresis</i> , <b>2012</b> , 33, 3669-79                                                                                                                     | 3.6 | 5   |
| 644 | Fluorescence resonance energy transfer-based technologies in the study of protein-protein interactions at the cell surface. <i>Methods</i> , <b>2012</b> , 57, 467-72                                                                                                                     | 4.6 | 35  |
| 643 | A novel mechanism of cocaine to enhance dopamine d2-like receptor mediated neurochemical and behavioral effects. An in vivo and in vitro study. <i>Neuropsychopharmacology</i> , <b>2012</b> , 37, 1856-66                                                                                | 8.7 | 19  |
| 642 | Nuclear organization of cholinergic, putative catecholaminergic, serotonergic and orexinergic systems in the brain of the African pygmy mouse (Mus minutoides): organizational complexity is preserved in small brains. <i>Journal of Chemical Neuroanatomy</i> , <b>2012</b> , 44, 45-56 | 3.2 | 24  |
| 641 | Molecular determinants of A2AR-D2R allosterism: role of the intracellular loop 3 of the D2R. <i>Journal of Neurochemistry</i> , <b>2012</b> , 123, 373-84                                                                                                                                 | 6   | 42  |
| 640 | Organization and number of orexinergic neurons in the hypothalamus of two species of Cetartiodactyla: a comparison of giraffe (Giraffa camelopardalis) and harbour porpoise (Phocoena phocoena). <i>Journal of Chemical Neuroanatomy</i> , <b>2012</b> , 44, 98-109                       | 3.2 | 27  |
| 639 | Voltage sensitivities and deactivation kinetics of histamine Hand Hareceptors. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , <b>2012</b> , 1818, 3081-9                                                                                                                           | 3.8 | 14  |
| 638 | Fibroblast growth factor receptor 1- 5-hydroxytryptamine 1A heteroreceptor complexes and their enhancement of hippocampal plasticity. <i>Biological Psychiatry</i> , <b>2012</b> , 71, 84-91                                                                                              | 7.9 | 103 |
| 637 | A(2A)/D(2) receptor heteromerization in a model of Parkinson's disease. Focus on striatal aminoacidergic signaling. <i>Brain Research</i> , <b>2012</b> , 1476, 96-107                                                                                                                    | 3.7 | 15  |
| 636 | On the role of volume transmission and receptor-receptor interactions in social behaviour: focus on central catecholamine and oxytocin neurons. <i>Brain Research</i> , <b>2012</b> , 1476, 119-31                                                                                        | 3.7 | 50  |
| 635 | The intercalated paracapsular islands as a module for integration of signals regulating anxiety in the amygdala. <i>Brain Research</i> , <b>2012</b> , 1476, 211-34                                                                                                                       | 3.7 | 42  |

| 634 | G protein-coupled receptor oligomerization and brain integration: focus on adenosinergic transmission. <i>Brain Research</i> , <b>2012</b> , 1476, 86-95                                                                                          | 3.7 | 25 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 633 | Extrasynaptic neurotransmission as a way of modulating neuronal functions. <i>Frontiers in Physiology</i> , <b>2012</b> , 3, 16                                                                                                                   | 4.6 | 20 |
| 632 | Increased affinity of dopamine for D(2) -like versus D(1) -like receptors. Relevance for volume transmission in interpreting PET findings. <i>Synapse</i> , <b>2012</b> , 66, 196-203                                                             | 2.4 | 44 |
| 631 | Striatal NTS1, dopamine D2 and NMDA receptor regulation of pallidal GABA and glutamate releasea dual-probe microdialysis study in the intranigral 6-hydroxydopamine unilaterally lesioned rat. European Journal of Neuroscience, 2012, 35, 207-20 | 3.5 | 15 |
| 630 | On the existence and function of galanin receptor heteromers in the central nervous system. <i>Frontiers in Endocrinology</i> , <b>2012</b> , 3, 127                                                                                              | 5.7 | 48 |
| 629 | Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks. <i>Frontiers in Physiology</i> , <b>2012</b> , 3, 136                                                                         | 4.6 | 61 |
| 628 | The existence of FGFR1-5-HT1A receptor heterocomplexes in midbrain 5-HT neurons of the rat: relevance for neuroplasticity. <i>Journal of Neuroscience</i> , <b>2012</b> , 32, 6295-303                                                            | 6.6 | 15 |
| 627 | Muscarinic acetylcholine receptor-interacting proteins (mAChRIPs): targeting the receptorsome. <i>Current Drug Targets</i> , <b>2012</b> , 13, 53-71                                                                                              | 3   | 15 |
| 626 | Bioinformatics and mathematical modelling in the study of receptor-receptor interactions and receptor oligomerization: focus on adenosine receptors. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , <b>2011</b> , 1808, 1267-83            | 3.8 | 12 |
| 625 | Adenosine receptor containing oligomers: their role in the control of dopamine and glutamate neurotransmission in the brain. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , <b>2011</b> , 1808, 1245-55                                    | 3.8 | 55 |
| 624 | Dopamine D2 and D4 receptor heteromerization and its allosteric receptor-receptor interactions. <i>Biochemical and Biophysical Research Communications</i> , <b>2011</b> , 404, 928-34                                                            | 3.4 | 75 |
| 623 | Agonist-induced formation of FGFR1 homodimers and signaling differ among members of the FGF family. <i>Biochemical and Biophysical Research Communications</i> , <b>2011</b> , 409, 764-8                                                         | 3.4 | 20 |
| 622 | Distribution of orexinergic neurons and their terminal networks in the brains of two species of African mole rats. <i>Journal of Chemical Neuroanatomy</i> , <b>2011</b> , 41, 32-42                                                              | 3.2 | 20 |
| 621 | Distribution of orexin-A immunoreactive neurons and their terminal networks in the brain of the rock hyrax, Procavia capensis. <i>Journal of Chemical Neuroanatomy</i> , <b>2011</b> , 41, 86-96                                                  | 3.2 | 23 |
| 620 | On the existence of a possible A2A-D2-PArrestin2 complex: A2A agonist modulation of D2 agonist-induced Parrestin2 recruitment. <i>Journal of Molecular Biology</i> , <b>2011</b> , 406, 687-99                                                    | 6.5 | 66 |
| 619 | Galanin receptor/Neuropeptide Y receptor interactions in the dorsal raphe nucleus of the rat. <i>Neuropharmacology</i> , <b>2011</b> , 61, 80-6                                                                                                   | 5.5 | 20 |
| 618 | Agonist-specific voltage sensitivity at the dopamine D2S receptormolecular determinants and relevance to therapeutic ligands. <i>Neuropharmacology</i> , <b>2011</b> , 61, 937-49                                                                 | 5.5 | 22 |
| 617 | Dopamine D4 receptor oligomerizationcontribution to receptor biogenesis. <i>FEBS Journal</i> , <b>2011</b> , 278, 1333-44                                                                                                                         | 5.7 | 26 |

| 616 | Differential expression of muscarinic acetylcholine receptor subtypes in Jurkat cells and their signaling. <i>Journal of Neuroimmunology</i> , <b>2011</b> , 237, 13-22                                                                                                                                   | 3.5  | 8   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 615 | Effect of acute and continuous morphine treatment on transcription factor expression in subregions of the rat caudate putamen. Marked modulation by D4 receptor activation. <i>Brain Research</i> , <b>2011</b> , 1407, 47-61                                                                             | 3.7  | 20  |
| 614 | Neurotensin regulates cortical glutamate transmission by modulating N-methyl-D-aspartate receptor functional activity: an in vivo microdialysis study. <i>Journal of Neuroscience Research</i> , <b>2011</b> , 89, 1618-26                                                                                | 4.4  | 13  |
| 613 | Moonlighting characteristics of G protein-coupled receptors: focus on receptor heteromers and relevance for neurodegeneration. <i>IUBMB Life</i> , <b>2011</b> , 63, 463-72                                                                                                                               | 4.7  | 48  |
| 612 | Central nervous system and computation. <i>Quarterly Review of Biology</i> , <b>2011</b> , 86, 265-85                                                                                                                                                                                                     | 5.4  | 22  |
| 611 | Muscarinic receptor family interacting proteins: role in receptor function. <i>Journal of Neuroscience Methods</i> , <b>2011</b> , 195, 161-9                                                                                                                                                             | 3    | 22  |
| 610 | Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms. <i>Journal of Receptor and Signal Transduction Research</i> , <b>2011</b> , 31, 315-31                                                                      | 2.6  | 18  |
| 609 | Dissecting the conserved NPxxY motif of the M3 muscarinic acetylcholine receptor: critical role of Asp-7.49 for receptor signaling and multiprotein complex formation. <i>Cellular Physiology and Biochemistry</i> , <b>2011</b> , 28, 1009-22                                                            | 3.9  | 13  |
| 608 | A new theoretical approach to the functional meaning of sleep and dreaming in humans based on the maintenance of 'predictive psychic homeostasis'. <i>Communicative and Integrative Biology</i> , <b>2011</b> , 4, 640-54                                                                                 | 1.7  | 11  |
| 607 | A window into the heterogeneity of human cerebrospinal fluid Alpeptides. <i>Journal of Biomedicine and Biotechnology</i> , <b>2011</b> , 2011, 697036                                                                                                                                                     |      | 12  |
| 606 | Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2010</b> , 107, 18676-81                                                                                     | 11.5 | 135 |
| 605 | Impaired M(3) muscarinic acetylcholine receptor signal transduction through blockade of binding of multiple proteins to its third intracellular loop. <i>Cellular Physiology and Biochemistry</i> , <b>2010</b> , 25, 397-408                                                                             | 3.9  | 19  |
| 604 | G-protein-coupled receptor heteromer dynamics. <i>Journal of Cell Science</i> , <b>2010</b> , 123, 4215-20                                                                                                                                                                                                | 5.3  | 42  |
| 603 | International Workshop at the Nobel Forum, Karolinska Institutet on G protein-coupled receptors: finding the words to describe monomers, oligomers, and their molecular mechanisms and defining their meaning. Can a consensus be reached?. <i>Journal of Receptor and Signal Transduction Research</i> , | 2.6  | 31  |
| 602 | Neurochemical modulation of central cardiovascular control: the integrative role of galanin. <i>Exs</i> , <b>2010</b> , 102, 113-31                                                                                                                                                                       |      | 22  |
| 601 | Organization of cholinergic, putative catecholaminergic and serotonergic nuclei in the diencephalon, midbrain and pons of sub-adult male giraffes. <i>Journal of Chemical Neuroanatomy</i> , <b>2010</b> , 39, 189-203                                                                                    | 3.2  | 27  |
| 600 | Nuclear organization of cholinergic, putative catecholaminergic and serotonergic nuclei in the brain of the eastern rock elephant shrew, Elephantulus myurus. <i>Journal of Chemical Neuroanatomy</i> , <b>2010</b> , 39, 175-88                                                                          | 3.2  | 30  |
| 599 | Molecular integration via allosteric interactions in receptor heteromers. A working hypothesis. <i>Current Opinion in Pharmacology</i> , <b>2010</b> , 10, 14-22                                                                                                                                          | 5.1  | 61  |

| 598 | Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization. <i>Biochemical and Biophysical Research Communications</i> , <b>2010</b> , 393, 767-72                                                                                                | 3.4  | 79  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 597 | A serine point mutation in the adenosine A2AR C-terminal tail reduces receptor heteromerization and allosteric modulation of the dopamine D2R. <i>Biochemical and Biophysical Research Communications</i> , <b>2010</b> , 394, 222-7                                       | 3.4  | 60  |
| 596 | Cocaine produces D2R-mediated conformational changes in the adenosine A(2A)R-dopamine D2R heteromer. <i>Biochemical and Biophysical Research Communications</i> , <b>2010</b> , 394, 988-92                                                                                | 3.4  | 23  |
| 595 | Dopamine D2 and 5-hydroxytryptamine 5-HT(A) receptors assemble into functionally interacting heteromers. <i>Biochemical and Biophysical Research Communications</i> , <b>2010</b> , 401, 605-10                                                                            | 3.4  | 74  |
| 594 | Characterization of the A2AR-D2R interface: focus on the role of the C-terminal tail and the transmembrane helices. <i>Biochemical and Biophysical Research Communications</i> , <b>2010</b> , 402, 801-7                                                                  | 3.4  | 84  |
| 593 | Receptor-receptor interactions: A novel concept in brain integration. <i>Progress in Neurobiology</i> , <b>2010</b> , 90, 157-75                                                                                                                                           | 10.9 | 51  |
| 592 | Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: Structural and functional analysis. <i>Progress in Neurobiology</i> , <b>2010</b> , 90, 198-216                                                                                     | 10.9 | 176 |
| 591 | The discovery of central monoamine neurons gave volume transmission to the wired brain. <i>Progress in Neurobiology</i> , <b>2010</b> , 90, 82-100                                                                                                                         | 10.9 | 204 |
| 590 | The Galanin N-terminal fragment (1-15) interacts with neuropeptide Y in central cardiovascular control: Involvement of the NPY Y2 receptor subtype. <i>Regulatory Peptides</i> , <b>2010</b> , 163, 130-6                                                                  |      | 7   |
| 589 | On the expanding terminology in the GPCR field: the meaning of receptor mosaics and receptor heteromers. <i>Journal of Receptor and Signal Transduction Research</i> , <b>2010</b> , 30, 287-303                                                                           | 2.6  | 22  |
| 588 | The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor-receptor interactions. <i>Journal of Receptor and Signal Transduction Research</i> , <b>2010</b> , 30, 272-83                                     | 2.6  | 63  |
| 587 | G protein-coupled receptor oligomerization for what?. <i>Journal of Receptor and Signal Transduction Research</i> , <b>2010</b> , 30, 322-30                                                                                                                               | 2.6  | 20  |
| 586 | An integrated view on the role of receptor mosaics at perisynaptic level: focus on adenosine A(2A), dopamine D(2), cannabinoid CB(1), and metabotropic glutamate mGlu(5) receptors. <i>Journal of Receptor and Signal Transduction Research</i> , <b>2010</b> , 30, 355-69 | 2.6  | 26  |
| 585 | GABA(A) [receptor mechanisms in the rat amygdala and its role in the modulation of fear and anxiety. <i>Psychopharmacology</i> , <b>2010</b> , 212, 475-84                                                                                                                 | 4.7  | 18  |
| 584 | Nanomolar concentrations of cocaine enhance D2-like agonist-induced inhibition of the K+-evoked [3H]-dopamine efflux from rat striatal synaptosomes: a novel action of cocaine. <i>Journal of Neural Transmission</i> , <b>2010</b> , 117, 593-7                           | 4.3  | 22  |
| 583 | On the role of P2X(7) receptors in dopamine nerve cell degeneration in a rat model of Parkinson's disease: studies with the P2X(7) receptor antagonist A-438079. <i>Journal of Neural Transmission</i> , <b>2010</b> , 117, 681-7                                          | 4.3  | 70  |
| 582 | Homocysteine potentiates seizures and cell loss induced by pilocarpine treatment. <i>NeuroMolecular Medicine</i> , <b>2010</b> , 12, 248-59                                                                                                                                | 4.6  | 23  |
| 581 | Differential sensitivity of A2A and especially D2 receptor trafficking to cocaine compared with lipid rafts in cotransfected CHO cell lines. Novel actions of cocaine independent of the DA transporter.<br>Journal of Molecular Neuroscience, <b>2010</b> , 41, 347-57    | 3.3  | 18  |

# (2008-2010)

| Chronic A2A antagonist treatment alleviates parkinsonian locomotor deficiency in MitoPark mice. <i>Neurobiology of Disease</i> , <b>2010</b> , 40, 460-6                                                                                                                                                             | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The M(5) muscarinic acetylcholine receptor third intracellular loop regulates receptor function and oligomerization. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , <b>2010</b> , 1803, 813-25                                                                                                     | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FGF-2/FGFR1 neurotrophic system expression level and its basal activation do not account for the age-dependent decline of precursor cell proliferation in the subventricular zone of rat brain. <i>Brain Research</i> , <b>2010</b> , 1358, 39-45                                                                    | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Understanding wiring and volume transmission. Brain Research Reviews, 2010, 64, 137-59                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dopamine Receptor Oligomerization <b>2010</b> , 255-280                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Interactions between calmodulin, adenosine A2A, and dopamine D2 receptors. <i>Journal of Biological Chemistry</i> , <b>2009</b> , 284, 28058-28068                                                                                                                                                                   | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cannabinoid CB1 and cholecystokinin CCK2 receptors modulate, in an opposing way, electrically evoked [3H]GABA efflux from rat cerebral cortex cell cultures: possible relevance for cortical GABA transmission and anxiety. <i>Journal of Pharmacology and Experimental Therapeutics</i> , <b>2009</b> , 329, 708-17 | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. <i>Journal of Neural Transmission</i> , <b>2009</b> , 116, 923-39                                                                                                               | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Building a new conceptual framework for receptor heteromers. <i>Nature Chemical Biology</i> , <b>2009</b> , 5, 131-4                                                                                                                                                                                                 | 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the rock hyrax, Procavia capensis. <i>Journal of Chemical Neuroanatomy</i> , <b>2009</b> , 38, 57-74                                                                                         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Involvement of astroglial fibroblast growth factor-2 and microglia in the nigral 6-OHDA parkinsonism and a possible role of glucocorticoid hormone on the glial mediated local trophism and wound repair. <i>Journal of Neural Transmission Supplementum</i> , <b>2009</b> , 185-202                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Brain receptor mosaics and their intramembrane receptor-receptor interactions: molecular integration in transmission and novel targets for drug development. <i>JAMS Journal of Acupuncture and Meridian Studies</i> , <b>2009</b> , 2, 1-25                                                                         | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Theoretical considerations on the topological organization of receptor mosaics. <i>Current Protein and Peptide Science</i> , <b>2009</b> , 10, 559-69                                                                                                                                                                | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Detection of heteromerization of more than two proteins by sequential BRET-FRET. <i>Nature Methods</i> , <b>2008</b> , 5, 727-33                                                                                                                                                                                     | 21.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Adrenalectomy counteracts the local modulation of astroglial fibroblast growth factor system without interfering with the pattern of 6-OHDA-induced dopamine degeneration in regions of the ventral midbrain. <i>Brain Research</i> , <b>2008</b> , 1190, 23-38                                                      | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nicotine-induced fibroblast growth factor-2 restores the age-related decline of precursor cell proliferation in the subventricular zone of rat brain. <i>Brain Research</i> , <b>2008</b> , 1193, 12-24                                                                                                              | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Time-course of immediate early gene expression in hippocampal subregions of adrenalectomized rats after acute corticosterone challenge. <i>Brain Research</i> , <b>2008</b> , 1215, 1-10                                                                                                                             | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Neurotensin receptors as modulators of glutamatergic transmission. <i>Brain Research Reviews</i> , <b>2008</b> , 58, 365-73                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                      | Neurobiology of Disease, 2010, 40, 460-6  The M(5) muscarinic acetylcholine receptor third intracellular loop regulates receptor function and oligomerization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 813-25  FGF-2/FGFR1 neurotrophic system expression level and its basal activation do not account for the age-dependent decline of precursor cell proliferation in the subventricular zone of rat brain. Brain Research, 2010, 1358, 39-45  Understanding wiring and volume transmission. Brain Research Reviews, 2010, 64, 137-59  Dopamine Receptor Oligomerization 2010, 255-280  Interactions between calmodulin, adenosine A2A, and dopamine D2 receptors. Journal of Biological Chemistry, 2009, 284, 28058-28068  Cannabinoid CB1 and cholecystokinin CCK2 receptors modulate, in an opposing way, electrically evoked [3H]GABA efflux from rat cerebral cortex cell cultures: possible relevance for cortical GABA transmission and anxiety. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 708-17 Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. Journal of Neural Transmission, 2009, 116, 923-39  Building a new conceptual framework for receptor heteromers. Nature Chemical Biology, 2009, 5, 131-4  Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the rock hyrax, Procavia capensis. Journal of Chemical Neuroanatomy, 2009, 38, 57-74  Involvement of astroglial fibroblast growth factor-2 and microglia in the nigral 6-OHDA parkinsonism and a possible role of gluccocriticoid hormone on the glial mediated local trophism and wound repair. Journal of Neural Transmission Supplementum, 2009, 185-202  Brain receptor mosaics and their intramembrane receptor-receptor interactions: molecular integration in transmission and novel targets for drug development. JAMS Journal of Acupuncture and Meridian Studies, 2009, 2, 1-25  Theoretical considerations on the topologica | The M(5) muscarinic acetylcholine receptor third intracellular loop regulates receptor function and oligomerization. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2010, 1803, 813-25  4-9  FGF-2/FGFR1 neurotrophic system expression level and its basal activation do not account for the age-dependent decline of precursor cell proliferation in the subventricular zone of rat brain. <i>Brain Research</i> , 2010, 1358, 39-45  Understanding wiring and volume transmission. <i>Brain Research Reviews</i> , 2010, 64, 137-59  Dopamine Receptor Oligomerization 2010, 255-280  Interactions between calmodulin, adenosine A2A, and dopamine D2 receptors. <i>Journal of Biological Chemistry</i> , 2009, 284, 28058-28068  Cannabinoid CB1 and cholecystokinin CCK2 receptors modulate, in an opposing way, electrically evoked [3H] GABA efflux from rat cerebral cortex cell cultures: possible relevance for cortical GABA transmission and anxiety. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2009, 329, 708-17  Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. <i>Journal of Neural Transmission</i> , 2009, 116, 923-39  Building a new conceptual framework for receptor heteromers. <i>Nature Chemical Biology</i> , 2009, 5, 131-4 11.7  Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the rock hyrax, Procavia capensis. <i>Journal of Chemical Neuroanatomy</i> , 2009, 38, 57-74  Involvement of astroglial fibroblast growth factor-2 and microglia in the nigral 6-OHDA parkinsonism and a possible role of glucocorticoid hormone on the glial mediated local trophism and wound repair. <i>Journal of Neural Transmission</i> supplementum, 2009, 185-202  Brain receptor mosaics and their intramembrane receptor-receptor interactions: molecular integration in transmission and morphology of cholinergic putative catecholaminergic and serotonergic neurons in the prain. <i>Brain Research</i> , 2008, 1193, 12-24  Theoretical considerations on |

| 562 | Understanding neuronal molecular networks builds on neuronal cellular network architecture.<br>Brain Research Reviews, <b>2008</b> , 58, 379-99                                                                                                                                                                     |     | 32  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 561 | Electrophysiology-based analysis of human histamine H(4) receptor pharmacology using GIRK channel coupling in Xenopus oocytes. <i>European Journal of Pharmacology</i> , <b>2008</b> , 591, 52-8                                                                                                                    | 5.3 | 2   |
| 560 | Fibroblast growth factor-2 and its receptor expression in proliferating precursor cells of the subventricular zone in the adult rat brain. <i>Neuroscience Letters</i> , <b>2008</b> , 447, 20-5                                                                                                                    | 3.3 | 48  |
| 559 | Distribution and morphology of putative catecholaminergic and serotonergic neurons in the brain of the greater canerat, Thryonomys swinderianus. <i>Journal of Chemical Neuroanatomy</i> , <b>2008</b> , 35, 108-22                                                                                                 | 3.2 | 26  |
| 558 | Nuclear organization and morphology of serotonergic neurons in the brain of the Nile crocodile, Crocodylus niloticus. <i>Journal of Chemical Neuroanatomy</i> , <b>2008</b> , 35, 133-45                                                                                                                            | 3.2 | 14  |
| 557 | Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brains of two species of African mole-rat. <i>Journal of Chemical Neuroanatomy</i> , <b>2008</b> , 35, 371-87                                                                                        | 3.2 | 39  |
| 556 | Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the Cape porcupine (Hystrix africaeaustralis): increased brain size does not lead to increased organizational complexity. <i>Journal of Chemical Neuroanatomy</i> , <b>2008</b> , 36, 33-52 | 3.2 | 29  |
| 555 | Regulation of DARPP-32 phosphorylation by Delta9-tetrahydrocannabinol. <i>Neuropharmacology</i> , <b>2008</b> , 54, 31-5                                                                                                                                                                                            | 5.5 | 27  |
| 554 | Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. <i>Neuropharmacology</i> , <b>2008</b> , 54, 815-23                                                                                                                 | 5.5 | 139 |
| 553 | Differential voltage-sensitivity of D2-like dopamine receptors. <i>Biochemical and Biophysical Research Communications</i> , <b>2008</b> , 374, 496-501                                                                                                                                                             | 3.4 | 14  |
| 552 | Voltage-sensitivity at the human dopamine D2S receptor is agonist-specific. <i>Biochemical and Biophysical Research Communications</i> , <b>2008</b> , 377, 1216-21                                                                                                                                                 | 3.4 | 17  |
| 551 | How calmodulin interacts with the adenosine A(2A) and the dopamine D(2) receptors. <i>Journal of Proteome Research</i> , <b>2008</b> , 7, 3428-34                                                                                                                                                                   | 5.6 | 38  |
| 550 | Neurotensin receptor involvement in the rise of extracellular glutamate levels and apoptotic nerve cell death in primary cortical cultures after oxygen and glucose deprivation. <i>Cerebral Cortex</i> , <b>2008</b> , 18, 1748-57                                                                                 | 5.1 | 27  |
| 549 | Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. <i>Journal of Biological Chemistry</i> , <b>2008</b> , 283, 26016-25                                                                                                       | 5.4 | 174 |
| 548 | Heterodimers and receptor mosaics of different types of G-protein-coupled receptors. <i>Physiology</i> , <b>2008</b> , 23, 322-32                                                                                                                                                                                   | 9.8 | 39  |
| 547 | The novel cyclooxygenase-2 inhibitor GW637185X protects against l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. <i>NeuroReport</i> , <b>2008</b> , 19, 657-60                                                                                                                                                | 1.7 | 8   |
| 546 | Wiring and volume transmission in rat amygdala. Implications for fear and anxiety. <i>Neurochemical Research</i> , <b>2008</b> , 33, 1618-33                                                                                                                                                                        | 4.6 | 20  |
| 545 | Voltage-dependence of the human dopamine D2 receptor. <i>Synapse</i> , <b>2008</b> , 62, 476-80                                                                                                                                                                                                                     | 2.4 | 22  |

| 544 | Adenosine receptor heteromers and their integrative role in striatal function. <i>Scientific World Journal, The</i> , <b>2007</b> , 7, 74-85                                                                                                                                    | 2.2 | 71  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 543 | Possible relevance of receptor-receptor interactions between viral- and host-coded receptors for viral-induced disease. <i>Scientific World Journal, The</i> , <b>2007</b> , 7, 1073-81                                                                                         | 2.2 | O   |
| 542 | Dopamine D(4) receptor activation decreases the expression of mu-opioid receptors in the rat striatum. <i>Journal of Comparative Neurology</i> , <b>2007</b> , 502, 358-66                                                                                                      | 3.4 | 20  |
| 541 | Adenosine A(2A) receptors, dopamine D(2) receptors and their interactions in Parkinson's disease. <i>Movement Disorders</i> , <b>2007</b> , 22, 1990-2017                                                                                                                       | 7   | 125 |
| 540 | Role of the amygdaloid cholecystokinin (CCK)/gastrin-2 receptors and terminal networks in the modulation of anxiety in the rat. Effects of CCK-4 and CCK-8S on anxiety-like behaviour and [3H]GABA release. <i>European Journal of Neuroscience</i> , <b>2007</b> , 26, 3614-30 | 3.5 | 33  |
| 539 | Increase in A2A receptors in the nucleus accumbens after extended cocaine self-administration and its disappearance after cocaine withdrawal. <i>Brain Research</i> , <b>2007</b> , 1143, 208-20                                                                                | 3.7 | 45  |
| 538 | Neurotransmitter receptor heteromers and their integrative role in 'local modules': the striatal spine module. <i>Brain Research Reviews</i> , <b>2007</b> , 55, 55-67                                                                                                          |     | 98  |
| 537 | On the role of receptor-receptor interactions and volume transmission in learning and memory. <i>Brain Research Reviews</i> , <b>2007</b> , 55, 119-33                                                                                                                          |     | 36  |
| 536 | From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. <i>Brain Research Reviews</i> , <b>2007</b> , 55, 17-54                                            |     | 189 |
| 535 | One century of progress in neuroscience founded on Golgi and Cajal's outstanding experimental and theoretical contributions. <i>Brain Research Reviews</i> , <b>2007</b> , 55, 167-89                                                                                           |     | 25  |
| 534 | Mesolimbic dopamine and cortico-accumbens glutamate afferents as major targets for the regulation of the ventral striato-pallidal GABA pathways by neurotensin peptides. <i>Brain Research Reviews</i> , <b>2007</b> , 55, 144-54                                               |     | 21  |
| 533 | Does the human brain have unique genetically determined networks coding logical and ethical principles and aesthetics? From Plato to novel mirror networks. <i>Brain Research Reviews</i> , <b>2007</b> , 55, 68-77                                                             |     | 12  |
| 532 | The human histamine H3 receptor couples to GIRK channels in Xenopus oocytes. <i>European Journal of Pharmacology</i> , <b>2007</b> , 567, 206-10                                                                                                                                | 5.3 | 11  |
| 531 | Hyper-homocysteinemia alters amyloid peptide-clusterin interactions and neuroglial network morphology and function in the caudate after intrastriatal injection of amyloid peptides. <i>Current Alzheimer Research</i> , <b>2007</b> , 4, 305-13                                | 3   | 7   |
| 530 | Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. <i>Physiology and Behavior</i> , <b>2007</b> , 92, 210-7                                                                                                         | 3.5 | 200 |
| 529 | Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. <i>Neurobiology of Learning and Memory</i> , <b>2007</b> , 87, 42-56                                                                                                      | 3.1 | 94  |
| 528 | Distribution and morphology of putative catecholaminergic and serotonergic neurons in the medulla oblongata of a sub-adult giraffe, Giraffa camelopardalis. <i>Journal of Chemical Neuroanatomy</i> , <b>2007</b> , 34, 69-79                                                   | 3.2 | 20  |
| 527 | Distribution and morphology of catecholaminergic and serotonergic neurons in the brain of the highveld gerbil, Tatera brantsii. <i>Journal of Chemical Neuroanatomy</i> , <b>2007</b> , 34, 134-44                                                                              | 3.2 | 31  |

| 526 | Electroconvulsive stimuli selectively affect behavior and neuropeptide Y (NPY) and NPY Y(1) receptor gene expressions in hippocampus and hypothalamus of Flinders Sensitive Line rat model of depression. <i>European Neuropsychopharmacology</i> , <b>2007</b> , 17, 298-308 | 1.2  | 70  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 525 | Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. <i>Brain Research</i> , <b>2006</b> , 1077, 67-80                                                                                                                    | 3.7  | 78  |
| 524 | The two-state dimer receptor model: a general model for receptor dimers. <i>Molecular Pharmacology</i> , <b>2006</b> , 69, 1905-12                                                                                                                                            | 4.3  | 71  |
| 523 | The Concept of Protein Mosaics: Physiological Role and Relevance for Prion Disease. <i>Current Proteomics</i> , <b>2006</b> , 3, 171-179                                                                                                                                      | 0.7  | 4   |
| 522 | Allosteric modulation of dopamine D2 receptors by homocysteine. <i>Journal of Proteome Research</i> , <b>2006</b> , 5, 3077-83                                                                                                                                                | 5.6  | 45  |
| 521 | Experimental studies and theoretical aspects on A2A/D2 receptor interactions in a model of Parkinson's disease. Relevance for L-dopa induced dyskinesias. <i>Journal of the Neurological Sciences</i> , <b>2006</b> , 248, 16-22                                              | 3.2  | 37  |
| 520 | Nuclear parcellation of certain immunohistochemically identifiable neuronal systems in the midbrain and pons of the Highveld molerat (Cryptomys hottentotus). <i>Journal of Chemical Neuroanatomy</i> , <b>2006</b> , 31, 37-50                                               | 3.2  | 32  |
| 519 | Choline acetyltransferase immunoreactive cortical interneurons do not occur in all rodents: a study of the phylogenetic occurrence of this neural characteristic. <i>Journal of Chemical Neuroanatomy</i> , <b>2006</b> , 32, 208-16                                          | 3.2  | 38  |
| 518 | Targeting adenosine A2A receptors in Parkinson's disease. <i>Trends in Neurosciences</i> , <b>2006</b> , 29, 647-54                                                                                                                                                           | 13.3 | 364 |
| 517 | Anxiolytic-like effects of the selective metabotropic glutamate receptor 5 antagonist MPEP after its intra-amygdaloid microinjection in three different non-conditioned rat models of anxiety. <i>European Journal of Neuroscience</i> , <b>2006</b> , 23, 2749-59            | 3.5  | 52  |
| 516 | Uncoupling protein-2 promotes nigrostriatal dopamine neuronal function. <i>European Journal of Neuroscience</i> , <b>2006</b> , 24, 32-6                                                                                                                                      | 3.5  | 29  |
| 515 | Galanin-neuropeptide Y (NPY) interactions in central cardiovascular control: involvement of the NPY Y receptor subtype. <i>European Journal of Neuroscience</i> , <b>2006</b> , 24, 499-508                                                                                   | 3.5  | 16  |
| 514 | Anxiolytic effects of intra-amygdaloid injection of the D1 antagonist SCH23390 in the rat. <i>Neuroscience Letters</i> , <b>2005</b> , 377, 101-5                                                                                                                             | 3.3  | 44  |
| 513 | Kinetic and functional properties of [3H]ZM241385, a high affinity antagonist for adenosine A2A receptors. <i>Life Sciences</i> , <b>2005</b> , 76, 1513-26                                                                                                                   | 6.8  | 33  |
| 512 | Intracisternal galanin/angiotensin II interactions in central cardiovascular control. <i>Regulatory Peptides</i> , <b>2005</b> , 127, 133-40                                                                                                                                  |      | 10  |
| 511 | Trafficking of adenosine A2A and dopamine D2 receptors. <i>Journal of Molecular Neuroscience</i> , <b>2005</b> , 25, 191-200                                                                                                                                                  | 3.3  | 40  |
| 510 | Introductory remarks. <i>Journal of Molecular Neuroscience</i> , <b>2005</b> , 26, 109-12                                                                                                                                                                                     | 3.3  | 3   |
| 509 | Role of electrostatic interaction in receptor-receptor heteromerization. <i>Journal of Molecular Neuroscience</i> , <b>2005</b> , 26, 125-32                                                                                                                                  | 3.3  | 64  |

| 508 | How proteins come together in the plasma membrane and function in macromolecular assemblies: focus on receptor mosaics. <i>Journal of Molecular Neuroscience</i> , <b>2005</b> , 26, 133-54                                                               | 3.3               | 25  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|
| 507 | Computer-assisted image analysis of caveolin-1 involvement in the internalization process of adenosine A2A-dopamine D2 receptor heterodimers. <i>Journal of Molecular Neuroscience</i> , <b>2005</b> , 26, 177-                                           | 84 <sup>.3</sup>  | 34  |
| 506 | Receptor-receptor interactions, receptor mosaics, and basic principles of molecular network organization: possible implications for drug development. <i>Journal of Molecular Neuroscience</i> , <b>2005</b> , 26, 193-208                                | 3.3               | 59  |
| 505 | Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. <i>Journal of Molecular Neuroscience</i> , <b>2005</b> , 26, 209-20                                                                                                      | 3.3               | 187 |
| 504 | Partners for adenosine A1 receptors. <i>Journal of Molecular Neuroscience</i> , <b>2005</b> , 26, 221-32                                                                                                                                                  | 3.3               | 22  |
| 503 | Concluding remarks. <i>Journal of Molecular Neuroscience</i> , <b>2005</b> , 26, 299-302                                                                                                                                                                  | 3.3               | 3   |
| 502 | Existence and theoretical aspects of homomeric and heteromeric dopamine receptor complexes and their relevance for neurological diseases. <i>NeuroMolecular Medicine</i> , <b>2005</b> , 7, 61-78                                                         | 4.6               | 19  |
| 501 | Molecular mechanisms involved in the adenosine A and A receptor-induced neuronal differentiation in neuroblastoma cells and striatal primary cultures. <i>Journal of Neurochemistry</i> , <b>2005</b> , 92, 337-48                                        | 6                 | 48  |
| 500 | Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. <i>Brain Research</i> , <b>2005</b> , 1033, 216-20        | 3.7               | 50  |
| 499 | Detection of beta-endorphin in the cerebrospinal fluid after intrastriatal microinjection into the rat brain. <i>Brain Research</i> , <b>2005</b> , 1041, 167-80                                                                                          | 3.7               | 32  |
| 498 | Oxytocin increases the density of high affinity alpha(2)-adrenoceptors within the hypothalamus, the amygdala and the nucleus of the solitary tract in ovariectomized rats. <i>Brain Research</i> , <b>2005</b> , 1049, 234-9                              | 3.7               | 23  |
| 497 | How receptor mosaics decode transmitter signals. Possible relevance of cooperativity. <i>Trends in Biochemical Sciences</i> , <b>2005</b> , 30, 188-93                                                                                                    | 10.3              | 55  |
| 496 | Dimer-based model for heptaspanning membrane receptors. <i>Trends in Biochemical Sciences</i> , <b>2005</b> , 30, 360-6                                                                                                                                   | 10.3              | 59  |
| 495 | Subchronic haloperidol increases CB(1) receptor binding and G protein coupling in discrete regions of the basal ganglia. <i>Journal of Neuroscience Research</i> , <b>2005</b> , 82, 264-72                                                               | 4.4               | 20  |
| 494 | Modafinil enhances the increase of extracellular serotonin levels induced by the antidepressant drugs fluoxetine and imipramine: a dual probe microdialysis study in awake rat. <i>Synapse</i> , <b>2005</b> , 55, 230-                                   | -4 <sup>2·4</sup> | 33  |
| 493 | Effects of sarizotan on the corticostriatal glutamate pathways. <i>Synapse</i> , <b>2005</b> , 58, 193-9                                                                                                                                                  | 2.4               | 68  |
| 492 | Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A/D3 heteromeric complexes. <i>Molecular Pharmacology</i> , <b>2005</b> , 67, 400-7                                                                                | 4.3               | 101 |
| 491 | New methods to evaluate colocalization of fluorophores in immunocytochemical preparations as exemplified by a study on A2A and D2 receptors in Chinese hamster ovary cells. <i>Journal of Histochemistry and Cytochemistry</i> , <b>2005</b> , 53, 941-53 | 3.4               | 40  |

| 490 | On the Nested Hierarchical Organization of CNS: Basic Characteristics of Neuronal Molecular Networks. <i>Lecture Notes in Computer Science</i> , <b>2004</b> , 24-54                                                                                        | 0.9  | 20  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 489 | Neuronal A1 receptors mediate increase in extracellular kynurenic acid after local intrastriatal adenosine infusion. <i>Journal of Neurochemistry</i> , <b>2004</b> , 90, 621-8                                                                             | 6    | 13  |
| 488 | Biochemical identification of the dopamine D2 receptor domains interacting with the adenosine A2A receptor. <i>Journal of Molecular Neuroscience</i> , <b>2004</b> , 24, 173-80                                                                             | 3.3  | 41  |
| 487 | On the molecular basis of the receptor mosaic hypothesis of the engram. <i>Cellular and Molecular Neurobiology</i> , <b>2004</b> , 24, 501-16                                                                                                               | 4.6  | 24  |
| 486 | Hyperactivity to novelty induced by social isolation is not correlated with changes in D2 receptor function and binding in striatum. <i>Psychopharmacology</i> , <b>2004</b> , 171, 148-55                                                                  | 4.7  | 49  |
| 485 | The distribution and morphological characteristics of catecholaminergic cells in the diencephalon and midbrain of the bottlenose dolphin (Tursiops truncatus). <i>Brain, Behavior and Evolution</i> , <b>2004</b> , 64, 42-60                               | 1.5  | 36  |
| 484 | Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. <i>Journal of Neurochemistry</i> , <b>2004</b> , 88, 726-34                                                       | 6    | 123 |
| 483 | Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. <i>Analytical Chemistry</i> , <b>2004</b> , 76, 5354-63 | 7.8  | 181 |
| 482 | Neuroprotective effect of L-DOPA co-administered with the adenosine A2A receptor agonist CGS 21680 in an animal model of Parkinson's disease. <i>Brain Research Bulletin</i> , <b>2004</b> , 64, 155-64                                                     | 3.9  | 28  |
| 481 | Motor response to amphetamine treatment, task-specific training, and limited motor experience in a postacute animal stroke model. <i>Experimental Neurology</i> , <b>2004</b> , 190, 102-8                                                                  | 5.7  | 19  |
| 480 | Adenosine A2A-dopamine D2 receptor-receptor heteromers. Targets for neuro-psychiatric disorders. <i>Parkinsonism and Related Disorders</i> , <b>2004</b> , 10, 265-71                                                                                       | 3.6  | 122 |
| 479 | Nicotine-induced FGF-2 mRNA in rat brain is preserved during aging. <i>Neurobiology of Aging</i> , <b>2004</b> , 25, 1333-42                                                                                                                                | 5.6  | 21  |
| 478 | Acute intermittent nicotine treatment produces a reduction in the total number of FGF-2 immunoreactive astroglial cells in the substantia nigra of the rat: a stereological analysis. <i>Neuroscience Letters</i> , <b>2004</b> , 355, 181-4                | 3.3  | 2   |
| 477 | Neurotensin enhances endogenous extracellular glutamate levels in primary cultures of rat cortical neurons: involvement of neurotensin receptor in NMDA induced excitotoxicity. <i>Cerebral Cortex</i> , <b>2004</b> , 14, 466-73                           | 5.1  | 30  |
| 476 | Corticosterone strongly increases the affinity of dorsal raphe 5-HT1A receptors. <i>NeuroReport</i> , <b>2004</b> , 15, 1457-9                                                                                                                              | 1.7  | 18  |
| 475 | Glutamate mGlu5-Adenosine A2A-Dopamine D2 Receptor Interactions in the Striatum. Implications for Drug Therapy in Neuro-psychiatric Disorders and Drug Abuse. <i>Current Medicinal Chemistry - Central Nervous System Agents</i> , <b>2003</b> , 3, 1-26    |      | 15  |
| 474 | Regulation of heptaspanning-membrane-receptor function by dimerization and clustering. <i>Trends in Biochemical Sciences</i> , <b>2003</b> , 28, 238-43                                                                                                     | 10.3 | 70  |
| 473 | Angiotensin II modulates the cardiovascular responses to microinjection of NPY Y1 and NPY Y2 receptor agonists into the nucleus tractus solitarii of the rat. <i>Brain Research</i> , <b>2003</b> , 983, 193-200                                            | 3.7  | 9   |

#### (2001-2003)

| 472 | Determination of histamine in microdialysis samples from rat brain by microbore column liquid chromatography following intramolecular excimer-forming derivatization with pyrene-labeling reagent. <i>Journal of Neuroscience Methods</i> , <b>2003</b> , 127, 11-7 | 3    | 40  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 471 | Involvement of adenosine A1 and A2A receptors in the motor effects of caffeine after its acute and chronic administration. <i>Neuropsychopharmacology</i> , <b>2003</b> , 28, 1281-91                                                                               | 8.7  | 158 |
| 470 | Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. <i>Journal of Biological Chemistry</i> , <b>2003</b> , 278, 46741-9                                      | 5.4  | 353 |
| 469 | Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. <i>Pharmacological Reviews</i> , <b>2003</b> , 55, 509-50                     | 22.5 | 280 |
| 468 | Biphasic autoregulation of mineralocorticoid receptor mRNA in the medial septal nucleus by aldosterone. <i>Neuroendocrinology</i> , <b>2002</b> , 75, 358-66                                                                                                        | 5.6  | 13  |
| 467 | Differential enhancement of dialysate serotonin levels in distinct brain regions of the awake rat by modafinil: possible relevance for wakefulness and depression. <i>Journal of Neuroscience Research</i> , <b>2002</b> , 68, 107-12                               | 4.4  | 52  |
| 466 | Quantitative dual-probe microdialysis: evaluation of [3H]mannitol diffusion in agar and rat striatum. <i>Journal of Neurochemistry</i> , <b>2002</b> , 81, 80-93                                                                                                    | 6    | 31  |
| 465 | Quantitative dual-probe microdialysis: mathematical model and analysis. <i>Journal of Neurochemistry</i> , <b>2002</b> , 81, 94-107                                                                                                                                 | 6    | 20  |
| 464 | Theory relating in vitro and in vivo microdialysis with one or two probes. <i>Journal of Neurochemistry</i> , <b>2002</b> , 81, 108-21                                                                                                                              | 6    | 29  |
| 463 | Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. <i>Journal of Biological Chemistry</i> , <b>2002</b> , 277, 18091-7                                                                                   | 5.4  | 393 |
| 462 | Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2002</b> , 99, 11940-5                        | 11.5 | 299 |
| 461 | Neurotensin-induced modulation of dopamine D2 receptors and their function in rat striatum: counteraction by a NTR1-like receptor antagonist. <i>NeuroReport</i> , <b>2002</b> , 13, 763-6                                                                          | 1.7  | 34  |
| 460 | Propranolol blocks the tachycardia induced by galanin (1-15) but not by galanin (1-29). <i>Regulatory Peptides</i> , <b>2002</b> , 107, 29-36                                                                                                                       |      | 9   |
| 459 | Increased density of galanin binding sites in the dorsal raphe in a genetic rat model of depression. <i>Neuroscience Letters</i> , <b>2002</b> , 317, 101-5                                                                                                         | 3.3  | 54  |
| 458 | Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A(2A) and dopamine D(2) receptors. <i>Neuroscience Letters</i> , <b>2002</b> , 324, 154-8                                  | 3.3  | 110 |
| 457 | Reversible and irreversible components of [(3)H]-N-propylnorapomorphine interaction with rat striatal membranes. <i>Neuroscience Letters</i> , <b>2002</b> , 325, 111-4                                                                                             | 3.3  | 1   |
| 456 | Heteromerization of Adenosine and Dopamine Receptor Subtypes: Relevance for Neuronal Integration in Normal and Pathological States. <i>Advances in Behavioral Biology</i> , <b>2002</b> , 199-204                                                                   |      | 2   |
| 455 | A view of renin in the brain. <i>Journal of Molecular Medicine</i> , <b>2001</b> , 79, 71-3                                                                                                                                                                         | 5.5  | 13  |

| 454             | Adenosine/dopamine receptor-receptor interactions in the central nervous system. <i>Drug Development Research</i> , <b>2001</b> , 52, 296-302                                                                                                                                                        | 5.1 | 9   |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 453             | Modafinil does not affect serotonin efflux from rat frontal cortex synaptosomes: comparison with known serotonergic drugs. <i>Brain Research</i> , <b>2001</b> , 894, 307-10                                                                                                                         | 3.7 | 11  |
| 452             | The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors.  Neuropsychopharmacology, 2001, 25, 505-13 | 8.7 | 115 |
| 45 <sup>1</sup> | Galanin/alpha2-adrenoceptor interactions in telencephalic and diencephalic regions of the rat.  NeuroReport, 2001, 12, 151-5                                                                                                                                                                         | 1.7 | 7   |
| 450             | Cholecystokinin/dopamine/GABA interactions in the nucleus accumbens: biochemical and functional correlates. <i>Peptides</i> , <b>2001</b> , 22, 1229-34                                                                                                                                              | 3.8 | 30  |
| 449             | Voltage-operated Ca(2+) channels involved in K(+)-evoked release of vasoactive intestinal polypeptide from the rat hypothalamus. <i>Neurochemistry International</i> , <b>2001</b> , 38, 359-65                                                                                                      | 4.4 |     |
| 448             | Prolonged effects of intraventricular galanin on a 5-hydroxytryptamine(1A) receptor mediated function in the rat. <i>Neuroscience Letters</i> , <b>2001</b> , 299, 145-9                                                                                                                             | 3.3 | 32  |
| 447             | D2 dopamine receptor-G protein coupling. Cross-regulation of agonist and guanosine nucleotide binding sites. <i>Neuroscience Letters</i> , <b>2001</b> , 302, 5-8                                                                                                                                    | 3.3 | 9   |
| 446             | Adenosine/dopamine interaction: implications for the treatment of Parkinson's disease. <i>Parkinsonism and Related Disorders</i> , <b>2001</b> , 7, 235-241                                                                                                                                          | 3.6 | 102 |
| 445             | Group I mGluR antagonist AIDA protects nigral DA cells from MPTP-induced injury. <i>NeuroReport</i> , <b>2001</b> , 12, 2615-7                                                                                                                                                                       | 1.7 | 29  |
| 444             | Adenosine A2A agonist CGS 21680 decreases the affinity of dopamine D2 receptors for dopamine in human striatum. <i>NeuroReport</i> , <b>2001</b> , 12, 1831-4                                                                                                                                        | 1.7 | 66  |
| 443             | Induction of hippocampal glial cells expressing basic fibroblast growth factor RNA by corticosterone. <i>NeuroReport</i> , <b>2001</b> , 12, 141-5                                                                                                                                                   | 1.7 | 3   |
| 442             | Activation of adenosine A1 and A2A receptors modulates dopamine D2 receptor-induced responses in stably transfected human neuroblastoma cells. <i>Journal of Neurochemistry</i> , <b>2000</b> , 74, 432-9                                                                                            | 6   | 57  |
| 441             | Galanin-(1-16) modulates 5-HT1A receptors in the ventral limbic cortex of the rat. <i>NeuroReport</i> , <b>2000</b> , 11, 515-9                                                                                                                                                                      | 1.7 | 26  |
| 440             | Striatal dopamine denervation decreases the GDP binding affinity in rat striatal membranes. <i>NeuroReport</i> , <b>2000</b> , 11, 2691-4                                                                                                                                                            | 1.7 | 9   |
| 439             | Intraventricular galanin produces a time-dependent modulation of 5-HT1A receptors in the dorsal raphe of the rat. <i>NeuroReport</i> , <b>2000</b> , 11, 3943-8                                                                                                                                      | 1.7 | 32  |
| 438             | Organization of choroid plexus epithelial and endothelial cell tight junctions and regulation of claudin-1, -2 and -5 expression by protein kinase C. <i>NeuroReport</i> , <b>2000</b> , 11, 1427-31                                                                                                 | 1.7 | 100 |
| 437             | K(+)-Evoked [(3)H]D-aspartate release in rat spinal cord synaptosomes: modulation by neuropeptide Y and calcium channel antagonists. <i>Journal of Neuroscience Research</i> , <b>2000</b> , 62, 722-9                                                                                               | 4.4 | 13  |

#### (1999-2000)

| 436 | in the dorsal hippocampus and the neocortex of the rat. <i>European Journal of Neuroscience</i> , <b>2000</b> , 12, 2918-34                                                                                                                                                                 | 3.5                            | 98  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|
| 435 | Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum. <i>European Journal of Neuroscience</i> , <b>2000</b> , 12, 4033-7                                 | 3.5                            | 70  |
| 434 | Evidence for adenosine/dopamine receptor interactions: indications for heteromerization. <i>Neuropsychopharmacology</i> , <b>2000</b> , 23, S50-9                                                                                                                                           | 8.7                            | 120 |
| 433 | Systemic oxytocin treatment modulates alpha 2-adrenoceptors in telencephalic and diencephalic regions of the rat. <i>Brain Research</i> , <b>2000</b> , 887, 421-5                                                                                                                          | 3.7                            | 34  |
| 432 | Phorbol ester induced changes in tight and adherens junctions in the choroid plexus epithelium and in the ependyma. <i>Brain Research</i> , <b>2000</b> , 854, 197-206                                                                                                                      | 3.7                            | 43  |
| 431 | Ontogeny of the motor inhibitory role of dopamine D(3) receptor subtype in rats. <i>European Journal of Pharmacology</i> , <b>2000</b> , 392, 35-9                                                                                                                                          | 5.3                            | 6   |
| 430 | The galanin receptor antagonist M40 blocks the central cardiovascular actions of the galanin N-terminal fragment (1-15). <i>European Journal of Pharmacology</i> , <b>2000</b> , 399, 197-203                                                                                               | 5.3                            | 16  |
| 429 | Oxytocin/alpha(2)-Adrenoceptor interactions in feeding responses. <i>Neuroendocrinology</i> , <b>2000</b> , 71, 209-7                                                                                                                                                                       | <b>1§</b> .6                   | 18  |
| 428 | Diffusion of radiolabeled dopamine, its metabolites and mannitol in the rat striatum studied by dual-probe microdialysis. <i>Progress in Brain Research</i> , <b>2000</b> , 125, 179-90                                                                                                     | 2.9                            | 5   |
| 427 | Restoration of dopamine transmission in graft reinnervated striatum. Evidence for regulation of dopamine D2 receptor function in regions lacking dopamine. <i>Progress in Brain Research</i> , <b>2000</b> , 125, 309-                                                                      | ·1 <sup>2</sup> 5 <sup>9</sup> | 3   |
| 426 | Adenosine as a volume transmission signal. A feedback detector of neuronal activation. <i>Progress in Brain Research</i> , <b>2000</b> , 125, 353-61                                                                                                                                        | 2.9                            | 18  |
| 425 | Fetal ventral mesencephalic grafts functionally reduce the dopamine D2 receptor supersensitivity in partially dopamine reinnervated host striatum. <i>Experimental Neurology</i> , <b>2000</b> , 164, 154-65                                                                                | 5.7                            | 16  |
| 424 | Central nicotinic receptors, neurotrophic factors and neuroprotection. <i>Behavioural Brain Research</i> , <b>2000</b> , 113, 21-34                                                                                                                                                         | 3.4                            | 185 |
| 423 | Modulation of [(35)S]GTPgammaS binding to chinese hamster ovary cell membranes by D(2(short)) dopamine receptors. <i>Neuroscience Letters</i> , <b>2000</b> , 280, 135-8                                                                                                                    | 3.3                            | 9   |
| 422 | Characterization of NPY mRNA-expressing cells in the human brain: co-localization with Y2 but not Y1 mRNA in the cerebral cortex, hippocampus, amygdala, and striatum. <i>Journal of Chemical Neuroanatomy</i> , <b>2000</b> , 20, 327-37                                                   | 3.2                            | 60  |
| 421 | Galanin/alpha2-receptor interactions in central cardiovascular control. <i>Neuropharmacology</i> , <b>2000</b> , 39, 1377-85                                                                                                                                                                | 5.5                            | 27  |
| 420 | K+-evoked [3H]D-aspartate release in rat spinal cord synaptosomes: Modulation by neuropeptide Y and calcium channel antagonists <b>2000</b> , 62, 722                                                                                                                                       |                                | 2   |
| 419 | Stimulation of adenosine A1 receptors attenuates dopamine D1 receptor-mediated increase of NGFI-A, c-fos and jun-B mRNA levels in the dopamine-denervated striatum and dopamine D1 receptor-mediated turning behaviour. <i>European Journal of Neuroscience</i> , <b>1999</b> , 11, 3884-92 | 3.5                            | 28  |

| 418 | Pharmacological characterization of dopamine-stimulated [35S]-guanosine 5'(gamma-thiotriphosphate) ([35S]GTPgammaS) binding in rat striatal membranes. <i>Biochemical Pharmacology</i> , <b>1999</b> , 57, 155-62                                                         | 6   | 54  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 417 | Reciprocal interactions between adenosine A2A and dopamine D2 receptors in Chinese hamster ovary cells co-transfected with the two receptors. <i>Biochemical Pharmacology</i> , <b>1999</b> , 58, 1035-45                                                                 | 6   | 107 |
| 416 | The vigilance promoting drug modafinil increases extracellular glutamate levels in the medial preoptic area and the posterior hypothalamus of the conscious rat: prevention by local GABAA receptor blockade. <i>Neuropsychopharmacology</i> , <b>1999</b> , 20, 346-56   | 8.7 | 116 |
| 415 | Effects of the vigilance promoting drug modafinil on the synthesis of GABA and glutamate in slices of rat hypothalamus. <i>Neuroscience Letters</i> , <b>1999</b> , 259, 181-5                                                                                            | 3.3 | 23  |
| 414 | Alterations in neuropeptide Y levels and Y1 binding sites in the Flinders Sensitive Line rats, a genetic animal model of depression. <i>Neuroscience Letters</i> , <b>1999</b> , 265, 191-4                                                                               | 3.3 | 97  |
| 413 | The autonomic nervous system and the histochemical fluorescence method for the microscopical localization of catecholamines and serotonin. <i>Brain Research Bulletin</i> , <b>1999</b> , 50, 365-7                                                                       | 3.9 | 5   |
| 412 | The nicotinic acetylcholine receptor agonist (+/-)-epibatidine increases FGF-2 mRNA and protein levels in the rat brain. <i>Molecular Brain Research</i> , <b>1999</b> , 74, 98-110                                                                                       |     | 33  |
| 411 | The nicotinic acetylcholine receptor agonist ABT-594 increases FGF-2 expression in various rat brain regions. <i>NeuroReport</i> , <b>1999</b> , 10, 3909-13                                                                                                              | 1.7 | 23  |
| 410 | Serotonergic agonists behave as partial agonists at the dopamine D2 receptor. <i>NeuroReport</i> , <b>1999</b> , 10, 493-5                                                                                                                                                | 1.7 | 19  |
| 409 | Modulation of a 5-HT1A receptor-mediated behavioral response by the neuropeptide galanin. <i>Annals of the New York Academy of Sciences</i> , <b>1998</b> , 863, 442-4                                                                                                    | 6.5 | 2   |
| 408 | Age-related alteration of the adenosine/dopamine balance in the rat striatum. <i>Brain Research</i> , <b>1998</b> , 795, 297-300                                                                                                                                          | 3.7 | 28  |
| 407 | Intraventricular galanin modulates a 5-HT1A receptor-mediated behavioural response in the rat. <i>European Journal of Neuroscience</i> , <b>1998</b> , 10, 1230-40                                                                                                        | 3.5 | 41  |
| 406 | Evidence for a striatal NMDA receptor modulation of nigral glutamate release. A dual probe microdialysis study in the awake freely moving rat. <i>European Journal of Neuroscience</i> , <b>1998</b> , 10, 1716-22                                                        | 3.5 | 15  |
| 405 | The emergence of the volume transmission concept. <i>Brain Research Reviews</i> , <b>1998</b> , 26, 136-47                                                                                                                                                                |     | 191 |
| 404 | Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. <i>Brain Research Reviews</i> , <b>1998</b> , 26, 258-73 |     | 238 |
| 403 | Alterations in neuropeptide Y and Y1 receptor mRNA expression in brains from an animal model of depression: region specific adaptation after fluoxetine treatment. <i>Molecular Brain Research</i> , <b>1998</b> , 59, 58-65                                              |     | 96  |
| 402 | Adenosine A1 and A2A receptor antagonists stimulate motor activity: evidence for an increased effectiveness in aged rats. <i>Neuroscience Letters</i> , <b>1998</b> , 251, 201-4                                                                                          | 3.3 | 53  |
| 401 | The effects of modafinil on striatal, pallidal and nigral GABA and glutamate release in the conscious rat: evidence for a preferential inhibition of striato-pallidal GABA transmission. <i>Neuroscience Letters</i> , <b>1998</b> , 253, 135-8                           | 3.3 | 102 |

| nicotine. <i>Nature</i> , <b>1998</b> , 391, 173-7                                                                                                                                                                                                                | 50.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. <i>European Journal of Pharmacology</i> , <b>1998</b> , 347, 153-8                                                   | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Adenosine A1 receptor-mediated modulation of dopamine D1 receptors in stably cotransfected fibroblast cells. <i>Journal of Biological Chemistry</i> , <b>1998</b> , 273, 4718-24                                                                                  | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Existence of striatal nerve cells coexpressing CCK(B) and D2 receptor mRNAs. <i>NeuroReport</i> , <b>1998</b> , 9, 20                                                                                                                                             | 3 <b>5</b> : <del>/</del> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| On the relationship of 5-hydroxytryptamine neurons to 5-hydroxytryptamine 2A receptor-immunoreactive neuronal processes in the brain stem of rats. A double immunolabelling analysis. <i>NeuroReport</i> , <b>1998</b> , 9, 2505-11                               | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Modafinil prevents glutamate cytotoxicity in cultured cortical neurons. <i>NeuroReport</i> , <b>1998</b> , 9, 4209-13                                                                                                                                             | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| The striatal neurotensin receptor modulates striatal and pallidal glutamate and GABA release: functional evidence for a pallidal glutamate-GABA interaction via the pallidal-subthalamic nucleus loop. <i>Journal of Neuroscience</i> , <b>1998</b> , 18, 6977-89 | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Agonist-induced high-affinity GTP hydrolysis as an index of receptor-mediated G protein activation in mammalian brain membranes. <i>Methods in Molecular Biology</i> , <b>1997</b> , 83, 133-41                                                                   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Endothelin-1 induced lesions of the frontoparietal cortex of the rat. A possible model of focal cortical ischemia. <i>NeuroReport</i> , <b>1997</b> , 8, 2623-9                                                                                                   | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| The antinarcoleptic drug modafinil increases glutamate release in thalamic areas and hippocampus. <i>NeuroReport</i> , <b>1997</b> , 8, 2883-7                                                                                                                    | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5-HT1A receptor activation: short-term effects on the mRNA expression of the 5-HT1A receptor and galanin in the raphe nuclei. <i>NeuroReport</i> , <b>1997</b> , 8, 3565-70                                                                                       | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chronic nicotine treatment differentially regulates substance P and tyrosine hydroxylase immunoreactivity in substantia nigra ipsilateral to a unilateral lesion. <i>Experimental Neurology</i> , <b>1997</b> , 146, 575-86                                       | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Modafinil: an antinarcoleptic drug with a different neurochemical profile to d-amphetamine and dopamine uptake blockers. <i>Biological Psychiatry</i> , <b>1997</b> , 42, 1181-3                                                                                  | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. <i>Trends in Neurosciences</i> , <b>1997</b> , 20, 482-7                                                                                                      | 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| On the role of c-fos expression in striatal transmission. The antisense oligonucleotide approach. <i>Neurochemistry International</i> , <b>1997</b> , 31, 425-36                                                                                                  | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mechanism of modulation of [3H]raclopride binding to dopaminergic receptors in rat striatal membranes by sodium ions. <i>Neurochemistry International</i> , <b>1997</b> , 30, 575-81                                                                              | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NPY Y1 receptor like immunoreactivity exists in a subpopulation of beta-endorphin immunoreactive nerve cells in the arcuate nucleus: a double immunolabelling analysis in the rat. <i>Neuroscience Letters</i> , <b>1997</b> , 225, 49-52                         | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Codistribution of the dopamine D3 receptor and glucocorticoid receptor mRNAs during striatal prenatal development in the rat. <i>Neuroscience Letters</i> , <b>1997</b> , 227, 119-22                                                                             | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                   | Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. <i>European Journal of Pharmacology</i> , 1998, 347, 153-8  Adenosine A1 receptor-mediated modulation of dopamine D1 receptors in stably cotransfected fibroblast cells. <i>Journal of Biological Chemistry</i> , 1998, 273, 4718-24  Existence of striatal nerve cells coexpressing CCK(B) and D2 receptor mRNAs. <i>NeuroReport</i> , 1998, 9, 20  On the relationship of 5-hydroxytryptamine neurons to 5-hydroxytryptamine 2A receptor-immunoreactive neuronal processes in the brain stem of rats. A double immunolabelling analysis. <i>NeuroReport</i> , 1998, 9, 2505-11  Modafinil prevents glutamate cytotoxicity in cultured cortical neurons. <i>NeuroReport</i> , 1998, 9, 4209-13  The striatal neurotensin receptor modulates striatal and pallidal glutamate and GABA release: functional evidence for a pallidal glutamate-GABA interaction via the pallidal-subthalamic nucleus loop. <i>Journal of Neuroscience</i> , 1998, 18, 6977-89  Agonist-induced high-affinity GTP hydrolysis as an index of receptor-mediated G protein activation in mammalian brain membranes. <i>Methods in Molecular Biology</i> , 1997, 83, 133-41  Endothelin-1 induced lesions of the frontoparietal cortex of the rat. A possible model of focal cortical ischemia. <i>NeuroReport</i> , 1997, 8, 2623-9  The antinarcoleptic drug modafinil increases glutamate release in thalamic areas and hippocampus. <i>NeuroReport</i> , 1997, 8, 2883-7  S-HT1A receptor activation: short-term effects on the mRNA expression of the 5-HT1A receptor and galanin in the raphe nuclei. <i>NeuroReport</i> , 1997, 8, 3565-70  Chronic nicotine treatment differentially regulates substance P and tyrosine hydroxylase immunoreactivity in substantia nigra ipsilateral to a unilateral lesion. <i>Experimental Neurology</i> , 1997, 146, 573-86  Modafinil: an antinarcoleptic drug with a different neurochemical profile to d-amphetamine and dopamine uptake blockers. <i>Biological Psychiatry</i> , 1997, 42, 1181-3  Adenosine-dopamine receptor-rec | Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. European Journal of Pharmacology, 1998, 347, 153-8  Adenosine A1 receptor-mediated modulation of dopamine D1 receptors in stably cotransfected fibroblast cells. Journal of Biological Chemistry, 1998, 273, 4718-24  Existence of striatal nerve cells coexpressing CCK(B) and D2 receptor mRNAs. NeuroReport, 1998, 9, 2035-6  On the relationship of 5-hydroxytryptamine neurons to 5-hydroxytryptamine 2A receptor-immunoreactive neuronal processes in the brain stem of rats. A double immunolabelling analysis. NeuroReport, 1998, 9, 2505-11  Modafinil prevents glutamate cytotoxicity in cultured cortical neurons. NeuroReport, 1998, 9, 4209-13  The striatal neurotensin receptor modulates striatal and pallidal glutamate and GABA release: functional evidence for a pallidal glutamate-GABA interaction via the pallidal-subthalamic nucleus loop. Journal of Neuroscience, 1998, 18, 6977-89  Agonist-induced high-affinity CTP hydrolysis as an index of receptor-mediated G protein activation in mammallan brain membranes. Methods in Molecular Biology, 1997, 83, 133-41  Endothelin-1 induced lesions of the frontoparietal cortex of the rat. A possible model of focal cortical ischemia. NeuroReport, 1997, 8, 2623-9  The antinarcoleptic drug modafinil increases glutamate release in thalamic areas and hippocampus. NeuroReport, 1997, 8, 2883-7  Chronic nicotine treatment differentially regulates substance P and tyrosine hydroxylase immunoreactivity in substantia nigra ipsilateral to a unilateral lesion. Experimental Neurology, 1997, 57  Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends in Neurosciences, 1997, 20, 482-7  On the role of c-fos expression in striatal transmission. The antisense oligonucleotide approach. Neurochemistry International, 1997, 31, 425-36  Neuroscience Letters, 1997, 225, 49-52  Codistribution of the dopamine D3 receptor and gluc |

| 382 | Possible involvement of G-proteins in the regulation of striatal dopamine D2 receptor affinity by cholecystokinin octapeptide. <i>Neuroscience Letters</i> , <b>1997</b> , 228, 171-4                                                                       | 3.3               |     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|
| 381 | Prolonged treatment with haloperidol and clozapine in the rat: differential effects on spontaneous and theophylline-induced motor activity. <i>Neuroscience Letters</i> , <b>1997</b> , 232, 21-4                                                           | 3.3               | 1   |
| 380 | Modulation of [3H]quinpirole binding to dopaminergic receptors by adenosine A2A receptors. <i>Neuroscience Letters</i> , <b>1997</b> , 239, 61-4                                                                                                            | 3.3               | 15  |
| 379 | Localization of neuropeptide Y Y1 mRNA in the human brain: abundant expression in cerebral cortex and striatum. <i>European Journal of Neuroscience</i> , <b>1997</b> , 9, 1212-25                                                                          | 3.5               | 47  |
| 378 | Differential effects of intrastriatal neurotensin(1-13) and neurotensin(8-13) on striatal dopamine and pallidal GABA release. A dual-probe microdialysis study in the awake rat. <i>European Journal of Neuroscience</i> , <b>1997</b> , 9, 1838-46         | 3.5               | 42  |
| 377 | Adenosine A2A agonists: a potential new type of atypical antipsychotic. <i>Neuropsychopharmacology</i> , <b>1997</b> , 17, 82-91                                                                                                                            | 8.7               | 123 |
| 376 | Galanin and 5-HT1A receptor interactions as an integrative mechanism in 5-HT neurotransmission in the brain. <i>Annals of the New York Academy of Sciences</i> , <b>1996</b> , 780, 193-212                                                                 | 6.5               | 31  |
| 375 | Adenosine A1 receptor-dopamine D1 receptor interaction in the rat limbic system: modulation of dopamine D1 receptor antagonist binding sites. <i>Neuroscience Letters</i> , <b>1996</b> , 208, 109-12                                                       | 3.3               | 60  |
| 374 | Computer-assisted mapping of basic fibroblast growth factor immunoreactive nerve cell populations in the rat brain. <i>Journal of Chemical Neuroanatomy</i> , <b>1996</b> , 11, 13-35                                                                       | 3.2               | 42  |
| 373 | Regulation of dopamine D2 receptor affinity by cholecystokinin octapeptide in fibroblast cells cotransfected with human CCKB and D2L receptor cDNAs. <i>Molecular Brain Research</i> , <b>1996</b> , 36, 292-9                                              |                   | 20  |
| 372 | Kinetic evidence for isomerization of the dopamine receptor-raclopride complex. <i>Neurochemistry International</i> , <b>1996</b> , 28, 591-5                                                                                                               | 4.4               | 25  |
| 371 | The vigilance promoting drug modafinil increases dopamine release in the rat nucleus accumbens via the involvement of a local GABAergic mechanism. <i>European Journal of Pharmacology</i> , <b>1996</b> , 306, 33                                          | <del>5</del> ٠3و۔ | 107 |
| 370 | Stimulation of adenosine A1 receptors prevents the EEG arousal due to dopamine D1 receptor activation in rabbits. <i>European Journal of Pharmacology</i> , <b>1996</b> , 305, 123-6                                                                        | 5.3               | 17  |
| 369 | Adenosine A2A receptors modulate the binding characteristics of dopamine D2 receptors in stably cotransfected fibroblast cells. <i>European Journal of Pharmacology</i> , <b>1996</b> , 316, 325-31                                                         | 5.3               | 79  |
| 368 | Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents. <i>Neuroscience Letters</i> , <b>1996</b> , 218, 209-13                                                                    | 3.3               | 65  |
| 367 | The vigilance promoting drug modafinil decreases GABA release in the medial preoptic area and in the posterior hypothalamus of the awake rat: possible involvement of the serotonergic 5-HT3 receptor. <i>Neuroscience Letters</i> , <b>1996</b> , 220, 5-8 | 3.3               | 94  |
| 366 | Dopaminergic transmission in the rat retina: evidence for volume transmission. <i>Journal of Chemical Neuroanatomy</i> , <b>1996</b> , 12, 37-50                                                                                                            | 3.2               | 67  |
| 365 | The non-peptide neuropeptide Y Y1 receptor antagonist BIBP3226 blocks the [Leu31,Pro34]neuropeptide Y-induced modulation of alpha 2-adrenoceptors in the nucleus tractus solitarii of the rat. <i>NeuroReport</i> , <b>1996</b> , 7, 2701-5                 | 1.7               | 10  |

| 364 | Basic fibroblast growth factor expression and tenascin C immunoreactivity after partial unilateral hemitransection of the rat brain. <i>Brain Research</i> , <b>1996</b> , 730, 1-16                                                                  | 3.7 | 9   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 363 | Expression of cytochrome P45011B1 mRNA in the brain of normal and hypertensive transgenic rats. <i>Brain Research</i> , <b>1996</b> , 733, 73-82                                                                                                      | 3.7 | 17  |
| 362 | On the role of glucocorticoid receptors in brain plasticity. <i>Cellular and Molecular Neurobiology</i> , <b>1996</b> , 16, 239-58                                                                                                                    | 4.6 | 42  |
| 361 | Centrally infused galanin-(1-15) but not galanin-(1-29) reduces the baroreceptor reflex sensitivity in the rat. <i>Brain Research</i> , <b>1996</b> , 741, 32-7                                                                                       | 3.7 | 19  |
| 360 | Neuropharmacology of the adenosine A2A receptors. <i>Drug Development Research</i> , <b>1996</b> , 39, 450-460                                                                                                                                        | 5.1 | 20  |
| 359 | Dopamine D1 receptor-mediated facilitation of GABAergic neurotransmission in the rat strioentopenduncular pathway and its modulation by adenosine A1 receptor-mediated mechanisms. <i>European Journal of Neuroscience</i> , <b>1996</b> , 8, 1545-53 | 3.5 | 122 |
| 358 | The receptor mosaic hypothesis of the engram: possible relevance of Boolean network modeling. <i>International Journal of Neural Systems</i> , <b>1996</b> , 7, 363-8                                                                                 | 6.2 | 16  |
| 357 | Subcellular localization of angiotensin II immunoreactivity in the rat cerebellar cortex. <i>Hypertension</i> , <b>1996</b> , 28, 818-24                                                                                                              | 8.5 | 62  |
| 356 | Neurotensin increases endogenous glutamate release in the neostriatum of the awake rat. <i>Synapse</i> , <b>1995</b> , 20, 362-4                                                                                                                      | 2.4 | 38  |
| 355 | 5-HT1A receptor-mediated activation of high-affinity GTPase in rat hippocampal membranes. <i>European Journal of Pharmacology</i> , <b>1995</b> , 288, 385-8                                                                                          |     | 10  |
| 354 | Additivity and non-additivity between dopamine-, norepinephrine-, carbachol- and GABA-stimulated GTPase activity. <i>European Journal of Pharmacology</i> , <b>1995</b> , 291, 245-53                                                                 |     | 17  |
| 353 | Evidence for a differential modulation of the alpha-2 adrenoceptors by angiotensin II in the nucleus tractus solitarii of the spontaneously hypertensive and the Wistar-Kyoto normotensive rats. <i>Brain Research</i> , <b>1995</b> , 679, 168-77    | 3.7 | 14  |
| 352 | A single (-)-nicotine injection causes change with a time delay in the affinity of striatal D2 receptors for antagonist, but not for agonist, nor in the D2 receptor mRNA levels in the rat substantia nigra.<br>Brain Research, 1995, 679, 157-67    | 3.7 | 15  |
| 351 | Cholecystokinin octapeptide and the D2 antagonist raclopride induce Fos-like immunoreactivity in the shell part of the rat nucleus accumbens via different mechanisms. <i>Brain Research</i> , <b>1995</b> , 684, 225-9                               | 3.7 | 7   |
| 350 | 5-HT1A, GABAB, and pirenzepine-insensitive muscarinic receptors are functionally coupled to distinct pools of the same kind of G proteins in rat hippocampus. <i>Brain Research</i> , <b>1995</b> , 689, 129-35                                       | 3.7 | 18  |
| 349 | The brain renin-angiotensin system: molecular mechanisms of cell to cell interactions. <i>Clinical and Experimental Hypertension</i> , <b>1995</b> , 17, 251-66                                                                                       | 2.2 | 50  |
| 348 | Neurotensin-like immunoreactivity in odontoblasts and their processes in rat maxillary molar teeth and the effect of pulpotomy. <i>Regulatory Peptides</i> , <b>1995</b> , 58, 141-7                                                                  |     | 7   |
| 347 | A brief appraisal on some aspects of the receptor-receptor interaction. <i>Neurochemistry International</i> , <b>1995</b> , 27, 139-46                                                                                                                | 4.4 | 21  |

| 346 | Functional coupling of dopamine D2 and muscarinic cholinergic receptors to their respective G proteins assessed by agonist-induced activation of high-affinity GTPase activity in rat striatal membranes. <i>Biochemical Pharmacology</i> , <b>1995</b> , 50, 325-35 | 6                              | 19 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----|
| 345 | Modafinil and cortical gamma-aminobutyric acid outflow. Modulation by 5-hydroxytryptamine neurotoxins. <i>European Journal of Pharmacology</i> , <b>1995</b> , 273, 63-71                                                                                            | 5.3                            | 53 |
| 344 | Presynaptic A2-adrenoceptors and neuropeptide Y Y2 receptors inhibit [3H]noradrenaline release from rat hypothalamic synaptosomes via different mechanisms. <i>Neuroscience Letters</i> , <b>1995</b> , 188, 9-12                                                    | 3.3                            | 22 |
| 343 | Counteraction of NYP-induced c-Fos expression in the nucleus tractus solitarii by alpha 2 receptor agonists. <i>NeuroReport</i> , <b>1995</b> , 6, 384-8                                                                                                             | 1.7                            | 14 |
| 342 | Long distance pathways of diffusion for dextran along fibre bundles in brain. Relevance for volume transmission. <i>NeuroReport</i> , <b>1995</b> , 6, 1005-9                                                                                                        | 1.7                            | 49 |
| 341 | Volume versus wiring transmission in the brain: a new theoretical frame for neuropsychopharmacology. <i>Medicinal Research Reviews</i> , <b>1995</b> , 15, 33-45                                                                                                     | 14.4                           | 87 |
| 340 | Evidence for the Existence of Antagonistic Intramembrane Adenosine A2a/dopamine D2 Receptor Interactions in the Basal Ganglia: Analysis from the Network to the Molecular Level <b>1995</b> , 499-507                                                                |                                | 3  |
| 339 | Chronic haloperidol treatment leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. <i>Psychopharmacology</i> , <b>1994</b> , 116, 279-84                                                         | 4.7                            | 28 |
| 338 | Increase of basic fibroblast growth factor (bFGF, FGF-2) messenger RNA and protein following implantation of a microdialysis probe into rat hippocampus. <i>Experimental Brain Research</i> , <b>1994</b> , 98, 229-                                                 | -3 <sup>2</sup> 7 <sup>3</sup> | 23 |
| 337 | Human angiotensinogen is highly expressed in astrocytes in human cortical grafts. <i>Glia</i> , <b>1994</b> , 10, 186-9                                                                                                                                              | <b>2</b> 9                     | 9  |
| 336 | On the plasticity of the cerebellar renin-angiotensin system: localization of components and effects of mechanical perturbation. <i>Brain Research</i> , <b>1994</b> , 668, 144-59                                                                                   | 3.7                            | 20 |
| 335 | Evidence for volume transmission in the dopamine denervated neostriatum of the rat after a unilateral nigral 6-OHDA microinjection. Studies with systemic D-amphetamine treatment. <i>Brain Research</i> , <b>1994</b> , 662, 11-24                                  | 3.7                            | 41 |
| 334 | Cholecystokinin receptor subtypes regulate dopamine D2 receptors in rat neostriatal membranes. Involvement of D1 receptors. <i>Annals of the New York Academy of Sciences</i> , <b>1994</b> , 713, 386-7                                                             | 6.5                            | 1  |
| 333 | Evidence for a regional distribution of hyaluronic acid in the rat brain using a highly specific hyaluronic acid recognizing protein. <i>Neuroscience Letters</i> , <b>1994</b> , 169, 25-30                                                                         | 3.3                            | 19 |
| 332 | Adrenalectomy alters discrete galanin mRNA levels in the hypothalamus and mesencephalon of the rat. <i>Neuroscience Letters</i> , <b>1994</b> , 170, 77-82                                                                                                           | 3.3                            | 21 |
| 331 | A2a/D2 receptor interactions are not observed in COS-7 cells transiently transfected with dopamine D2 and adenosine A2a receptor cDNA. <i>Biochemical Pharmacology</i> , <b>1994</b> , 48, 2043-7                                                                    | 6                              | 10 |
| 330 | On the regional distribution of heparan sulfate proteoglycan immunoreactivity in the rat brain. <i>Brain Research</i> , <b>1994</b> , 636, 131-8                                                                                                                     | 3.7                            | 36 |
| 329 | Galanin-(1-15), but not galanin-(1-29), modulates 5-HT1A receptors in the dorsal hippocampus of the rat brain: possible existence of galanin receptor subtypes. <i>Brain Research</i> , <b>1994</b> , 634, 163-7                                                     | 3.7                            | 60 |

| 328 | Selective modulation of the NPY receptors of the Y2 subtype by alpha 2 receptors in the nucleus tractus solitarii of the rat. A cardiovascular and quantitative receptor autoradiographical analysis. <i>Brain Research</i> , <b>1994</b> , 654, 137-44 | 3.7           | 9   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|
| 327 | Chronic nicotine treatment counteracts dopamine D2 receptor upregulation induced by a partial meso-diencephalic hemitransection in the rat. <i>Brain Research</i> , <b>1994</b> , 655, 25-32                                                            | 3.7           | 27  |
| 326 | Dopamine D1 receptors are involved in the modulation of D2 receptors induced by cholecystokinin receptor subtypes in rat neostriatal membranes. <i>Brain Research</i> , <b>1994</b> , 650, 289-98                                                       | 3.7           | 24  |
| 325 | Intracisternally injected galanin-(1-15) modulates the cardiovascular responses of galanin-(1-29) and the 5-HT1A receptor agonist 8-OH-DPAT. <i>European Journal of Pharmacology</i> , <b>1994</b> , 257, 257-65                                        | 5.3           | 32  |
| 324 | Antagonistic regulation of alpha 2-adrenoceptors by neuropeptide Y receptor subtypes in the nucleus tractus solitarii. <i>European Journal of Pharmacology</i> , <b>1994</b> , 271, 201-12                                                              | 5.3           | 26  |
| 323 | Dopamine D1 and D2 receptor antagonism differentially modulates stimulation of striatal neurotransmitter levels by N-methyl-D-aspartic acid. <i>European Journal of Pharmacology</i> , <b>1994</b> , 256, 23-3                                          | ვ <b>ნ</b> ∙3 | 59  |
| 322 | Evidence for an antagonistic angiotensin II/alpha 2-adrenoceptor interaction in the nucleus tractus solitarii. <i>European Journal of Pharmacology</i> , <b>1994</b> , 262, 271-82                                                                      | 5.3           | 23  |
| 321 | The concept of astrocyte-kinetic drug in the treatment of neurodegenerative diseases: evidence for L-deprenyl-induced activation of reactive astrocytes. <i>Neurochemistry International</i> , <b>1994</b> , 25, 17-22                                  | 4.4           | 46  |
| 320 | 6-hydroxy-dopamine treatment counteracts the reduction of cortical GABA release produced by the vigilance promoting drug modafinil in the awake freely moving guinea-pig. <i>Neuroscience Letters</i> , <b>1994</b> , 171, 201-4                        | 3.3           | 20  |
| 319 | Coinjections of NPY(1-36) or [Leu31,Pro34]NPY with adrenaline in the nucleus tractus solitarius of the rat counteract the vasodepressor responses to adrenaline. <i>Neuroscience Letters</i> , <b>1994</b> , 171, 27-31                                 | 3.3           | 18  |
| 318 | Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. <i>NeuroReport</i> , <b>1994</b> , 6, 73-6                                                                                                                        | 1.7           | 118 |
| 317 | Different classes of volume transmission signals exist in the central nervous system and are affected by metabolic signals, temperature gradients and pressure waves. <i>NeuroReport</i> , <b>1994</b> , 6, 9-12                                        | 1.7           | 34  |
| 316 | Strong effects of NT/NN peptides on DA D2 receptors in rat neostriatal sections. <i>NeuroReport</i> , <b>1994</b> , 5, 1621-4                                                                                                                           | 1.7           | 20  |
| 315 | Neurochemical and Behavioral Studies on L-dopa Toxicity in the Model of Manganese Lesioned Nigrostriatal Pathway in the Rat: Evidence for a Protective Effect of the GM1 Lactone Siagoside <b>1994</b> , 381-407                                        |               | 1   |
| 314 | Immunocytochemical Studies on Glucocorticoid Receptor. <i>Methods in Neurosciences</i> , <b>1994</b> , 22, 143-161                                                                                                                                      |               | 1   |
| 313 | Central Glucocorticoid Receptors and Neuronal Plasticity. <i>Methods in Neurosciences</i> , <b>1994</b> , 372-382                                                                                                                                       |               | 11  |
| 312 | The MPTP Model of Parkinson's Disease in the Mouse. Modafinil New Potential Neuroprotective Agent <b>1994</b> , 409-423                                                                                                                                 |               |     |
| 311 | Responses of Neostriatal Dopaminoceptive Cells to the Ischemic Insult <b>1994</b> , 517-533                                                                                                                                                             |               |     |

| 310 | Cholecystokinin-8 increases K(+)-evoked [3H] gamma-aminobutyric acid release in slices from various brain areas. <i>European Journal of Pharmacology</i> , <b>1993</b> , 250, 423-30                                                                    | 5.3 | 37 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 309 | The C-terminal neurotensin-(8-13) fragment potently modulates rat neostriatal dopamine D2 receptors. <i>European Journal of Pharmacology</i> , <b>1993</b> , 234, 125-8                                                                                 | 5.3 | 17 |
| 308 | Neurotensin and cholecystokinin octapeptide control synergistically dopamine release and dopamine D2 receptor affinity in rat neostriatum. <i>European Journal of Pharmacology</i> , <b>1993</b> , 230, 159-66                                          | 5.3 | 25 |
| 307 | Region-specific inhibition of potassium-evoked [3H]noradrenaline release from rat brain synaptosomes by neuropeptide Y-(13-36). Involvement of NPY receptors of the Y2 type. <i>European Journal of Pharmacology</i> , <b>1993</b> , 230, 231-4         | 5.3 | 33 |
| 306 | Neuromedin N is a potent modulator of dopamine D2 receptor agonist binding in rat neostriatal membranes. <i>Neuroscience Letters</i> , <b>1993</b> , 155, 121-4                                                                                         | 3.3 | 11 |
| 305 | Neurochemical alterations but not nerve cell loss in aged rat neostriatum. <i>Journal of Chemical Neuroanatomy</i> , <b>1993</b> , 6, 131-45                                                                                                            | 3.2 | 17 |
| 304 | Prenatal development of glucocorticoid receptor gene expression and immunoreactivity in the rat brain and pituitary gland: a combined in situ hybridization and immunocytochemical analysis. <i>Neuroendocrinology</i> , <b>1993</b> , 57, 1133-47      | 5.6 | 77 |
| 303 | Intramembrane receptor-receptor interactions: integration of signal transduction pathways in the nervous system. <i>Neurochemistry International</i> , <b>1993</b> , 22, 213-22                                                                         | 4.4 | 22 |
| 302 | Autoradiographic evidence for a bradykinin/angiotensin II receptor-receptor interaction in the rat brain. <i>Neuroscience Letters</i> , <b>1993</b> , 163, 58-62                                                                                        | 3.3 | 22 |
| 301 | Indole-pyruvic acid treatment reduces damage in striatum but not in hippocampus after transient forebrain ischemia in the rat. <i>Neurochemistry International</i> , <b>1993</b> , 23, 139-48                                                           | 4.4 | 6  |
| 300 | Basic fibroblast growth factor (bFGF, FGF-2) immunoreactivity exists in the noradrenaline, adrenaline and 5-HT nerve cells of the rat brain. <i>Neuroscience Letters</i> , <b>1993</b> , 160, 171-6                                                     | 3.3 | 40 |
| 299 | Subpicomolar amounts of NPY(13-36) injected into the nucleus tractus solitarius of the rat counteract the cardiovascular responses to L-glutamate. <i>Neuroscience Letters</i> , <b>1993</b> , 151, 182-6                                               | 3.3 | 30 |
| 298 | Cellular localization of angiotensin type 1 receptor and angiotensinogen mRNAs in the subfornical organ of the rat brain. <i>Neuroscience Letters</i> , <b>1993</b> , 150, 153-8                                                                        | 3.3 | 41 |
| 297 | Coexistence of c-Fos and glucocorticoid receptor immunoreactivities in the CRF immunoreactive neurons of the paraventricular hypothalamic nucleus of the rat after acute immobilization stress. <i>Neuroscience Letters</i> , <b>1993</b> , 149, 149-52 | 3.3 | 61 |
| 296 | The renin-angiotensin system in the brain: an update 1993. Regulatory Peptides, 1993, 46, 487-509                                                                                                                                                       |     | 86 |
| 295 | Regional expression of angiotensinogen mRNA in the brain of one-week-old, adult and old male rats. <i>Developmental Brain Research</i> , <b>1993</b> , 73, 41-5                                                                                         |     | 9  |
| 294 | Indole-pyruvic acid, a tryptophan ketoanalogue, antagonizes the endocrine but not the behavioral effects of repeated stress in a model of depression. <i>Biological Psychiatry</i> , <b>1993</b> , 33, 712-9                                            | 7.9 | 42 |
| 293 | Corticosterone increases FGF-2 (bFGF) immunoreactivity in the substantia nigra of the rat. <i>NeuroReport</i> , <b>1993</b> , 4, 783-6                                                                                                                  | 1.7 | 44 |

| 292         | Codistribution of choleratoxin binding sites and tyrosine hydroxylase/FGF-2 immunoreactive nigral nerve cells. <i>NeuroReport</i> , <b>1993</b> , 4, 857-60                                                                                  | 1.7 | 6   |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--|
| 291         | L-deprenyl increases GFAP immunoreactivity selectively in activated astrocytes in rat brain.  NeuroReport, <b>1993</b> , 4, 955-8                                                                                                            | 1.7 | 39  |  |
| 290         | Intraventricular beta-endorphin accumulates in DARPP-32 immunoreactive tanycytes. <i>NeuroReport</i> , <b>1993</b> , 5, 265-8                                                                                                                | 1.7 | 41  |  |
| 289         | Antisense oligonucleotide to c-fos induces ipsilateral rotational behaviour to d-amphetamine. <i>NeuroReport</i> , <b>1993</b> , 5, 277-80                                                                                                   | 1.7 | 71  |  |
| 288         | Antagonistic A2a/D2 receptor interactions in the striatum as a basis for adenosine/dopamine interactions in the central nervous system. <i>Drug Development Research</i> , <b>1993</b> , 28, 374-380                                         | 5.1 | 47  |  |
| 287         | Cellular expression of angiotensin type-1 receptor mRNA in the kidney. <i>Kidney International</i> , <b>1993</b> , 44, 331-6                                                                                                                 | 9.9 | 36  |  |
| 286         | Opposing actions of an adenosine A2 receptor agonist and a GTP analogue on the regulation of dopamine D2 receptors in rat neostriatal membranes. <i>European Journal of Pharmacology</i> , <b>1993</b> , 244, 311-5                          |     | 48  |  |
| 285         | Receptor-receptor interactions as an integrative mechanism in nerve cells. <i>Molecular Neurobiology</i> , <b>1993</b> , 7, 293-334                                                                                                          | 6.2 | 117 |  |
| 284         | Photochemically induced focal cerebral ischemia in rat: time dependent and global increase in expression of basic fibroblast growth factor mRNA. <i>Brain Research</i> , <b>1993</b> , 625, 45-56                                            | 3.7 | 41  |  |
| 283         | Microinjections of subpicomolar amounts of NPY(13-36) into the nucleus tractus solitarius of the rat counteract the vasodepressor responses of NPY(1-36) and of a NPY Y1 receptor agonist. <i>Brain Research</i> , <b>1993</b> , 621, 126-32 | 3.7 | 37  |  |
| 282         | Colocalization of peptide and glucocorticoid receptor immunoreactivities in rat central amygdaloid nucleus. <i>Neuroendocrinology</i> , <b>1992</b> , 55, 451-9                                                                              | 5.6 | 93  |  |
| 281         | The brain renin-angiotensin system: localization and general significance. <i>Journal of Cardiovascular Pharmacology</i> , <b>1992</b> , 19 Suppl 6, S51-62                                                                                  | 3.1 | 75  |  |
| <b>2</b> 80 | Steroidal regulation of coexisting neuronal messengers: Focus on double and triple immunolabeling procedures and on indirect evaluation of coexistence. <i>Methods</i> , <b>1992</b> , 1, 77-86                                              |     | 3   |  |
| 279         | The distribution of angiotensin II AT1 receptor subtype mRNA in the rat brain. <i>Neuroscience Letters</i> , <b>1992</b> , 142, 155-8                                                                                                        | 3.3 | 71  |  |
| 278         | The semi-quantitative distribution and cellular localization of angiotensinogen mRNA in the rat brain. <i>Journal of Chemical Neuroanatomy</i> , <b>1992</b> , 5, 245-62                                                                     | 3.2 | 43  |  |
| 277         | Muscarinic modulation of acetylcholine release from slices of guinea pig nucleus basalis magnocellularis. <i>Neuroscience Letters</i> , <b>1992</b> , 140, 235-8                                                                             | 3.3 | 4   |  |
| 276         | Ganglioside GM1 counteracts the enhancing effects of subacute toluene exposure on apomorphine-induced locomotor activity. <i>Toxicology Letters</i> , <b>1992</b> , 63, 165-9                                                                | 4.4 | 4   |  |
| 275         | Feeding and drinking responses to neuropeptide Y injections in the paraventricular hypothalamic nucleus of aged rats. <i>Brain Research</i> , <b>1992</b> , 575, 265-71                                                                      | 3.7 | 50  |  |

| 274 | The effects of neurotensin on GABA and acetylcholine release in the dorsal striatum of the rat: an in vivo microdialysis study. <i>Brain Research</i> , <b>1992</b> , 573, 209-16                                                                                                                         | 3.7 | 54 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 273 | Coactivation of dopamine D1 and D2 receptors increases the affinity of cholecystokinin-8 receptors in membranes from post-mortem human caudate-putamen. <i>Brain Research</i> , <b>1992</b> , 584, 157-62                                                                                                 | 3.7 | 3  |
| 272 | Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. <i>Brain Research</i> , <b>1992</b> , 594, 124-30                                                                                                           | 3.7 | 96 |
| 271 | Evidence for specific N-terminal galanin fragment binding sites in the rat brain. <i>European Journal of Pharmacology</i> , <b>1992</b> , 224, 203-5                                                                                                                                                      | 5.3 | 81 |
| 270 | Colocalization of fos- and glucocorticoid receptor-like immunoreactivities in the rat amygdaloid complex after immobilization stress. <i>Journal of Neuroendocrinology</i> , <b>1992</b> , 4, 547-55                                                                                                      | 3.8 | 19 |
| 269 | Strongly glucocorticoid receptor immunoreactive neurons in the neonatal rat brain. <i>NeuroReport</i> , <b>1991</b> , 2, 85-8                                                                                                                                                                             | 1.7 | 21 |
| 268 | Basic FGF is present in dopaminergic neurons of the ventral midbrain of the rat. <i>NeuroReport</i> , <b>1991</b> , 2, 597-600                                                                                                                                                                            | 1.7 | 72 |
| 267 | A trypsin inhibitor-like peptide PEC-60 reduces the affinity of dopamine D2 agonist binding sites in rat neostriatal membranes. <i>European Journal of Pharmacology</i> , <b>1991</b> , 207, 365-6                                                                                                        |     | 6  |
| 266 | Neurotensin decreases the affinity of dopamine D2 agonist binding by a G protein-independent mechanism. <i>Journal of Neurochemistry</i> , <b>1991</b> , 56, 178-83                                                                                                                                       | 6   | 52 |
| 265 | On the role of neuropeptide Y receptors of the Y2 type in the control of hypothalamic catecholaminergic mechanisms and neuroendocrine function. Central effects of the NPY fragment (13B6). <i>Neurochemistry International</i> , <b>1991</b> , 19, 261-270                                               | 4.4 | 9  |
| 264 | Galanin increases potassium evoked release of [3H]5-hydroxytryptamine from rat hypothalamic synaptosomal preparations. <i>Neuroscience Letters</i> , <b>1991</b> , 122, 87-90                                                                                                                             | 3.3 | 10 |
| 263 | Ganglioside GM1 modulation of calcium/calmodulin-dependent protein kinase II activity and autophosphorylation. <i>Neurochemistry International</i> , <b>1991</b> , 19, 271-279                                                                                                                            | 4.4 | 6  |
| 262 | Computer-assisted image analysis techniques allow a characterization of the compartments within the basal ganglia. Focus on functional compartments produced by d-amphetamine activation of the c-fos gene and its relationship to the glucocorticoid receptor. <i>Journal of Chemical Neuroanatomy</i> , | 3.2 | 18 |
| 261 | Regional increases in ornithine decarboxylase mRNA levels in the rat brain after partial mesodiencephalic hemitransection as revealed by in situ hybridization histochemistry.  Neurochemistry International, 1991, 18, 347-52                                                                            | 4.4 | 18 |
| 260 | Stimulation of adenosine A2 receptors induces catalepsy. <i>Neuroscience Letters</i> , <b>1991</b> , 130, 162-4                                                                                                                                                                                           | 3.3 | 99 |
| 259 | Chronic continuous nicotine treatment causes decreased burst firing of nigral dopamine neurons in rats partially hemitransected at the meso-diencephalic junction. <i>Brain Research</i> , <b>1991</b> , 562, 347-51                                                                                      | 3.7 | 24 |
| 258 | Changes in striatal mu and delta opioid receptors after transient forebrain ischemia: a quantitative autoradiographic study. <i>Brain Research</i> , <b>1991</b> , 546, 171-5                                                                                                                             | 3.7 | 11 |
| 257 | Corticosterone treatment counteracts lesions induced by neonatal treatment with monosodium glutamate in the mediobasal hypothalamus of the male rat. <i>Neuroscience Letters</i> , <b>1991</b> , 132, 225-8                                                                                               | 3.3 | 12 |

| 256 | Prominent expression of acidic fibroblast growth factor in motor and sensory neurons. <i>Neuron</i> , <b>1991</b> , 7, 349-64                                                                                                                                                          | 13.9 | 175 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 255 | Involvement of cholecystokinin receptors in the control of striatal dopamine autoreceptors. <i>Naunyn-Schmiedebergl</i> s <i>Archives of Pharmacology</i> , <b>1990</b> , 342, 300-4                                                                                                   | 3.4  | 16  |
| 254 | Aspects of neural plasticity in the central nervous system-I. Computer-assisted image analysis methods. <i>Neurochemistry International</i> , <b>1990</b> , 16, 383-418                                                                                                                | 4.4  | 87  |
| 253 | Morphometrical and microdensitometrical studies on peptide- and tyrosine hydroxylase-like immunoreactivities in the forebrain of rats prenatally exposed to methylazoxymethanol acetate. <i>Developmental Brain Research</i> , <b>1990</b> , 51, 45-61                                 |      | 34  |
| 252 | Neurotensin reduces the affinity of dopamine D2 receptors in membranes from post mortem human caudate-putamen. <i>Neuroscience Letters</i> , <b>1990</b> , 109, 325-30                                                                                                                 | 3.3  | 28  |
| 251 | Modulation of Dopamine D1 and D2 Transmission Lines in the Central Nervous System <b>1990</b> , 203-243                                                                                                                                                                                |      | 11  |
| 250 | Pertussis toxin treatment counteracts intramembrane interactions between neuropeptide Y receptors and alpha 2-adrenoceptors. <i>European Journal of Pharmacology</i> , <b>1989</b> , 172, 435-41                                                                                       |      | 28  |
| 249 | Effects of withdrawal from chronic exposure to cigarette smoke on hypothalamic and preoptic catecholamine nerve terminal systems and on the secretion of pituitary hormones in the male rat. <i>Naunyn-Schmiedebergl</i> s <i>Archives of Pharmacology</i> , <b>1989</b> , 339, 387-96 | 3.4  | 12  |
| 248 | Neuroendocrine actions of nicotine and of exposure to cigarette smoke: medical implications. <i>Psychoneuroendocrinology</i> , <b>1989</b> , 14, 19-41                                                                                                                                 | 5    | 132 |
| 247 | Increased diffusion of prolactin-like material into the brain neuropil from homologous adenohypophyseal transplants in the rat neostriatum after a 6-OH-dopamine induced degeneration of the mesostriatal dopamine neurons. <i>Neuroscience Letters</i> , <b>1989</b> , 107, 33-8      | 3.3  | 8   |
| 246 | Polyamines, ornithine decarboxylase, and diamine oxidase in the substantia nigra and striatum of the male rat after hemitransection. <i>Journal of Neurochemistry</i> , <b>1988</b> , 51, 25-31                                                                                        | 6    | 47  |
| 245 | Effects of toluene treatment in vivo and in vitro on the binding characteristics of [3H]neurotensin in rat striatal membranes. <i>Toxicology</i> , <b>1988</b> , 49, 149-54                                                                                                            | 4.4  | 14  |
| 244 | Toluene induces changes in the morphology of astroglia and neurons in striatal primary cell cultures. <i>Toxicology</i> , <b>1988</b> , 49, 155-63                                                                                                                                     | 4.4  | 18  |
| 243 | Effects of acute intermittent exposure to cigarette smoke on hypothalamic and preoptic catecholamine nerve terminal systems and on neuroendocrine function in the diestrous rat. <i>Naunyn-Schmiedebergl</i> s <i>Archives of Pharmacology</i> , <b>1988</b> , 337, 131-9              | 3.4  | 8   |
| 242 | Involvement of D1 dopamine receptors in the nicotine-induced noradrenaline release from hypothalamic and preoptic noradrenaline nerve terminal systems. <i>Neurochemistry International</i> , <b>1988</b> , 13, 159-63                                                                 | 4.4  | 7   |
| 241 | Chronic nicotine treatment counteracts the disappearance of tyrosine-hydroxylase-immunoreactive nerve cell bodies, dendrites and terminals in the mesostriatal dopamine system of the male rat after partial hemitransection. <i>Brain Research</i> , <b>1988</b> , 455, 332-45        | 3.7  | 106 |
| 240 | D1- and D2-receptor antagonists induce catalepsy via different efferent striatal pathways [corrected]. <i>Neuroscience Letters</i> , <b>1988</b> , 85, 333-8                                                                                                                           | 3.3  | 64  |
| 239 | Galanin selectively modulates 5-hydroxytryptamine 1A receptors in the rat ventral limbic cortex. <i>Neuroscience Letters</i> , <b>1988</b> , 85, 163-7                                                                                                                                 | 3.3  | 80  |

| 238 | D1 receptor mechanisms in the median eminence and their inhibitory regulation of LHRH release. <i>Neurochemistry International</i> , <b>1988</b> , 13, 165-78                                                                                                                              | 4.4  | 11  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 237 | Studies on the relationship of tyrosine hydroxylase, dopamine and cyclic amp-regulated phosphoprotein-32 immunoreactive neuronal structures and d1 receptor antagonist binding sites in various brain regions of the male rat-mismatches indicate a role of d1 receptors in volume         | 4.4  | 27  |
| 236 | Survival of adenohypophyseal homologous transplants in the rat striatum associated with prolactin-like immunoreactivity in the surrounding neuropil of the striatum. <i>Neuroscience Letters</i> , <b>1988</b> , 93, 139-45                                                                | 3.3  | 10  |
| 235 | Involvement of D1 dopamine receptors in the nicotine-induced neuro-endocrine effects and depletion of diencephalic catecholamine stores in the male rat. <i>Neuroendocrinology</i> , <b>1988</b> , 48, 188-200                                                                             | 5.6  | 20  |
| 234 | Presence of glucocorticoid receptor immunoreactivity in corticotrophin releasing factor and in growth hormone releasing factor immunoreactive neurons of the rat di- and telencephalon.  Neuroscience Letters, 1987, 77, 25-30                                                             | 3.3  | 65  |
| 233 | Chronic haloperidol affects striatal D2-dopamine receptor reappearance after irreversible receptor blockade. <i>Brain Research</i> , <b>1987</b> , 435, 147-52                                                                                                                             | 3.7  | 42  |
| 232 | Effects of cholecystokinin peptides and neurotensin on dopamine release and metabolism in the rostral and caudal part of the nucleus accumbens using intracerebral dialysis in the anaesthetized rat. <i>Neurochemistry International</i> , <b>1987</b> , 10, 509-20                       | 4.4  | 79  |
| 231 | Chronic imipramine treatment reduces (+)2-[1251]iodolysergic acid, diethylamide but not 125I-neuropeptide Y binding in layer IV of rat cerebral cortex. <i>Neuroscience Letters</i> , <b>1987</b> , 75, 152-6                                                                              | 3.3  | 25  |
| 230 | Inhibitory effects of neuropeptide Y on cyclic AMP accumulation in slices of the nucleus tractus solitarius region of the rat. <i>Neuroscience Letters</i> , <b>1987</b> , 76, 185-90                                                                                                      | 3.3  | 68  |
| 229 | Ganglioside GM1 treatment prevents the effects of subacute exposure to toluene on N-[3H]propylnorapomorphine binding characteristics in rat striatal membranes. <i>Neuroscience Letters</i> , <b>1987</b> , 82, 181-4                                                                      | 3.3  | 27  |
| 228 | Intracisternal administration of cholecystokinin-8 counteracts the central cardiovascular effects of adrenaline and NPY. A study based on the coexistence of cholecystokinin, phenylethanolamine N-methyltransferase and neuropeptide Y immunoreactivity in neurons of the nucleus tractus | 4.4  | 15  |
| 227 | Further studies on the effects of central administration of neuropeptide Y on neuroendocrine function in the male rat: relationship to hypothalamic catecholamines. <i>Regulatory Peptides</i> , <b>1987</b> , 17, 167-79                                                                  |      | 136 |
| 226 | Biochemistry, molecular biology, and physiology of the glucocorticoid receptor. <i>Endocrine Reviews</i> , <b>1987</b> , 8, 185-234                                                                                                                                                        | 27.2 | 360 |
| 225 | On the Role of Receptor-Receptor Interactions in Central Cardiovascular Regulation: Functional Studies on the Interactions between 2-adrenergic and Neuropeptide Y Receptors in the Rat Medulla Oblongata 1987, 519-530                                                                    |      |     |
| 224 | On the Role of Receptor-Receptor Interactions in Synaptic Transmission: Biochemical and Autoradiographical Studies on the Interactions between 2-adrenergic and Neuropeptide Y Receptors in the Nucleus Tractus Solitarius 1987, 222-235                                                   |      |     |
| 223 | On the Role of Receptor-Receptor Interactions in Central Cardiovascular Regulation: Functional Studies on the Interactions between 2-adrenergic and Neuropeptide Y Receptors in the Rat Medulla Oblongata <b>1987</b> , 519-530                                                            |      | 2   |
| 222 | Studies of neurotensin-dopamine receptor interactions in striatal membranes of the male rat. The influence of 6-hydroxydopamine-induced dopamine receptor supersensitivity. <i>Acta Physiologica Scandinavica</i> , <b>1986</b> , 126, 147-9                                               |      | 13  |
| 221 | Nicotine-induced increases in brain luteinizing hormone releasing hormone-like immunoreactivity and in serum luteinizing hormone levels of the male rat. <i>Neuroscience Letters</i> , <b>1986</b> , 71, 289-92                                                                            | 3.3  | 6   |

| 220 | Preferential vulnerability of A8 dopamine neurons in the primate to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. <i>Neuroscience Letters</i> , <b>1986</b> , 68, 51-6                                                                                                                           | 3.3  | 67  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 219 | Effects of acute and long-term treatment with neuroleptics on regional telencephalic neurotensin levels in the male rat. <i>Neurochemistry International</i> , <b>1986</b> , 8, 429-34                                                                                                                          | 4.4  | 74  |
| 218 | Aspects on the Role of Neuropeptide Y and Atrial Peptides in Control of Vascular Resistance <b>1986</b> , 503-                                                                                                                                                                                                  | 526  |     |
| 217 | Determinations of catecholamine half-lives and turnover rates in discrete catecholamine nerve terminal systems of the hypothalamus, the preoptic region and the forebrain by quantitative histofluorimetry. <i>Acta Physiologica Scandinavica</i> , <b>1985</b> , 123, 411-26                                   |      | 41  |
| 216 | Effects of acute intermittent exposure to cigarette smoke on catecholamine levels and turnover in various types of hypothalamic DA and NA nerve terminal systems as well as on the secretion of adenohypophyseal hormones and corticosterone. <i>Acta Physiologica Scandinavica</i> , <b>1985</b> , 124, 277-85 |      | 32  |
| 215 | Somatostatin induced apnoea: prevention by central and peripheral administration of the opiate receptor blocking agent naloxone. <i>Acta Physiologica Scandinavica</i> , <b>1985</b> , 125, 91-5                                                                                                                |      | 19  |
| 214 | Acute continuous exposure to cigarette smoke produces discrete changes in cholecystokinin and substance P levels in the hypothalamus and preoptic area of the male rat. <i>Acta Physiologica Scandinavica</i> , <b>1985</b> , 125, 437-43                                                                       |      | 9   |
| 213 | Rat medulla oblongata. I. Cytoarchitectonic considerations. <i>Journal of Comparative Neurology</i> , <b>1985</b> , 233, 285-307                                                                                                                                                                                | 3.4  | 66  |
| 212 | Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes. <i>Journal of Comparative Neurology</i> , <b>1985</b> , 233, 308-32                                                                                                | 3.4  | 339 |
| 211 | Rat medulla oblongata. III. Adrenergic (C1 and C2) neurons, nerve fibers and presumptive terminal processes. <i>Journal of Comparative Neurology</i> , <b>1985</b> , 233, 333-49                                                                                                                                | 3.4  | 182 |
| 210 | Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses. <i>Medicinal Research Reviews</i> , <b>1985</b> , 5, 441-82                                                                                                                                              | 14.4 | 124 |
| 209 | Effects of chronic exposure to cigarette smoke on amine levels and turnover in various hypothalamic catecholamine nerve terminal systems and on the secretion of pituitary hormones in the male rat. <i>Neuroendocrinology</i> , <b>1985</b> , 41, 462-6                                                        | 5.6  | 24  |
| 208 | Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel- and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptor. <i>Endocrinology</i> , <b>1985</b> , 117, 1803-12                                                                                             | 4.8  | 482 |
| 207 | Dopaminergic Systems in the Brain and Pituitary. Basic and Clinical Aspects of Neuroscience, <b>1985</b> , 11-25                                                                                                                                                                                                |      | 59  |
| 206 | New concepts on the structure of the neuronal networks: the miniaturization and hierarchical organization of the central nervous system. (Hypothesis). <i>Bioscience Reports</i> , <b>1984</b> , 4, 93-8                                                                                                        | 4.1  | 41  |
| 205 | Aging brain and dopamine receptors: abnormal regulation by CCK-8 of 3H-spiperone labeled dopamine receptors in striatal membranes. <i>Acta Physiologica Scandinavica</i> , <b>1984</b> , 120, 465-7                                                                                                             |      | 9   |
| 204 | Distribution of neuropeptide immunoreactive nerve terminals within the subnuclei of the nucleus of the tractus solitarius of the rat. <i>Journal of Comparative Neurology</i> , <b>1984</b> , 222, 409-44                                                                                                       | 3.4  | 227 |
| 203 | Studies on neurotensin catecholamine interactions in the hypothalamus and in the forebrain of the male rat. <i>Neurochemistry International</i> , <b>1984</b> , 6, 737-50                                                                                                                                       | 4.4  | 50  |

| 202 | Somatostatin-induced apnea: interaction with hypoxia and hypercapnea in the rat. <i>Neuroscience Letters</i> , <b>1984</b> , 50, 37-42                                                                                                                                                             | 3.3 | 20  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 201 | l-Glutamate reduces the affinity of [3H]N-propylnorapomorphine binding sites in striatal membranes. <i>European Journal of Pharmacology</i> , <b>1984</b> , 100, 127-30                                                                                                                            | 5.3 | 27  |
| 200 | Somatostatin produces apnea and is localized in medullary respiratory nuclei: a possible role in apneic syndromes. <i>Brain Research</i> , <b>1984</b> , 296, 339-44                                                                                                                               | 3.7 | 58  |
| 199 | Distribution of neurophysin II immunoreactive nerve fibers within the subnuclei of the nucleus of the tractus solitarius of the rat. <i>Brain Research</i> , <b>1984</b> , 321, 71-82                                                                                                              | 3.7 | 16  |
| 198 | Studies on the mechanism of action of substituted benzamide drugs. <i>Acta Psychiatrica Scandinavica</i> , <b>1984</b> , 311, 125-37                                                                                                                                                               | 6.5 | 24  |
| 197 | Effects of subacute treatment with toluene on central monoamine receptors in the rat. Reduced affinity in [3H]5-hydroxytryptamine binding sites and in [3H]spiperone binding sites linked to dopamine receptors. <i>Toxicology Letters</i> , <b>1983</b> , 17, 275-81                              | 4.4 | 37  |
| 196 | Effects of chronic sino-aortic denervation in male rats on regional catecholamine levels and turnover and on neuroendocrine function. <i>European Journal of Pharmacology</i> , <b>1983</b> , 87, 145-9                                                                                            | 5.3 | 6   |
| 195 | Rapid and discrete changes in hypothalamic catecholamine nerve terminal systems induced by audiogenic stress, and their modulation by nicotine-relationship to neuroendocrine function. <i>European Journal of Pharmacology</i> , <b>1983</b> , 91, 49-56                                          | 5.3 | 20  |
| 194 | Rat growth hormone and hypothalamic catecholamine nerve terminal systems. Evidence for rapid and discrete reductions in dopamine and noradrenaline levels and turnover in the median eminence of the hypophysectomized male rat. <i>European Journal of Pharmacology</i> , <b>1983</b> , 95, 271-5 | 5.3 | 32  |
| 193 | Immobilization stress-induced changes in discrete hypothalamic catecholamine levels and turnover, their modulation by nicotine and relationship to neuroendocrine function. <i>Acta Physiologica Scandinavica</i> , <b>1983</b> , 117, 421-6                                                       |     | 23  |
| 192 | On the functional role of coexistence of 5-HT and substance P in bulbospinal 5-HT neurons. Substance P reduces affinity and increases density of 3H-5-HT binding sites. <i>Acta Physiologica Scandinavica</i> , <b>1983</b> , 117, 299-301                                                         |     | 88  |
| 191 | Interactions of a partial ergoline with dopamine receptors in vivo and in vitro. <i>Acta Physiologica Scandinavica</i> , <b>1983</b> , 117, 303-5                                                                                                                                                  |     | 4   |
| 190 | Intravenous injections of nicotine induce very rapid and discrete reductions of hypothalamic catecholamine levels associated with increases of ACTH, vasopressin and prolactin secretion. <i>Acta Physiologica Scandinavica</i> , <b>1983</b> , 118, 35-40                                         |     | 67  |
| 189 | Evidence for interactions between striatal cholecystokinin and glutamate receptors. CCK-8 in vitro produces a marked downregulation of 3H-glutamate binding sites in striatal membranes. <i>Acta Physiologica Scandinavica</i> , <b>1983</b> , 118, 75-7                                           |     | 18  |
| 188 | Cholecystokinin peptides in vitro modulate the characteristics of the striatal 3H-N-propylnorapomorphine sites. <i>Acta Physiologica Scandinavica</i> , <b>1983</b> , 118, 79-81                                                                                                                   |     | 52  |
| 187 | Central administration of neuropeptide Y induces hypotension bradypnea and EEG synchronization in the rat. <i>Acta Physiologica Scandinavica</i> , <b>1983</b> , 118, 189-92                                                                                                                       |     | 271 |
| 186 | Neuropeptide Y in vitro selectivity increases the number of alpha 2-adrenergic binding sites in membranes of the medulla oblongata of the rat. <i>Acta Physiologica Scandinavica</i> , <b>1983</b> , 118, 293-5                                                                                    |     | 155 |
| 185 | Failure of neuropeptide Y in vitro to increase the number of alpha 2-adrenergic binding sites in membranes of medulla oblongata of the spontaneous hypertensive rat. <i>Acta Physiologica Scandinavica</i> , <b>1983</b> , 119, 309-12                                                             |     | 43  |

| 184 | Neurotensin in vitro markedly reduces the affinity in subcortical limbic 3H-N-propylnorapomorphine binding sites. <i>Acta Physiologica Scandinavica</i> , <b>1983</b> , 119, 459-61                                                                                                                                       |      | 212 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 183 | Gangliosides increase the survival of lesioned nigral dopamine neurons and favour the recovery of dopaminergic synaptic function in striatum of rats by collateral sprouting. <i>Acta Physiologica Scandinavica</i> , <b>1983</b> , 119, 347-63                                                                           |      | 138 |
| 182 | Toluene and telencephalic dopamine: selective reduction of amine turnover in discrete DA nerve terminal systems of the anterior caudate nucleus by low concentrations of toluene. <i>Toxicology Letters</i> , <b>1982</b> , 12, 115-23                                                                                    | 4.4  | 47  |
| 181 | Vasopressor effects of substance P and C-terminal sequences after intracisternal injection to alpha-chloralose-anaesthetized rats: blockade by a substance P antagonist. <i>European Journal of Pharmacology</i> , <b>1982</b> , 77, 171-6                                                                                | 5.3  | 32  |
| 180 | Selective reduction of adrenaline turnover in the dorsal midline area of the caudal medulla oblongata and increase of hypothalamic adrenaline levels in the Lyon strain of genetically hypertensive rats. <i>European Journal of Pharmacology</i> , <b>1982</b> , 77, 187-91                                              | 5.3  | 8   |
| 179 | Intracisternal administration of avian pancreatic polypeptide lowers respiration rate and enhances the clonidine induced reduction of respiration rate in alpha-chloralose anesthetized rats: possible interactions with an alpha 2-adrenergic receptor. <i>Acta Physiologica Scandinavica</i> , <b>1982</b> , 115, 381-4 |      | 8   |
| 178 | Involvement of cholinergic nicotine-like receptors as modulators of amine turnover in various types of hypothalamic dopamine and noradrenaline nerve terminal systems and of prolactin, LH, FSH and TSH secretion in the castrated male rat. <i>Acta Physiologica Scandinavica</i> , <b>1982</b> , 116, 41-50             |      | 28  |
| 177 | Acute sino-aortic denervation in rats produces a selective increase of adrenaline turnover in the dorsal midline area of the caudal medulla oblongata and a reduction of adrenaline levels in the anterior and posterior hypothalamus. <i>European Journal of Pharmacology</i> , <b>1981</b> , 69, 361-5                  | 5.3  | 13  |
| 176 | Rat prolactin and hypothalamic catecholamine nerve terminal systems. Evidence for rapid and discrete increases in dopamine and noradrenaline turnover in the hypophysectomized male rat. <i>European Journal of Pharmacology</i> , <b>1981</b> , 76, 261-5                                                                | 5.3  | 39  |
| 175 | Regional in vivo binding of [3H]N-propylnorapomorphine in the mouse brain. Evidence for labelling of central dopamine receptors. <i>European Journal of Pharmacology</i> , <b>1981</b> , 72, 397-402                                                                                                                      | 5.3  | 50  |
| 174 | Effects of single injections of nicotine on the ascending dopamine pathways in the rat. Evidence for increases of dopamine turnover in the mesostriatal and mesolimbic dopamine neurons. <i>Acta Physiologica Scandinavica</i> , <b>1981</b> , 112, 345-7                                                                 |      | 71  |
| 173 | Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. <i>Acta Physiologica Scandinavica</i> , <b>1981</b> , 113, 567-9                                                                                                 |      | 154 |
| 172 | Distribution of VIP neurons in the peripheral and central nervous system. <i>Endocrinologia Japonica</i> , <b>1980</b> , 27 Suppl 1, 23-30                                                                                                                                                                                |      | 16  |
| 171 | Compensatory bilateral changes in dopamine turnover after striatal kainate lesion. <i>Nature</i> , <b>1980</b> , 283, 94-6                                                                                                                                                                                                | 50.4 | 48  |
| 170 | Effects of chronic striatal kainate lesions on some dopaminergic parameters and enkephalin immunoreactive neurons in the basal ganglia. <i>Journal of Neurochemistry</i> , <b>1980</b> , 34, 772-8                                                                                                                        | 6    | 43  |
| 169 | Evidence for differential localization of angiotensin-I converting enzyme and renin in the corpus striatum of rat. <i>Acta Physiologica Scandinavica</i> , <b>1980</b> , 110, 321-3                                                                                                                                       |      | 23  |
| 168 | Cholecystokinin peptides produce marked reduction of dopamine turnover in discrete areas in the rat brain following intraventricular injection. <i>European Journal of Pharmacology</i> , <b>1980</b> , 67, 329-31                                                                                                        | 5.3  | 181 |
| 167 | Toluene-induced activation of certain hypothalamic and median eminence catecholamine nerve terminal systems of the male rat and its effects on anterior pituitary hormone secretion. <i>Toxicology Letters</i> , <b>1980</b> , 5, 393-8                                                                                   | 4.4  | 48  |

| 166 | Reduction of adrenaline turnover in cardiovascular areas of rat medulla oblongata by clonidine. <i>Acta Physiologica Scandinavica</i> , <b>1979</b> , 107, 177-9                                                              |      | 22  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 165 | Evidence for a selective reduction of adrenaline turnover in the dorsal midline area of the caudal medulla oblongata of young spontaneous hypertensive rats. <i>Acta Physiologica Scandinavica</i> , <b>1979</b> , 107, 397-9 |      | 27  |
| 164 | On the role of ascending dopamine systems in the control of voluntary ethanol intake and ethanol intoxication. <i>Pharmacology Biochemistry and Behavior</i> , <b>1979</b> , 10, 603-8                                        | 3.9  | 64  |
| 163 | On the action of nicotine and cotinine on central 5-hydroxytryptamine neurons. <i>Pharmacology Biochemistry and Behavior</i> , <b>1979</b> , 10, 671-7                                                                        | 3.9  | 57  |
| 162 | Evidence for an exclusive localization of 3H-ADTN binding sites to postsynaptic nerve cells in the striatum of the rat. <i>European Journal of Pharmacology</i> , <b>1979</b> , 58, 515-7                                     | 5.3  | 33  |
| 161 | Evidence for in vivo binding of apomorphine and bromocriptine to receptor sites not labelled by 3H-spiperone. <i>European Journal of Pharmacology</i> , <b>1979</b> , 58, 339-40                                              | 5.3  | 15  |
| 160 | Dopamine receptor agonists in brain research and as therapeutic agents. <i>Trends in Neurosciences</i> , <b>1979</b> , 2, 1-4                                                                                                 | 13.3 | 22  |
| 159 | 3H-kainic acid binding: relevance for evaluating the neurotoxicity of kainic acid. <i>Life Sciences</i> , <b>1979</b> , 24, 1471-80                                                                                           | 6.8  | 46  |
| 158 | Rotational behaviour in rats with unilateral striatal kainic acid lesions: a behavioural model for studies on intact dopamine receptors. <i>Brain Research</i> , <b>1979</b> , 170, 485-95                                    | 3.7  | 111 |
| 157 | Guanylate cyclase activity increases after kainic acid lesion of rat striatum. <i>Brain Research</i> , <b>1979</b> , 171, 567-72                                                                                              | 3.7  | 8   |
| 156 | DOPAMINE AND HUNTINGTON'S DISEASE: ASSESSMENT USING THE KAINIC ACID MODEL <b>1979</b> , 115-12                                                                                                                                | 26   | 7   |
| 155 | ACTIONS OF ERGOT DERIVATIVES AT DOPAMINE SYNAPSES <b>1979</b> , 141-157                                                                                                                                                       |      | 2   |
| 154 | BEHAVIOURAL EFFECTS OF ERGOT DRUGS <b>1979</b> , 187-205                                                                                                                                                                      |      | 15  |
| 153 | IMMUNOCYTOCHEMICAL STUDIES ON CATECHOLAMINE CELL SYSTEMS WITH ASPECTS ON RELATIONS TO PUTATIVE PEPTIDE TRANSMITTERS <b>1979</b> , 1007-1019                                                                                   |      | 6   |
| 152 | CENTRAL CATECHOLAMINE SYSTEMS AND NEUROENDOCRINE REGULATION. CONTROLLERS OF ANTERIOR PITUITARY SECRETION <b>1979</b> , 1187-1203                                                                                              |      | 9   |
| 151 | 5,7-Dihydroxytryptamine as a tool to study the functional role of central 5-hydroxytryptamine neurons. <i>Annals of the New York Academy of Sciences</i> , <b>1978</b> , 305, 346-69                                          | 6.5  | 41  |
| 150 | Further evidence that methergoline is a central 5-hydroxytryptamine receptor blocking agent. <i>Neuroscience Letters</i> , <b>1978</b> , 9, 195-200                                                                           | 3.3  | 44  |
| 149 | Cardiovascular effects of morphine and opioid peptides following intracisternal administration in chloralose-anesthetized rats. <i>European Journal of Pharmacology</i> , <b>1978</b> , 48, 319-24                            | 5.3  | 157 |

| 148 | 5-Hydroxytryptamine neurons and the sleep-wakefulness cycle. Effects of methergoline and zimelidine. <i>Neuroscience Letters</i> , <b>1978</b> , 8, 55-8                                                                                                                                                 | 3.3                     | 20  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----|
| 147 | Perforant path transections protect hippocampal granule cells from kainate lesion. <i>Neuroscience Letters</i> , <b>1978</b> , 10, 241-6                                                                                                                                                                 | 3.3                     | 121 |
| 146 | Effects of bromocriptine on 3H-spiroperidol binding sites in rat striatum. Evidence for actions of dopamine receptors not linked to adenylate cyclase. <i>Life Sciences</i> , <b>1978</b> , 23, 465-9                                                                                                    | 6.8                     | 39  |
| 145 | Dopamine receptors and ergot drugs. Evidence that an ergolene derivative is a differential agonist at subcortical limbic dopamine receptors. <i>Brain Research</i> , <b>1978</b> , 146, 295-311                                                                                                          | 3.7                     | 37  |
| 144 | Influence of Central Catecholamines on LHRH-Containing Pathways. <i>Clinics in Obstetrics and Gynaecology</i> , <b>1978</b> , 5, 251-269                                                                                                                                                                 |                         | 12  |
| 143 | The brain isorenin-angiotensin system: localization and biological function. <i>Progress in Brain Research</i> , <b>1977</b> , 47, 155-9                                                                                                                                                                 | 2.9                     | 10  |
| 142 | Effects of methionine-enkephalin on prolactin release and catecholamine levels and turnover in the median eminence. <i>European Journal of Pharmacology</i> , <b>1977</b> , 43, 89-90                                                                                                                    | 5.3                     | 147 |
| 141 | On the role of brain noradrenaline and the pituitary-adrenal axis in avoidance learning. I. Studies with corticosterone. <i>Neuroscience Letters</i> , <b>1977</b> , 5, 291-6                                                                                                                            | 3.3                     | 69  |
| 140 | Serotonin and sexual behaviour in female rats. Effects of hallucinogenic indolealkylamines and phenylethylamines. <i>Neuroscience Letters</i> , <b>1977</b> , 4, 215-20                                                                                                                                  | 3.3                     | 16  |
| 139 | On the mechanism of action of the antidepressant drugs amitriptyline and nortriptyline. Evidence for 5-hydroxytryptamine receptor blocking activity. <i>Neuroscience Letters</i> , <b>1977</b> , 6, 339-43                                                                                               | 3.3                     | 83  |
| 138 | Dopamine and sexual behaviour in female rats. Effects of dopamine receptor agonists and sulpiride. <i>Neuroscience Letters</i> , <b>1977</b> , 4, 209-13                                                                                                                                                 | 3.3                     | 40  |
| 137 | The effects of 5,7-dihydroxytryptamine-induced lesions of the ascending 5-hydroxytryptamine pathways on the sleep wakefulness cycle. <i>Brain Research</i> , <b>1977</b> , 131, 287-301                                                                                                                  | 3.7                     | 30  |
| 136 | Dopamine in the nucleus accumbens: preferential increase of DA turnover by rat prolactin. <i>Brain Research</i> , <b>1977</b> , 122, 177-82                                                                                                                                                              | 3.7                     | 56  |
| 135 | Studies on the cholinergic and dopaminergic innervation of the neostriatum with the help of intraneostriatal injections of drugs. <i>Pharmacology &amp; Therapeutics</i> , <b>1976</b> , 2, 29-36                                                                                                        |                         | 2   |
| 134 | Antiparkinsonian drugs and dopaminergic neostriatal mechanisms: studies in rats with unilateral 6-hydroxydopamine (=6-OH-DA)-induced degeneration of the nigro-neostriatal DA pathway and quantitative recording of rotational behaviour. <i>Pharmacology &amp; Therapeutics</i> , <b>1976</b> , 2, 41-7 |                         | 4   |
| 133 | Behavioral effects of 5, 7-dihydroxytryptamine lesions of ascending 5-hydroxytryptamine pathways. <i>Brain Research</i> , <b>1976</b> , 107, 385-99                                                                                                                                                      | 3.7                     | 137 |
| 132 | Effect of some phosphodiesterase inhibitors on central dopamine mechanisms. <i>European Journal of Pharmacology</i> , <b>1976</b> , 38, 31-8                                                                                                                                                             | 5.3                     | 78  |
| 131 | The effect of mepiprazole on central monoamine neurons. Evidence for increased 5-hydroxytryptamine and dopamine receptor activity. <i>European Journal of Pharmacology</i> , <b>1976</b> , 35, 93-1                                                                                                      | <b>6</b> 8 <sup>3</sup> | 8   |

| 130 | Effect of ergot drugs on central 5-hydroxytryptamine neurons: evidence for 5-hydroxytryptamine release or 5-hydroxytryptamine receptor stimulation. <i>European Journal of Pharmacology</i> , <b>1975</b> , 30, 172-                  | -8 <sup>5</sup> 1 <sup>3</sup> | 49  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|
| 129 | Distribution of thyrotropin-releasing hormone (TRH) in the central nervous system as revealed with immunohistochemistry. <i>European Journal of Pharmacology</i> , <b>1975</b> , 34, 389-92                                           | 5.3                            | 365 |
| 128 | Recent morphological and functional studies on hypothalamic dopaminergic and noradrenergic mechanisms. <i>Biochemical Pharmacology</i> , <b>1974</b> , 23, 649-656                                                                    | 6                              |     |
| 127 | Selective reserpine-resistant accumulation of catecholamines in central dopamine neurones after DOPA administration. <i>Brain Research</i> , <b>1974</b> , 67, 439-56                                                                 | 3.7                            | 111 |
| 126 | Functional regeneration of 5-hydroxytryptamine nerve terminals in the rat spinal cord following 5, 6-dihydroxytryptamine induced degeneration. <i>Brain Research</i> , <b>1974</b> , 78, 377-94                                       | 3.7                            | 147 |
| 125 | Hallucinogenic phenylethylamines: interactions with serotonin turnover and receptors. <i>European Journal of Pharmacology</i> , <b>1974</b> , 25, 176-84                                                                              | 5.3                            | 55  |
| 124 | Benzodiazepines and barbiturates: turnover changes in central 5-hydroxytryptamine pathways. <i>European Journal of Pharmacology</i> , <b>1974</b> , 26, 35-40                                                                         | 5.3                            | 33  |
| 123 | Pharmaco-histochemical evidence of the existence of dopamine nerve terminals in the limbic cortex. <i>European Journal of Pharmacology</i> , <b>1974</b> , 25, 108-12                                                                 | 5.3                            | 154 |
| 122 | Possible involvement of central adrenaline neurons in vasomotor and respiratory control. Studies with clonidine and its interactions with piperoxane and yohimbine. <i>European Journal of Pharmacology</i> , <b>1974</b> , 28, 89-94 | 5.3                            | 164 |
| 121 | Inhibitory role of dopamine and 5-hydroxytryptamine in the sexual behaviour of female rats. <i>European Journal of Pharmacology</i> , <b>1974</b> , 29, 187-91                                                                        | 5.3                            | 91  |
| 120 | Effects of piperoxane on sleep and waking in the rat. Evidence for increased waking by blocking inhibitory adrenaline receptors on the locus coeruleus. <i>Acta Physiologica Scandinavica</i> , <b>1974</b> , 91, 566-7               |                                | 82  |
| 119 | New Aspects on the Catecholamine Innervation of the Hypothalamus and the Limbic System <b>1974</b> , 223-                                                                                                                             | -228                           | 2   |
| 118 | STUDIES ON CENTRAL 5-HYDROXYTRYPTAMINE NEURONS USING DIHYDROXYTRYPTAMINES: EVIDENCE FOR REGENERATION OF BULBOSPINAL 5-HYDROXYTRYPTAMINE AXONS AND TERMINALS <b>1974</b> , 169-179                                                     |                                | 7   |
| 117 | ENHANCED SENSITIVITY TO THE NORADRENALINE RECEPTOR STIMULATING AGENT, CLONIDINE, FOLLOWING DEGENERATION OF NORADRENALINE PATHWAYS: STUDIES ON ARTERIAL PRESSURE, HEART RATE, AND RESPIRATION <b>1974</b> , 597-602                    |                                |     |
| 116 | Effects of intracerebral injections of 6-hydroxydopamine on sleep and waking in the rat. <i>Journal of Pharmacy and Pharmacology</i> , <b>1973</b> , 25, 84-7                                                                         | 4.8                            | 31  |
| 115 | Immunohistochemical localization of three catecholamine synthesizing enzymes: aspects on methodology. <i>Histochemie Histochemistry Histochimie</i> , <b>1973</b> , 33, 231-54                                                        |                                | 190 |
| 114 | Evidence for adrenaline neurons in the rat brain. Acta Physiologica Scandinavica, 1973, 89, 286-8                                                                                                                                     |                                | 207 |
| 113 | Mapping of central noradrenaline pathways with 6-hydroxy-DOPA. <i>Brain Research</i> , <b>1973</b> , 63, 249-61                                                                                                                       | 3.7                            | 78  |

| 112 | evidence for selective degeneration of central 5-hydroxytryptamine on central monoamine neurons: evidence for selective degeneration of central 5-hydroxytryptamine neurons. <i>Brain Research</i> , <b>1973</b> , 49, 476-82 | 3.7 | 86  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--|
| 111 | Immunohistochemical studies on monoamine-containing cell systems. <i>Brain Research</i> , <b>1973</b> , 62, 461-9                                                                                                             | 3.7 | 120 |  |
| 110 | Characterization, localization and regulation of dopamine-Ehydroxylase and of other catecholamine synthesizing enzymes. <i>Life Sciences</i> , <b>1973</b> , 13, liii-lv                                                      | 6.8 | 1   |  |
| 109 | Possible mechanism of the hypotensive action of 2,6-dichlorobenzylidene aminoguanidine: evidence for central noradrenaline receptor stimulation. <i>European Journal of Pharmacology</i> , <b>1973</b> , 23, 175-82           | 5.3 | 25  |  |
| 108 | Effect of prostaglandin E 2 on central and peripheral catecholamine neurons. <i>European Journal of Pharmacology</i> , <b>1973</b> , 21, 362-8                                                                                | 5.3 | 129 |  |
| 107 | The histochemical fluorescence method for the demonstration of catecholamines. Theory, practice and application. <i>Journal of Histochemistry and Cytochemistry</i> , <b>1973</b> , 21, 293-311                               | 3.4 | 81  |  |
| 106 | CHARACTERISATION, LOCALISATION AND REGULATION OF CATECHOLAMINE SYNTHESIZING ENZYMES <b>1973</b> , 69-78                                                                                                                       |     | 29  |  |
| 105 | RECENT MORPHOLOGICAL AND FUNCTIONAL STUDIES ON HYPOTHALAMIC DOPAMINERGIC AND NORADRENERGIC MECHANISMS <b>1973</b> , 787-794                                                                                                   |     | 9   |  |
| 104 | Effect of neuroleptic drugs on central catecholamine turnover assessed using tyrosine- and dopaminehydroxylase inhibitors. <i>Journal of Pharmacy and Pharmacology</i> , <b>1972</b> , 24, 177-82                             | 4.8 | 68  |  |
| 103 | Effects of 5-methoxy-N,N-dimethyltryptamine on central monoamine neurons. <i>European Journal of Pharmacology</i> , <b>1972</b> , 19, 25-34                                                                                   | 5.3 | 113 |  |
| 102 | ET495 and brain catecholamine mechanisms: evidence for stimulation of dopamine receptors. <i>European Journal of Pharmacology</i> , <b>1972</b> , 20, 195-204                                                                 | 5.3 | 157 |  |
| 101 | On the catecholamine innervation of the hypothalamus, with special reference to the median eminence. <i>Brain Research</i> , <b>1972</b> , 40, 271-81                                                                         | 3.7 | 119 |  |
| 100 | Further mapping out of central noradrenaline neuron systems: projections of the "subcoeruleus" area. <i>Brain Research</i> , <b>1972</b> , 43, 289-95                                                                         | 3.7 | 242 |  |
| 99  | Heterogeneity of striatal and limbic dopamine innervation: highly fluorescent islands in developing and adult rats. <i>Brain Research</i> , <b>1972</b> , 44, 283-8                                                           | 3.7 | 375 |  |
| 98  | Interaction between cholinergic and catecholaminergic neurones in rat brain. <i>Brain Research</i> , <b>1972</b> , 43, 397-416                                                                                                | 3.7 | 131 |  |
| 97  | Barbiturates and meprobamate: decreases in cathecholamine turnover of central dopamine and noradrenaline neuronal systems and the influence of immobilization stress. <i>Brain Research</i> , <b>1972</b> , 45, 507-24        | 3.7 | 133 |  |
| 96  | Behavioral, biochemical, and histochemical analyses of the central effects of monoamine precursors after peripheral decarboxylase inhibition. <i>Brain Research</i> , <b>1972</b> , 41, 387-411                               | 3.7 | 137 |  |
| 95  | DL-5-hydroxytryptophan-induced changes in central monoamine neurons after peripheral decarboxylase inhibition. <i>Journal of Pharmacy and Pharmacology</i> , <b>1971</b> , 23, 420-4                                          | 4.8 | 127 |  |

| 94 | The influence of benzquinamide, oxypertine and prenylamine on monoamine levels and on monoamine effects in the spinal cord. <i>Acta Pharmacologica Et Toxicologica</i> , <b>1971</b> , 30, 225-37                           |     | 3   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 93 | Dopamine and noradrenaline releasing action of amantadine in the central and peripheral nervous system: a possible mode of action in Parkinson's disease. <i>European Journal of Pharmacology</i> , <b>1971</b> , 16, 27-38 | 5.3 | 95  |
| 92 | Pharmacological studies on the hypotensive effects of clonidine. <i>European Journal of Pharmacology</i> , <b>1971</b> , 13, 168-74                                                                                         | 5.3 | 65  |
| 91 | Central catecholamine turnover and self-stimulation behaviour. <i>Brain Research</i> , <b>1971</b> , 27, 406-13                                                                                                             | 3.7 | 86  |
| 90 | Minor tranquillizers, stress and central catecholamine neurons. <i>Brain Research</i> , <b>1971</b> , 29, 1-16                                                                                                              | 3.7 | 238 |
| 89 | On the projections from the locus coeruleus noradrealine neurons: the cerebellar innervation. <i>Brain Research</i> , <b>1971</b> , 28, 165-71                                                                              | 3.7 | 442 |
| 88 | Serotonin accumulation after monoamine oxidase inhibition. Effects of decreased impulse flow and of some anti-depressants and hallucinogens. <i>Biochemical Pharmacology</i> , <b>1971</b> , 20, 693-706                    | 6   | 46  |
| 87 | Blockade of p-chloromethamphetamine induced 5-hydroxytryptamine depletion by chlorimipramine, chlorpheniramine and meperidine. <i>Biochemical Pharmacology</i> , <b>1971</b> , 20, 707-9                                    | 6   | 93  |
| 86 | Cellular Localization of Dopamine-Ehydroxylase and Phenylethanolamine-N-methyl Transferase as Revealed by Immunohistochemistry. <i>Progress in Brain Research</i> , <b>1971</b> , 127-138                                   | 2.9 | 43  |
| 85 | Effect of some antiparkinsonian drugs on catecholamine neurons. <i>Journal of Pharmacy and Pharmacology</i> , <b>1970</b> , 22, 733-7                                                                                       | 4.8 | 52  |
| 84 | Protection of the neostriatal dopamine stores against reserpine by local treatment with metatyramine. <i>Acta Pharmacologica Et Toxicologica</i> , <b>1970</b> , 28, 39-48                                                  |     | 11  |
| 83 | Adrenergic and cholinergic nerve terminals in skeletal muscle vessels. <i>Acta Physiologica Scandinavica</i> , <b>1970</b> , 78, 52-9                                                                                       |     | 51  |
| 82 | Morphological and Functional Aspects of Central Monoamine Neurons. <i>International Review of Neurobiology</i> , <b>1970</b> , 93-126                                                                                       | 4.4 | 270 |
| 81 | Central monoamine neurons and pituitary-adrenal activity. <i>Progress in Brain Research</i> , <b>1970</b> , 32, 42-56                                                                                                       | 2.9 | 49  |
| 80 | Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. <i>European Journal of Pharmacology</i> , <b>1970</b> , 11, 303-14                                                                         | 5.3 | 890 |
| 79 | Antiparkinsonian drugs and central dopamine neurons. <i>Life Sciences</i> , <b>1970</b> , 9, 811-24                                                                                                                         | 6.8 | 26  |
| 78 | Studies on the action of some psychoactive drugs on central noradrenaline neurons after inhibition of dopamine-beta-hydroxylase. <i>Brain Research</i> , <b>1970</b> , 24, 451-70                                           | 3.7 | 91  |
| 77 | Depletion of catecholamines in vivo induced by electrical stimulation of central monoamine pathways. <i>Brain Research</i> , <b>1970</b> , 24, 471-83                                                                       | 3.7 | 116 |

| 76 | Participation of Central Monoamine Neurons in the Regulation of Anterior Pituitary Function with Special Regard to the Neuro-Endocrine Role of Tubero-Infundibular Dopamine Neurons <b>1970</b> , 192-205                                                                                       |            | 18  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|--|
| 75 | Fluorescence Microscopy in Neuroanatomy <b>1970</b> , 275-314                                                                                                                                                                                                                                   |            | 74  |  |
| 74 | PARTICIPATION OF CENTRAL MONOAMINERGIC NEURONS IN THE REGULATION OF ANTERIOR PITUITARY SECRETION <b>1970</b> , 61-83                                                                                                                                                                            |            | 4   |  |
| 73 | Cerebellar monoamine nerve terminals, a new type of afferent fibers to the cortex cerebelli. <i>Experimental Brain Research</i> , <b>1969</b> , 9, 63-72                                                                                                                                        | 2.3        | 217 |  |
| 72 | Demonstration of extraneuronal 5-hydroxytryptamine accumulation in brain following membrane-pump blockade by chlorimipramine. <i>Brain Research</i> , <b>1969</b> , 12, 456-60                                                                                                                  | 3.7        | 106 |  |
| 71 | Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of the rat. <i>Brain Research</i> , <b>1969</b> , 14, 461-71                                                                                                                                                          | 3.7        | 308 |  |
| 70 | 6-hydroxytryptaminea new tool in monoamine fluorescence histochemistry. <i>Brain Research</i> , <b>1969</b> , 13, 190-5                                                                                                                                                                         | 3.7        | 35  |  |
| 69 | The effect of prolonged lithium administration on cerebral monoamine neurons in the rat. <i>Life Sciences</i> , <b>1969</b> , 8, 643-51                                                                                                                                                         | 6.8        | 83  |  |
| 68 | Mechanisms of noradrenaline and 5-hydroxytryptamine disappearance induced by alpha-methyl-dopa and alpha-methyl-metatyrosine. <i>European Journal of Pharmacology</i> , <b>1969</b> , 8, 302-9                                                                                                  | 5.3        | 20  |  |
| 67 | Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-alpha-ethyl-meta-tyramine. <i>European Journal of Pharmacology</i> , <b>1969</b> , 5, 357-66                                                                               | 5.3        | 557 |  |
| 66 | Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4,alpha-dimethyl-meta-tyramine. <i>European Journal of Pharmacology</i> , <b>1969</b> , 5, 367-73                                                                                   | 5.3        | 358 |  |
| 65 | Decreased turnover in central 5-HT nerve terminals induced by antidepressant drugs of the imipramine type. <i>European Journal of Pharmacology</i> , <b>1969</b> , 7, 56-9                                                                                                                      | 5.3        | 80  |  |
| 64 | Factors involved in the control of the activity of the tubero-infundibular dopamine neurons during pregnancy and lactation. <i>Neuroendocrinology</i> , <b>1969</b> , 5, 257-70                                                                                                                 | 5.6        | 69  |  |
| 63 | The effect of imipramine on central 5-hydroxytryptamine neurons. <i>Journal of Pharmacy and Pharmacology</i> , <b>1968</b> , 20, 150-1                                                                                                                                                          | 4.8        | 168 |  |
| 62 | Depletion of noradrenaline in brainstem neurons during sham rage behaviour produced by acute brainstem transection in cat. <i>Brain Research</i> , <b>1968</b> , 7, 448-51                                                                                                                      | 3.7        | 27  |  |
| 61 | Distribution of noradrenaline nerve terminals in cortical areas of the rat. <i>Brain Research</i> , <b>1968</b> , 8, 125-3                                                                                                                                                                      | 13.7       | 279 |  |
| 60 | The effect of immobilization stress on the activity of central monoamine neurons. <i>Life Sciences</i> , <b>1968</b> , 7, 107-12                                                                                                                                                                | 6.8        | 181 |  |
| 59 | Histochemical studies on the effect of (positive)-amphetamine, drugs of the imipramine group and tryptamine on central catecholamine and 5-hydroxytryptamine neurons after intraventricular injection of catecholamines and 5-hydroxytryptamine. Furopean Journal of Pharmacology 1968, 4, 135- | 5.3<br>.44 | 150 |  |

| 58 | Localization of indolealkylamines in CNS. Advances in Pharmacology, 1968, 6, 235-51                                                                                                                                                                         | 5.7   | 87  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 57 | Studies on uptake of intraventricularly administered tritiated noradrenaline and 5-hydoxytryptamine with combined fluorescence histochemical and autoradiographic technics. <i>Histochemie Histochemistry Histochimie</i> , <b>1968</b> , 16, 186-94        |       | 58  |
| 56 | Histochemical studies on the distribution of catecholamines and 5-hydroxytryptamine after intraventricular injections. <i>Histochemie Histochemistry Histochimie</i> , <b>1968</b> , 13, 16-28                                                              |       | 127 |
| 55 | Failure of dopamine to accumulate in central noradrenaline neurons after depletion with diethyldithiocarbamate. <i>Journal of Pharmacy and Pharmacology</i> , <b>1967</b> , 19, 481-3                                                                       | 4.8   | 34  |
| 54 | Evidence for dopamine receptor stimulation by apomorphine. <i>Journal of Pharmacy and Pharmacology</i> , <b>1967</b> , 19, 627-9                                                                                                                            | 4.8   | 804 |
| 53 | Studies on uptake mechanisms in central monoamine neurones. <i>Acta Pharmacologica Et Toxicologica</i> , <b>1967</b> , 25, Suppl 4:8                                                                                                                        |       | 1   |
| 52 | Identification of sympathetic cholinergic nerve terminals in arterioles of skeletal muscle. <i>Acta Pharmacologica Et Toxicologica</i> , <b>1967</b> , 25, Suppl 4:79                                                                                       |       | 2   |
| 51 | Identification of dopamine, noradrenaline and 5-hydroxytryptamine varicosities in a fraction containing nerve ending particles. <i>Brain Research</i> , <b>1967</b> , 6, 475-80                                                                             | 3.7   | 11  |
| 50 | The effect of neuroleptics on the activity of central catecholamine neurones. <i>Life Sciences</i> , <b>1967</b> , 6, 767                                                                                                                                   | -7648 | 126 |
| 49 | Activity changes in the tubero-infundibular dopamine neurons of the rat during various states of the reproductive cycle. <i>Life Sciences</i> , <b>1967</b> , 6, 2057-61                                                                                    | 6.8   | 68  |
| 48 | Effect of some drugs on central monoamine nerve terminals lacking nerve impulse flow. <i>European Journal of Pharmacology</i> , <b>1967</b> , 1, 226-32                                                                                                     | 5.3   | 45  |
| 47 | Increased impulse flow in bulbospinal noradrenaline neurons produced by catecholamine receptor blocking agents. <i>European Journal of Pharmacology</i> , <b>1967</b> , 2, 59-64                                                                            | 5.3   | 108 |
| 46 | Effect of desmethylimipramine, protriptyline and (+)-amphetamine on fluorescence of central adrenergic neurons of rats pretreated with alpha-methyl-DOPA and tetrabenazine or reserpine. <i>European Journal of Pharmacology</i> , <b>1967</b> , 2, 196-201 | 5.3   | 8   |
| 45 | The effect of some psychoactive drugs on central monoamine neurons. <i>European Journal of Pharmacology</i> , <b>1967</b> , 1, 363-8                                                                                                                        | 5.3   | 119 |
| 44 | A possible role played by central monoamine neurones in thermo-regulation. <i>Acta Physiologica Scandinavica</i> , <b>1967</b> , 71, 224-32                                                                                                                 |       | 98  |
| 43 | The effect of lithium on cerebral monoamine neurons. <i>Psychopharmacology</i> , <b>1967</b> , 11, 345-53                                                                                                                                                   | 4:7   | 118 |
| 42 | Central catecholamine neurons and conditioned avoidance behaviour. <i>Psychopharmacology</i> , <b>1967</b> , 11, 439-47                                                                                                                                     | 4.7   | 64  |
| 41 | Noradrenaline nerve terminals in the hippocampal region of the rat and the guinea pig. <i>Cell and Tissue Research</i> , <b>1967</b> , 78, 463-73                                                                                                           | 4.2   | 158 |

| 40 | Some observations on the site of action of oxypertin. <i>Naunyn-Schmiedeberghs Archives of Pharmacology</i> , <b>1967</b> , 256, 450-63                                                                             | 3.4 | 15  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--|
| 39 | Functional role of the nigro-neostriatal dopamine neurons. <i>Acta Pharmacologica Et Toxicologica</i> , <b>1966</b> , 24, 263-74                                                                                    |     | 340 |  |
| 38 | Localization of catecholamine uptake in rat brain after intraventricular injection. <i>Life Sciences</i> , <b>1966</b> , 5, 1817-24                                                                                 | 6.8 | 52  |  |
| 37 | Effects of tyrosine hydroxylase inhibition on the amine levels of central monoamine neurons. <i>Life Sciences</i> , <b>1966</b> , 5, 561-568                                                                        | 6.8 | 186 |  |
| 36 | Refillment of the catecholamine stores with 3,4-dihydroxyphenylalanine after depletion induced by inhibition of tyrosine-hydroxylase. <i>Life Sciences</i> , <b>1966</b> , 5, 605-11                                | 6.8 | 67  |  |
| 35 | Monoamines and the pituitary gland. European Journal of Endocrinology, 1966, 51, 301-14                                                                                                                             | 6.5 | 78  |  |
| 34 | A fluorescence and electron microscopic study on central monoamine nerve cells. <i>The Anatomical Record</i> , <b>1966</b> , 155, 33-40                                                                             |     | 48  |  |
| 33 | Further evidence for the existence of tubero-infundibular dopamine neurons. <i>Acta Physiologica Scandinavica</i> , <b>1966</b> , 66, 245-6                                                                         |     | 155 |  |
| 32 | Adrenergic innervation of the bronchial muscle of the cat. <i>Acta Physiologica Scandinavica</i> , <b>1966</b> , 66, 507                                                                                            | 7-8 | 32  |  |
| 31 | A quantitative study on the nigro-neostriatal dopamine neuron system in the rat. <i>Acta Physiologica Scandinavica</i> , <b>1966</b> , 67, 306-12                                                                   |     | 331 |  |
| 30 | Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons. <i>Acta Physiologica Scandinavica</i> , <b>1966</b> , 67, 481-97 |     | 392 |  |
| 29 | The Effect of Haloperidol and Chlorpromazine on the Amine Levels of Central Monoamine Neurons. <i>Acta Physiologica Scandinavica</i> , <b>1966</b> , 68, 419-420                                                    |     | 51  |  |
| 28 | FAILURE OF RESERPINE TO DEPLETE NORADRENALINE NEURONS OF ALPHA-METHYLNORADRENALINE FORMED FROM ALPHA-METHYL DOPA. <i>Acta Pharmacologica Et Toxicologica</i> , <b>1965</b> , 22, 270-6                              |     | 50  |  |
| 27 | SITE OF ACTION OF RESERPINE. Acta Pharmacologica Et Toxicologica, <b>1965</b> , 22, 277-92                                                                                                                          |     | 119 |  |
| 26 | FURTHER EVIDENCE FOR THE PRESENCE OF NIGRO-NEOSTRIATAL DOPAMINE NEURONS IN THE RAT. <i>American Journal of Anatomy</i> , <b>1965</b> , 116, 329-33                                                                  |     | 201 |  |
| 25 | A FLUORESCENCE AND ELECTRONMICROSCOPIC STUDY ON CERTAIN BRAIN REGIONS RICH IN MONOAMINE TERMINALS. <i>American Journal of Anatomy</i> , <b>1965</b> , 117, 33-45                                                    |     | 77  |  |
| 24 | Cellular localization of monoamines in the area postrema of certain mammals. <i>Journal of Comparative Neurology</i> , <b>1965</b> , 125, 337-53                                                                    | 3.4 | 126 |  |
| 23 | Cellular localization of monoamines in the upper brain stem of the pigeon. <i>Journal of Comparative Neurology</i> , <b>1965</b> , 125, 355-81                                                                      | 3.4 | 139 |  |

| 22 | THE DISTRIBUTION OF ADRENERGIC NERVE FIBRES TO THE BLOOD VESSELS IN SKELETAL MUSCLE. <i>Acta Physiologica Scandinavica</i> , <b>1965</b> , 64, 75-86                                      |     | 348 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 21 | Absence of monoamines in olivo-cochlear fibres in cat. <i>Acta Physiologica Scandinavica</i> , <b>1965</b> , 64, 259-62                                                                   |     | 16  |
| 20 | Evidence for the existence of monoamine neurons in the central nervous system. <i>Cell and Tissue Research</i> , <b>1965</b> , 65, 573-596                                                | 4.2 | 363 |
| 19 | THE ADRENERGIC INNERVATION OF THE NASAL MUCOSA OF CERTAIN MAMMALS. <i>Acta Oto-Laryngologica</i> , <b>1965</b> , 59, 65-72                                                                | 1.6 | 82  |
| 18 | Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon. <i>Life Sciences</i> , <b>1965</b> , 4, 1275-9                               | 6.8 | 145 |
| 17 | HISTOCHEMICAL AND BIOCHEMICAL DETECTION OF MONOAMINE RELEASE FROM BRAIN NEURONS. <i>Life Sciences</i> , <b>1965</b> , 4, 809-16                                                           | 6.8 | 32  |
| 16 | On the distribution and possible function of monamine nerve terminals in the olfactory bulb of the rabbit. <i>Life Sciences</i> , <b>1965</b> , 4, 2071-4                                 | 6.8 | 75  |
| 15 | Reduction of the monoamine stores in the terminals of bulbospinal neurones following stimulation in the medulla oblongata. <i>Life Sciences</i> , <b>1965</b> , 4, 1207-12                | 6.8 | 43  |
| 14 | CELLULAR LOCALIZATION OF MONOAMINES IN THE MEDIAN EMINENCE AND THE INFUNDIBULAR STEM OF SOME MAMMALS. <i>Cell and Tissue Research</i> , <b>1964</b> , 61, 710-24                          | 4.2 | 299 |
| 13 | OBSERVATIONS ON THE CELLULAR LOCALIZATION OF DOPAMINE IN THE CAUDATE NUCLEUS OF THE RAT. <i>Cell and Tissue Research</i> , <b>1964</b> , 63, 701-6                                        | 4.2 | 81  |
| 12 | A METHOD FOR THE DEMONSTRATION OF ADRENERGIC NERVE FIBRES IN PERIPHERAL NERVES. <i>Cell and Tissue Research</i> , <b>1964</b> , 62, 602-7                                                 | 4.2 | 90  |
| 11 | CELLULAR LOCALIZATION OF MONOAMINES IN THE SPINAL CORD. <i>Acta Physiologica Scandinavica</i> , <b>1964</b> , 60, 112-9                                                                   |     | 469 |
| 10 | HISTOCHEMICAL AND BIOCHEMICAL OBSERVATIONS ON THE EFFECT OF RESERPINE ON NORADRENALINE STORAGE IN VASOCONSTRICTOR NERVES. <i>Acta Physiologica Scandinavica</i> , <b>1964</b> , 61, 121-9 |     | 34  |
| 9  | ADRENERGIC MECHANISMS IN THE PUPILLARY LIGHT-REFLEX PATH. <i>Acta Physiologica Scandinavica</i> , <b>1964</b> , 62, 119-24                                                                |     | 28  |
| 8  | ASCENDING SYSTEMS OF CATECHOLAMINE NEURONS FROM THE LOWER BRAIN STEM. <i>Acta Physiologica Scandinavica</i> , <b>1964</b> , 62, 485-6                                                     |     | 74  |
| 7  | DEPLETION OF THE AMINE STORES IN BRAIN CATECHOLAMINE TERMINALS ON AMYGDALOID STIMULATION. <i>Acta Physiologica Scandinavica</i> , <b>1964</b> , 62, 493-4                                 |     | 46  |
| 6  | UPTAKE OF L-DOPA AND NORADRENALINE BY CENTRAL CATECHOLAMINE NEURONS. <i>Life Sciences</i> , <b>1964</b> , 3, 1403-6                                                                       | 6.8 | 51  |
| 5  | A METHOD FOR THE DEMONSTRATION OF MONOAMINE-CONTAINING NERVE FIBRES IN THE CENTRAL NERVOUS SYSTEM. <i>Acta Physiologica Scandinavica</i> , <b>1964</b> , 60, 293-4                        |     | 134 |

#### LIST OF PUBLICATIONS

| 4 | CELLULAR LOCALIZATION OF MONOAMINES IN THE MEDIAN EMINENCE AND IN THE INFUNDIBULAR STEM OF SOME MAMMALS. <i>Acta Physiologica Scandinavica</i> , <b>1963</b> , 58, 383-4 | 113 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3 | The mouse uterine surface epithelium during the estrous cycle. <i>The Anatomical Record</i> , <b>1963</b> , 145, 541-8                                                   | 8   |
| 2 | Freezing by liquid nitrogen, cryostat sectioning, and vapor fixation of tissue sections. <i>Biotechnic &amp; Histochemistry</i> , <b>1962</b> , 37, 377-8                | 4   |
| 1 | Transmitter-Receptor Mismatches in Central Dopamine, Serotonin, and Neuropeptide Systems: Further Evidence for Volume Transmission083-108                                | 2   |