Kjell Fuxe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1672914/publications.pdf Version: 2024-02-01

820 papers	52,517 citations	1094 112 h-index	³³⁹⁴ 183 g-index
831 all docs	831 docs citations	831 times ranked	17038 citing authors

KIELL ELLYE

#	Article	IF	CITATIONS
1	Acetylcholine receptors containing the \hat{I}^22 subunit are involved in the reinforcing properties of nicotine. Nature, 1998, 391, 173-177.	13.7	1,239
2	Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. European Journal of Pharmacology, 1970, 11, 303-314.	1.7	1,006
3	Evidence for dopamine receptor stimulation by apomorphine. Journal of Pharmacy and Pharmacology, 2011, 19, 627-629.	1.2	883
4	Adenosine–dopamine receptor–receptor interactions as an integrative mechanism in the basal ganglia. Trends in Neurosciences, 1997, 20, 482-487.	4.2	758
5	Evidence for the existence of monoamine neurons in the central nervous system. Cell and Tissue Research, 1965, 65, 573-596.	1.5	667
6	Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-α-ethyl-meta-tyramine. European Journal of Pharmacology, 1969, 5, 357-366.	1.7	627
7	Mapping of Glucocorticoid Receptor Immunoreactive Neurons in the Rat Tel- and Diencephalon Using a Monoclonal Antibody against Rat Liver Glucocorticoid Receptor*. Endocrinology, 1985, 117, 1803-1812.	1.4	516
8	Cellular Localization of Monoamines in the Spinal Cord. Acta Physiologica Scandinavica, 1964, 60, 112-119.	2.3	512
9	On the projections from the locus coeruleus noradrenaline neurons: The cerebellar innervation. Brain Research, 1971, 28, 165-171.	1.1	477
10	Coaggregation, Cointernalization, and Codesensitization of Adenosine A2A Receptors and Dopamine D2Receptors. Journal of Biological Chemistry, 2002, 277, 18091-18097.	1.6	450
11	Distribution of thyroptropin-releasing hormone (TRH) in the central nervous system as revealed with immunohistochemistry. European Journal of Pharmacology, 1975, 34, 389-392.	1.7	417
12	Targeting adenosine A2A receptors in Parkinson's disease. Trends in Neurosciences, 2006, 29, 647-654.	4.2	413
13	Biochemical and Histochemical Studies on the Effects of Imipramineâ€like Drugs and (+)â€Amphetamine on Central and Peripheral Catecholamine Neurons. Acta Physiologica Scandinavica, 1966, 67, 481-497.	2.3	411
14	Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4,1±-dimethyl-meta-tyramine. European Journal of Pharmacology, 1969, 5, 367-373.	1.7	405
15	Biochemistry, Molecular Biology, and Physiology of the Glucocorticoid Receptor*. Endocrine Reviews, 1987, 8, 185-234.	8.9	405
16	Adenosine A2A-Dopamine D2 Receptor-Receptor Heteromerization. Journal of Biological Chemistry, 2003, 278, 46741-46749.	1.6	401
17	Heterogeneity of striatal and limbic dopamine innervation: Highly fluorescent islands in developing and adult rats. Brain Research, 1972, 44, 283-288.	1.1	394
18	The Distribution of Adrenergic Nerve Fibres to the Blood Vessels in Skeletal Muscle. Acta Physiologica Scandinavica, 1965, 64, 75-86.	2.3	376

#	Article	IF	CITATIONS
19	1966, 24, 263-274.	0.0	366
20	A Quantitative Study on the Nigroâ€Neostriatal Dopamine Neuron System in the Rat. Acta Physiologica Scandinavica, 1966, 67, 306-312.	2.3	358
21	Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes. Journal of Comparative Neurology, 1985, 233, 308-332.	0.9	358
22	Building a new conceptual framework for receptor heteromers. Nature Chemical Biology, 2009, 5, 131-134.	3.9	349
23	Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: Implications for striatal neuronal function. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11940-11945.	3.3	345
24	Cellular localization of monoamines in the median eminence and the infundibular stem of some mammals. Cell and Tissue Research, 1963, 61, 710-724.	1.5	341
25	Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of the rat. Brain Research, 1969, 14, 461-471.	1.1	329
26	Molecular Mechanisms and Therapeutical Implications of Intramembrane Receptor/Receptor Interactions among Heptahelical Receptors with Examples from the Striatopallidal GABA Neurons. Pharmacological Reviews, 2003, 55, 509-550.	7.1	306
27	Morphological and Functional Aspects of Central Monoamine Neurons. International Review of Neurobiology, 1970, , 93-126.	0.9	300
28	Distribution of noradrenaline nerve terminals in cortical areas of the rat. Brain Research, 1968, 8, 125-131.	1.1	292
29	Central administration of neuropeptide Y induces hypotension bradypnea and EEG synchronization in the rat*. Acta Physiologica Scandinavica, 1983, 118, 189-192.	2.3	283
30	Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nature Methods, 2008, 5, 727-733.	9.0	269
31	Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia1Published on the World Wide Web on 12 January 1998.1. Brain Research Reviews, 1998, 26, 258-273.	9.1	266
32	Minor tranquillizers, stress and central catecholamine neurons. Brain Research, 1971, 29, 1-16.	1.1	261
33	Further mapping out of central noradrenaline neuron systems: Projections of the â€~subcoeruleus' area. Brain Research, 1972, 43, 289-295.	1.1	253
34	Cerebellar monoamine nerve terminals, a new type of afferent fibers to the cortex cerebelli. Experimental Brain Research, 1969, 9, 63-72.	0.7	243
35	Understanding wiring and volume transmission. Brain Research Reviews, 2010, 64, 137-159.	9.1	242
36	The discovery of central monoamine neurons gave volume transmission to the wired brain. Progress in Neurobiology, 2010, 90, 82-100.	2.8	242

#	Article	IF	CITATIONS
37	Adenosine receptor–dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiology and Behavior, 2007, 92, 210-217.	1.0	239
38	Distribution of neuropeptide immunoreactive nerve terminals within the subnuclei of the nucleus of the tractus solitarius of the rat. Journal of Comparative Neurology, 1984, 222, 409-444.	0.9	235
39	Gangliosides increase the survival of lesioned nigral dopamine neurons and favour the recovery of dopaminergic synaptic function in striatum of rats by collateral sprouting*. Acta Physiologica Scandinavica, 1983, 119, 347-363.	2.3	231
40	Further evidence for the presence of nigro-neostriatal dopamine neurons in the rat. American Journal of Anatomy, 1965, 116, 329-333.	0.9	228
41	Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: Structural and functional analysis. Progress in Neurobiology, 2010, 90, 198-216.	2.8	223
42	Evidence for Adrenaline Neurons in the Rat Brain. Acta Physiologica Scandinavica, 1973, 89, 286-288.	2.3	219
43	ldentification of Dopamine D1–D3 Receptor Heteromers. Journal of Biological Chemistry, 2008, 283, 26016-26025.	1.6	216
44	Immunohistochemical localization of three catecholamine synthesizing enzymes: aspects on methodology. Histochemie Histochemistry Histochimie, 1972, 33, 231-254.	1.3	211
45	Interaction between cholinergic and catecholaminergic neurones in rat brain. Brain Research, 1972, 43, 397-416.	1.1	209
46	The emergence of the volume transmission concept1Published on the World Wide Web on 12 January 1998.1. Brain Research Reviews, 1998, 26, 136-147.	9.1	209
47	Adenosine A _{2A} and Dopamine D ₂ Heteromeric Receptor Complexes and Their Function. Journal of Molecular Neuroscience, 2005, 26, 209-220.	1.1	207
48	From the Golgi–Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: Wiring and volume transmission. Brain Research Reviews, 2007, 55, 17-54.	9.1	205
49	The effect of immobilization stress on the activity of central monoamine neurons. Life Sciences, 1968, 7, 107-112.	2.0	196
50	Combining Mass Spectrometry and Pull-Down Techniques for the Study of Receptor Heteromerization. Direct Epitopeâ^'Epitope Electrostatic Interactions between Adenosine A2Aand Dopamine D2Receptors. Analytical Chemistry, 2004, 76, 5354-5363.	3.2	195
51	Cholecystokinin peptides produce marked reduction of dopamine turnover in discrete areas in the rat brain following intraventricular injection. European Journal of Pharmacology, 1980, 67, 329-331.	1.7	194
52	Central nicotinic receptors, neurotrophic factors and neuroprotection. Behavioural Brain Research, 2000, 113, 21-34.	1.2	194
53	Effects of tyrosine hydroxylase inhibition on the amine levels of central monoamine neurons. Life Sciences, 1966, 5, 561-568.	2.0	191
54	Rat medulla oblongata. III. Adrenergic (C1 and C2) neurons, nerve fibers and presumptive terminal processes. Journal of Comparative Neurology, 1985, 233, 333-349.	0.9	191

#	Article	IF	CITATIONS
55	Prominent expression of acidic fibroblast growth factor in motor and sensory neurons. Neuron, 1991, 7, 349-364.	3.8	184
56	Further Evidence for the Existence of Tuberoâ€infundibular Dopamine Neurons. Acta Physiologica Scandinavica, 1966, 66, 245-246.	2.3	183
57	The effect of imipramine of central 5-hydroxytryptamine neurons. Journal of Pharmacy and Pharmacology, 2011, 20, 150-151.	1.2	179
58	Involvement of Adenosine A1 and A2A Receptors in the Motor Effects of Caffeine after its Acute and Chronic Administration. Neuropsychopharmacology, 2003, 28, 1281-1291.	2.8	177
59	Possible involvement of central adrenaline neurons in vasomotor and respiratory control. Studies with clonidine and its interactions with piperoxane and yohimbine. European Journal of Pharmacology, 1974, 28, 89-94.	1.7	176
60	Effects of methionine-enkephalin on prolactin release and catecholamine levels and turnover in the median eminence. European Journal of Pharmacology, 1977, 43, 89-90.	1.7	174
61	ET495 and brain catecholamine mechanisms: Evidence for stimulation of dopamine receptors. European Journal of Pharmacology, 1972, 20, 195-204.	1.7	173
62	Cardiovascular effects of morphine and opioid peptides following intracisternal administration in chloralose-anesthetized rats. European Journal of Pharmacology, 1978, 48, 319-324.	1.7	172
63	Noradrenaline nerve terminals in the hippocampal region of the rat and the guinea pig. Cell and Tissue Research, 1967, 78, 463-473.	1.5	170
64	Neuropeptide Y in vitro selectively increases the number of α ₂ â€adrenergic binding sites in membranes of the medulla oblongata of the rat. Acta Physiologica Scandinavica, 1983, 118, 293-295.	2.3	168
65	Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon. Life Sciences, 1965, 4, 1275-1279.	2.0	164
66	Pharmaco-histochemical evidence of the existence of dopamine nerve terminals in the limbic cortex. European Journal of Pharmacology, 1974, 25, 108-112.	1.7	164
67	Histochemical studies on the effect of (+)-amphetamine, drugs of the imipramine group and tryptamine on central catecholamine and 5-hydroxytryptamine neurons after intraventricular injection of catecholamines and 5-hydroxytryptamine. European Journal of Pharmacology, 1968, 4, 135-144.	1.7	162
68	Modulation by cholecystokinins of ³ Hâ€spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta Physiologica Scandinavica, 1981, 113, 567-569.	2.3	158
69	A Method for the Demonstration of Monoamine ontaining Nerve Fibres in the Central Nervous System. Acta Physiologica Scandinavica, 1964, 60, 293-294.	2.3	156
70	Functional regeneration of 5-hydroxytryptamine nerve terminals in the rat spinal cord following 5,6-dihydroxytryptamine induced degeneration. Brain Research, 1974, 78, 377-394.	1.1	156
71	Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology, 2008, 54, 815-823.	2.0	154
72	Direct involvement of Ï <i>f</i> -1 receptors in the dopamine D ₁ receptor-mediated effects of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18676-18681.	3.3	153

#	Article	IF	CITATIONS
73	Cellular localization of monoamines in the upper brain stem of the pigeon. Journal of Comparative Neurology, 1965, 125, 355-381.	0.9	151
74	dl-5-Hydroxytryptophan-induced changes in central monoamine neurons after peripheral decarboxylase inhibition. Journal of Pharmacy and Pharmacology, 2011, 23, 420-424.	1.2	151
75	Neurotensin in vitro markedly reduces the affinity in subcortical limbic ³ Hâ€Nâ€propyInorapomorphine binding sites*. Acta Physiologica Scandinavica, 1983, 119, 459-461.	2.3	149
76	Further studies on the effects of central administration of neuropeptide Y on neuroendocrine function in the male rat: relationship to hypothalamic catecholamines. Regulatory Peptides, 1987, 17, 167-179.	1.9	149
77	Adenosine A2A Agonists: A Potential New Type of Atypical Antipsychotic. Neuropsychopharmacology, 1997, 17, 82-91.	2.8	149
78	Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses. Medicinal Research Reviews, 1985, 5, 441-482.	5.0	147
79	Evidence for Adenosine/Dopamine Receptor Interactions Indications for Heteromerization. Neuropsychopharmacology, 2000, 23, S50-S59.	2.8	147
80	Effect of prostaglandin E2 on central and peripheral catecholamine neurons. European Journal of Pharmacology, 1973, 21, 362-368.	1.7	145
81	Adenosine A _{2A} receptors, dopamine D ₂ receptors and their interactions in Parkinson's disease. Movement Disorders, 2007, 22, 1990-2017.	2.2	145
82	Behavioral, biochemical, and histochemical analyses of the central effects of monoamine precursors after peripheral decarâ ylase inhibition. Brain Research, 1972, 41, 387-411.	1.1	144
83	Neuroendocrine actions of nicotine and of exposure to cigarette smoke: Medical implications. Psychoneuroendocrinology, 1989, 14, 19-41.	1.3	144
84	Behavioral effects of 5,7-dihydroxytryptamine lesions of ascending 5-hydroxytryptamine pathways. Brain Research, 1976, 107, 385-399.	1.1	143
85	The Vigilance Promoting Drug Modafinil Increases Extracellular Glutamate Levels in the Medial Preoptic Area and the Posterior Hypothalamus of the Conscious Rat Prevention by Local GABAA Receptor Blockade. Neuropsychopharmacology, 1999, 20, 346-356.	2.8	139
86	Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. Journal of Neurochemistry, 2003, 88, 726-734.	2.1	139
87	Cellular localization of monoamines in the area postrema of certain mammals. Journal of Comparative Neurology, 1965, 125, 337-353.	0.9	137
88	Barbiturates and meprobamate: Decreases in catecholamine turnover of central dopamine and noradrenaline neuronal systems and the influence of immobilization stress. Brain Research, 1972, 45, 507-524.	1.1	137
89	The effect of neuroleptics on the activity of central catecholamine neurones. Life Sciences, 1967, 6, 767-774.	2.0	135
90	Cellular Localization of Monoamines in the Median Eminence and in the Infundibular Stem of Some Mammals. Acta Physiologica Scandinavica, 1963, 58, 383-384.	2.3	134

#	Article	IF	CITATIONS
91	On the catecholamine innervation of the hypothalamus, with special reference to the median eminence. Brain Research, 1972, 40, 271-281.	1.1	134
92	Dopamine D1Receptor-mediated Facilitation of GABAergic Neurotransmission in the Rat Strioentopeduncular Pathway and its Modulation by Adenosine A1Receptor-mediated Mechanisms. European Journal of Neuroscience, 1996, 8, 1545-1553.	1.2	134
93	Postsynaptic antagonistic interaction between adenosine A1, and dopamine D1 receptors. NeuroReport, 1994, 6, 73-76.	0.6	133
94	Site of Action of Reserpine. Acta Pharmacologica Et Toxicologica, 1965, 22, 277-292.	0.0	133
95	Adenosine A2A-dopamine D2 receptor–receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism and Related Disorders, 2004, 10, 265-271.	1.1	132
96	The effect of some psychoactive drugs on central monoamine neurons. European Journal of Pharmacology, 1967, 1, 363-368.	1.7	131
97	Histochemical studies on the distribution of catecholamines and 5-hydroxytryptamine after intraventricular injections. Histochemie Histochemistry Histochimie, 1968, 13, 16-28.	1.3	131
98	The Selective mGlu5 Receptor Agonist CHPG Inhibits Quinpirole-Induced Turning in 6-Hydroxydopamine-Lesioned Rats and Modulates the Binding Characteristics of Dopamine D2 Receptors in the Rat Striatum Interactions with Adenosine A2a Receptors. Neuropsychopharmacology, 2001, 25, 505-513.	2.8	130
99	Immunohistochemical studies on monoamine-containing cell systems. Brain Research, 1973, 62, 461-469.	1.1	129
100	Modafinil: An antinarcoleptic drug with a different neurochemical profile to d-amphetamine and dopamine uptake blockers. Biological Psychiatry, 1997, 42, 1181-1183.	0.7	128
101	The effect of lithium on cerebral monoamine neurons. Psychopharmacology, 1967, 11, 345-353.	1.5	127
102	The vigilance promoting drug modafinil increases dopamine release in the rat nucleus accumbens via the involvement of a local GABAergic mechanism. European Journal of Pharmacology, 1996, 306, 33-39.	1.7	125
103	Receptor-receptor interactions as an integrative mechanism in nerve cells. Molecular Neurobiology, 1993, 7, 293-334.	1.9	124
104	Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A2A and dopamine D2 receptors. Neuroscience Letters, 2002, 324, 154-158.	1.0	124
105	The G Protein-Coupled Receptor Heterodimer Network (GPCR-HetNet) and Its Hub Components. International Journal of Molecular Sciences, 2014, 15, 8570-8590.	1.8	124
106	Depletion of catecholaminesin vivo induced by electrical stimulation of central monoamine pathways. Brain Research, 1970, 24, 471-483.	1.1	123
107	Perforant path transections protect hippocampal granule cells from kainate lesion. Neuroscience Letters, 1978, 10, 241-246.	1.0	122
108	Rotational behaviour in rats with unilateral striatal kainic acid lesions: A behavioural model for studies on intact dopamine receptors. Brain Research, 1979, 170, 485-495.	1.1	120

#	Article	IF	CITATIONS
109	Gluco- and mineralocorticoid receptor-mediated regulation of neurotrophic factor gene expression in the dorsal hippocampus and the neocortex of the rat. European Journal of Neuroscience, 2000, 12, 2918-2934.	1.2	119
110	Adenosine A2A Receptor and Dopamine D3 Receptor Interactions: Evidence of Functional A2A/D3 Heteromeric Complexes. Molecular Pharmacology, 2005, 67, 400-407.	1.0	119
111	Adenosine/dopamine interaction: implications for the treatment of Parkinson's disease. Parkinsonism and Related Disorders, 2001, 7, 235-241.	1.1	118
112	Fibroblast Growth Factor Receptor 1– 5-Hydroxytryptamine 1A Heteroreceptor Complexes and Their Enhancement of Hippocampal Plasticity. Biological Psychiatry, 2012, 71, 84-91.	0.7	118
113	Demonstration of extraneuronal 5-hydroxytryptamine accumulation in brain following membrane-pump blockade by chlorimipramine. Brain Research, 1969, 12, 456-460.	1.1	117
114	Selective reserpine-resistant accumulation of catecholamines in central dopamine neurones after dopa administration. Brain Research, 1974, 67, 439-456.	1.1	117
115	Effects of 5-methoxy-N,N-dimethyltryptamine on central monoamine neurons. European Journal of Pharmacology, 1972, 19, 25-34.	1.7	116
116	Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiology of Learning and Memory, 2007, 87, 42-56.	1.0	115
117	Reciprocal interactions between adenosine A2A and dopamine D2 receptors in Chinese hamster ovary cells co-transfected with the two receptors. Biochemical Pharmacology, 1999, 58, 1035-1045.	2.0	113
118	Increased impulse flow in bulbospinal noradrenaline neurons produced by catecholamine receptor blocking agents. European Journal of Pharmacology, 1967, 2, 59-64.	1.7	112
119	Dopamine and noradrenaline releasing action of amantadine in the central and peripheral nervous system: A possible mode of action in Parkinson's disease. European Journal of Pharmacology, 1971, 16, 27-38.	1.7	112
120	Neurotransmitter receptor heteromers and their integrative role in â€~local modules': The striatal spine module. Brain Research Reviews, 2007, 55, 55-67.	9.1	112
121	Chronic nicotine treatment counteracts the disappearance of tyrosine-hydroxylase-immunoreactive nerve cell bodies, dendrites and terminals in the mesostriatal dopamine system of the male rat after partial hemitransection. Brain Research, 1988, 455, 332-345.	1.1	110
122	The effects of modafinil on striatal, pallidal and nigral GABA and glutamate release in the conscious rat: evidence for a preferential inhibition of striato-pallidal GABA transmission. Neuroscience Letters, 1998, 253, 135-138.	1.0	110
123	G Protein–Coupled Receptor Heterodimerization in the Brain. Methods in Enzymology, 2013, 521, 281-294.	0.4	110
124	Understanding the Role of GPCR Heteroreceptor Complexes in Modulating the Brain Networks in Health and Disease. Frontiers in Cellular Neuroscience, 2017, 11, 37.	1.8	110
125	Stimulation of adenosine A2 receptors induces catalepsy. Neuroscience Letters, 1991, 130, 162-164.	1.0	108
126	Organization of choroid plexus epithelial and endothelial cell tight junctions and regulation of claudin-1, -2 and -5 expression by protein kinase C. NeuroReport, 2000, 11, 1427-1431.	0.6	107

#	Article	IF	CITATIONS
127	Inhibitory role of dopamine and 5-hydroxytryptamine in the sexual behaviour of female rats. European Journal of Pharmacology, 1974, 29, 187-191.	1.7	105
128	The antinarcoleptic drug modafinil increases glutamate release in thalamic areas and hippocampus. NeuroReport, 1997, 8, 2883-2887.	0.6	105
129	Alterations in neuropeptide Y and Y1 receptor mRNA expression in brains from an animal model of depression: region specific adaptation after fluoxetine treatment. Molecular Brain Research, 1998, 59, 58-65.	2.5	104
130	Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. Brain Research, 1992, 594, 124-130.	1.1	103
131	The vigilance promoting drug modafinil decreases GABA release in the medial preoptic area and in the posterior hypothalamus of the awake rat: possible involvement of the serotonergic 5-HT3 receptor. Neuroscience Letters, 1996, 220, 5-8.	1.0	103
132	The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural–glial networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140183.	1.8	103
133	A Possible Role Played by Central Monoamine neurones in Thermoâ€Regulation. Acta Physiologica Scandinavica, 1967, 71, 224-232.	2.3	102
134	Moonlighting Proteins and Protein–Protein Interactions as Neurotherapeutic Targets in the G Protein-Coupled Receptor Field. Neuropsychopharmacology, 2014, 39, 131-155.	2.8	101
135	A method for the demonstration of adrenergic nerve fibres in peripheral nerves. Cell and Tissue Research, 1964, 62, 602-607.	1.5	100
136	Volume versus wiring transmission in the brain: A new theoretical frame for neuropsychopharmacology. Medicinal Research Reviews, 1995, 15, 33-45.	5.0	100
137	Colocalization of Peptide and Glucocorticoid Receptor Immunoreactivities in Rat Central Amygdaloid Nucleus. Neuroendocrinology, 1992, 55, 451-459.	1.2	99
138	Alterations in neuropeptide Y levels and Y1 binding sites in the Flinders Sensitive Line rats, a genetic animal model of depression. Neuroscience Letters, 1999, 265, 191-194.	1.0	99
139	Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia. Brain, Behavior, and Immunity, 2018, 67, 139-151.	2.0	99
140	Blockade of p-chloromethamphetamine induced 5-hydroxytryptamine depletion by chlorimipramine, chlorpheniramine and meperidine. Biochemical Pharmacology, 1971, 20, 707-709.	2.0	98
141	Adenosine A1 Receptor-mediated Modulation of Dopamine D1 Receptors in Stably Cotransfected Fibroblast Cells. Journal of Biological Chemistry, 1998, 273, 4718-4724.	1.6	98
142	Endothelin-1 induced lesions of the frontoparietal cortex of the rat. A possible model of focal cortical ischemia. NeuroReport, 1997, 8, 2623-2629.	0.6	97
143	MONOAMINES AND THE PITUITARY GLAND. European Journal of Endocrinology, 1966, 51, 301-314.	1.9	96
144	Studies on the action of some psychoactive drugs on central noradrenaline neurones after inhibition of dopamine-β-hydroxylase. Brain Research, 1970, 24, 451-470.	1.1	95

#	Article	IF	CITATIONS
145	The Adrenergic Innervation of the Nasal Mucosa of Certain Mammals. Acta Oto-Laryngologica, 1965, 59, 65-72.	0.3	94
146	Localization of Indolealkylamines in CNS. Advances in Pharmacology, 1968, 6, 235-251.	1.2	94
147	Aspects of neural plasticity in the central nervous system—I. Computer-assisted image analysis methods. Neurochemistry International, 1990, 16, 383-418.	1.9	94
148	Characterization of the A2AR–D2R interface: Focus on the role of the C-terminal tail and the transmembrane helices. Biochemical and Biophysical Research Communications, 2010, 402, 801-807.	1.0	93
149	Central catecholamine turnover and self-stimulation behaviour. Brain Research, 1971, 27, 406-413.	1.1	92
150	On the functional role of coexistence of 5â€HT and substance P in bulbospinal 5â€HT neurons. Substance P reduces affinity and increases density of ³ Hâ€5â€HT binding sites. Acta Physiologica Scandinavica, 1983, 117, 299-301.	2.3	92
151	The renin-angiotensin system in the brain: an update 1993. Regulatory Peptides, 1993, 46, 487-509.	1.9	92
152	Observations on the cellular localization of dopamine in the caudate nucleus of the rat. Cell and Tissue Research, 1964, 63, 701-706.	1.5	91
153	The effect of prolonged lithium administration on cerebral monoamine neurons in the rat. Life Sciences, 1969, 8, 643-651.	2.0	91
154	Adenosine A2A receptors modulate the binding characteristics of dopamine D2 receptors in stably cotransfected fibroblast cells. European Journal of Pharmacology, 1996, 316, 325-331.	1.7	91
155	Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization. Biochemical and Biophysical Research Communications, 2010, 393, 767-772.	1.0	91
156	On the mechanism of action of the antidepressant drugs amitriptyline and nortriptyline. Evidence for 5-hydroxytryptamine receptor blocking activity. Neuroscience Letters, 1977, 6, 339-343.	1.0	90
157	Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Research, 2006, 1077, 67-80.	1.1	90
158	Ascending Systems of Catecholamine Neurons from the Lower Brain Stem. Acta Physiologica Scandinavica, 1964, 62, 485-486.	2.3	89
159	Effects of intracerebral injections of 5,6-dihydroxytryptamine on central monoamine neurons: Evidence for selective degeneration of central 5-hydroxytryptamine neurons. Brain Research, 1973, 49, 476-482.	1.1	89
160	Effect of some phosphodiesterase inhibitors on central dopamine mechanisms. European Journal of Pharmacology, 1976, 38, 31-38.	1.7	89
161	Adenosine Receptor Heteromers and their Integrative Role in Striatal Function. Scientific World Journal, The, 2007, 7, 74-85.	0.8	89
162	On the role of P2X7 receptors in dopamine nerve cell degeneration in a rat model of Parkinson's disease: studies with the P2X7 receptor antagonist A-438079. Journal of Neural Transmission, 2010, 117, 681-687.	1.4	89

#	Article	IF	CITATIONS
163	Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets. Neurochemical Research, 2015, 40, 2600-2614.	1.6	89
164	Decreased turnover in central 5-HT nerve terminals induced by antidepressant drugs of the imipramine type. European Journal of Pharmacology, 1969, 7, 56-59.	1.7	88
165	Dopamine D2 and D4 receptor heteromerization and its allosteric receptor–receptor interactions. Biochemical and Biophysical Research Communications, 2011, 404, 928-934.	1.0	88
166	THE HISTOCHEMICAL FLUORESCENCE METHOD FOR THE DEMONSTRATION OF CATECHOLAMINES THEORY, PRACTICE AND APPLICATION. Journal of Histochemistry and Cytochemistry, 1973, 21, 293-311.	1.3	87
167	Dopamine D2 and 5-hydroxytryptamine 5-HT2A receptors assemble into functionally interacting heteromers. Biochemical and Biophysical Research Communications, 2010, 401, 605-610.	1.0	87
168	Effects of Piperoxane on Sleep and Waking in the Rat. Evidence for Increased Waking by Blocking Inhibitory Adrenaline Receptors on the Locus Coeruleus. Acta Physiologica Scandinavica, 1974, 91, 566-567.	2.3	86
169	Factors involved in the Control of the Activity of the Tubero-Infundibular Dopamine Neurons during Pregnancy and Lactation. Neuroendocrinology, 1969, 5, 257-270.	1.2	84
170	Evidence for specific N-terminal galanin fragment binding sites in the rat brain. European Journal of Pharmacology, 1992, 224, 203-205.	1.7	84
171	A fluorescence and electronmicroscopic study on certain brain regions rich in monoamine terminals. American Journal of Anatomy, 1965, 117, 33-45.	0.9	83
172	Effects of cholecystokinin peptides and neurotensin on dopamine release and metabolism in the rostral and caudal part of the nucleus accumbens using intracerebral dialysis in the anaesthetized rat. Neurochemistry International, 1987, 10, 509-520.	1.9	83
173	Bioluminescence Resonance Energy Transfer Methods to Study G Protein-Coupled Receptor–Receptor Tyrosine Kinase Heteroreceptor Complexes. Methods in Cell Biology, 2013, 117, 141-164.	0.5	83
174	Mapping of central noradrenaline pathways with 6-Hydroxy-DOPA. Brain Research, 1973, 63, 249-261.	1.1	82
175	Galanin selectively modulates 5-hydroxytryptamine 1A receptors in the rat ventral limbic cortex. Neuroscience Letters, 1988, 85, 163-167.	1.0	82
176	The Brain Renin-Angiotensin System: Localization and General Significance. Journal of Cardiovascular Pharmacology, 1992, 19, S51-S62.	0.8	82
177	Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2Areceptors in dopamine D2receptor regulation in the rat dopamine-denervated striatum. European Journal of Neuroscience, 2000, 12, 4033-4037.	1.2	82
178	On the distribution and possible function of monoamine nerve terminals in the olfactory bulb of the rabbit. Life Sciences, 1965, 4, 2071-2074.	2.0	81
179	Prenatal Development of Glucocorticoid Receptor Gene Expression and Immunoreactivity in the Rat Brain and Pituitary Gland: A Combined in situ Hybridization and Immunocytochemical Analysis. Neuroendocrinology, 1993, 57, 1133-1147.	1.2	80
180	Antisense oligonucleotide to c-fos induces ipsilateral rotational behaviour to d-amphetamine. NeuroReport, 1993, 5, 277-280.	0.6	80

#	Article	IF	CITATIONS
181	Adenosine A2A agonist CCS 21680 decreases the affinity of dopamine D2 receptors for dopamine in human striatum. NeuroReport, 2001, 12, 1831-1834.	0.6	78
182	Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes. Biochemical and Biophysical Research Communications, 2014, 443, 278-284.	1.0	78
183	Basic FGF is present in dopaminergic neurons of the ventral midbrain of the rat. NeuroReport, 1991, 2, 597-600.	0.6	77
184	Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. European Journal of Pharmacology, 1998, 347, 153-158.	1.7	77
185	Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors. Oncotarget, 2018, 9, 13593-13611.	0.8	77
186	Effects of acute and long-term treatment with neuroleptics on regional telencephalic neurotensin levels in the male rat. Neurochemistry International, 1986, 8, 429-434.	1.9	76
187	The Two-State Dimer Receptor Model: A General Model for Receptor Dimers. Molecular Pharmacology, 2006, 69, 1905-1912.	1.0	76
188	On the Existence of a Possible A2A–D2–β-Arrestin2 Complex: A2A Agonist Modulation of D2 Agonist-Induced β-Arrestin2 Recruitment. Journal of Molecular Biology, 2011, 406, 687-699.	2.0	76
189	The distribution of angiotensin II AT1 receptor subtype mRNA in the rat brain. Neuroscience Letters, 1992, 142, 155-158.	1.0	75
190	Dopamine heteroreceptor complexes as therapeutic targets in Parkinson's disease. Expert Opinion on Therapeutic Targets, 2015, 19, 377-398.	1.5	75
191	On the role of brain noradrenaline and the pituitary-adrenal axis in avoidance learning. I. Studies with corticosterone. Neuroscience Letters, 1977, 5, 291-296.	1.0	74
192	Effects of single injections of nicotine on the ascending dopamine pathways in the rat: Evidence for increases of dopamine turnover in the mesostriatal and mesolimbic dopamine neurons. Acta Physiologica Scandinavica, 1981, 112, 345-347.	2.3	74
193	Regulation of heptaspanning-membrane-receptor function by dimerization and clustering. Trends in Biochemical Sciences, 2003, 28, 238-243.	3.7	74
194	Role of Electrostatic Interaction in Receptor–Receptor Heteromerization. Journal of Molecular Neuroscience, 2005, 26, 125-132.	1.1	74
195	The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor–receptor interactions. Journal of Receptor and Signal Transduction Research, 2010, 30, 272-283.	1.3	74
196	Intravenous injections of nicotine induce very rapid and discrete reductions of hypothalamic catecholamine levels associated with increases of ACTH, vasopressin and prolactin secretion. Acta Physiologica Scandinavica, 1983, 118, 35-40.	2.3	73
197	Electroconvulsive stimuli selectively affect behavior and neuropeptide Y (NPY) and NPY Y1 receptor gene expressions in hippocampus and hypothalamus of Flinders Sensitive Line rat model of depression. European Neuropsychopharmacology, 2007, 17, 298-308.	0.3	73
198	Effect of neuroleptic drugs on central catecholamine turnover assessed using tyrosineand dopamine-β-hydroxylase inhibitors. Journal of Pharmacy and Pharmacology, 2011, 24, 177-182.	1.2	73

#	Article	IF	CITATIONS
199	Activity changes in the tubero-infundibular dopamine neurons of the rat during various states of the reproductive cycle. Life Sciences, 1967, 6, 2057-2061.	2.0	72
200	Preferential vulnerability of A8 dopamine neurons in the primate to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience Letters, 1986, 68, 51-56.	1.0	72
201	Receptor–Receptor Interactions, Receptor Mosaics, and Basic Principles of Molecular Network Organization: Possible Implications for Drug Development. Journal of Molecular Neuroscience, 2005, 26, 193-208.	1.1	72
202	Rat medulla oblongata. I. Cytoarchitectonic considerations. Journal of Comparative Neurology, 1985, 233, 285-307.	0.9	71
203	Molecular integration via allosteric interactions in receptor heteromers. A working hypothesis. Current Opinion in Pharmacology, 2010, 10, 14-22.	1.7	71
204	Dopaminergic Systems in the Brain and Pituitary. Basic and Clinical Aspects of Neuroscience, 1985, , 11-25.	0.2	71
205	Pharmacological studies on the hypotensive effects of clonidine. European Journal of Pharmacology, 1971, 13, 168-174.	1.7	70
206	Dopaminergic transmission in the rat retina: evidence for volume transmission. Journal of Chemical Neuroanatomy, 1996, 12, 37-50.	1.0	70
207	Subcellular Localization of Angiotensin II Immunoreactivity in the Rat Cerebellar Cortex. Hypertension, 1996, 28, 818-824.	1.3	70
208	Refillment of the catecholamine stores with 3,4-dihydroxyphenylalanine after depletion induced by inhibition of tyrosine-hydroxylase. Life Sciences, 1966, 5, 605-611.	2.0	69
209	Inhibitory effects of neuropeptide Y on cyclic AMP accumulation in slices of the nucleus tractus solitarius region of the rat. Neuroscience Letters, 1987, 76, 185-190.	1.0	69
210	Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents. Neuroscience Letters, 1996, 218, 209-213.	1.0	69
211	Effects of sarizotan on the corticostriatal glutamate pathways. Synapse, 2005, 58, 193-199.	0.6	69
212	Presence of glucocorticoid receptor immunoreactivity in corticotrophin releasing factor and in growth hormone releasing factor immunoreactive neurons of the rat di- and telencephalon. Neuroscience Letters, 1987, 77, 25-30.	1.0	68
213	D1- and D2-receptor antagonist induce catalepsy via different efferent. Striatal pathways. Neuroscience Letters, 1988, 85, 333-338.	1.0	68
214	A serine point mutation in the adenosine A2AR C-terminal tail reduces receptor heteromerization and allosteric modulation of the dopamine D2R. Biochemical and Biophysical Research Communications, 2010, 394, 222-227.	1.0	68
215	Accumbal and pallidal dopamine, glutamate and <scp>GABA</scp> overflow during cocaine selfâ€administration and its extinction in rats. Addiction Biology, 2013, 18, 307-324.	1.4	68
216	Purinergic signaling in Parkinson's disease. Relevance for treatment. Neuropharmacology, 2016, 104, 161-168.	2.0	68

#	Article	IF	CITATIONS
217	Central catecholamine neurons and conditioned avoidance behaviour. Psychopharmacology, 1967, 11, 439-447.	1.5	67
218	On the role of ascending dopamine systems in the control of voluntary ethanol intake and ethanol intoxication. Pharmacology Biochemistry and Behavior, 1979, 10, 603-608.	1.3	67
219	Adenosine A1 receptor-dopamine D1 receptor interaction in the rat limbic system: modulation of dopamine D1 receptor antagonist binding sites. Neuroscience Letters, 1996, 208, 109-112.	1.0	67
220	Adenosine receptor containing oligomers: Their role in the control of dopamine and glutamate neurotransmission in the brain. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1245-1255.	1.4	67
221	Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks. Frontiers in Physiology, 2012, 3, 136.	1.3	67
222	On the action of nicotine and cotinine on central 5-hydroxytryptamine neurons. Pharmacology Biochemistry and Behavior, 1979, 10, 671-677.	1.3	66
223	Activation of Adensine A1 and A2A Receptors Modulates Dopamine D2 Receptor-Induced Responses in Stably Transfected Human Neuroblastoma Cells. Journal of Neurochemistry, 2001, 74, 432-439.	2.1	66
224	The Striatal Neurotensin Receptor Modulates Striatal and Pallidal Glutamate and GABA Release: Functional Evidence for a Pallidal Glutamate–GABA Interaction via the Pallidal–Subthalamic Nucleus Loop. Journal of Neuroscience, 1998, 18, 6977-6989.	1.7	65
225	Interactions between Calmodulin, Adenosine A2A, and Dopamine D2 Receptors. Journal of Biological Chemistry, 2009, 284, 28058-28068.	1.6	65
226	On the role of volume transmission and receptor–receptor interactions in social behaviour: Focus on central catecholamine and oxytocin neurons. Brain Research, 2012, 1476, 119-131.	1.1	65
227	Central Monoamine Neurons and Pituitary—Adrenal Activity. Progress in Brain Research, 1970, 32, 42-56.	0.9	64
228	Characterization of NPY mRNA-expressing cells in the human brain: co-localization with Y2 but not Y1 mRNA in the cerebral cortex, hippocampus, amygdala, and striatum. Journal of Chemical Neuroanatomy, 2000, 20, 327-337.	1.0	64
229	Somatostatin produces apnea and is localized in medullary respiratory nuclei: a possible role in apneic syndromes. Brain Research, 1984, 296, 339-344.	1.1	63
230	Coexistence of c-Fos and glucocorticoid receptor immunoreactivities in the CRF immunoreactive neurons of the paraventricular hypothalamic nucleus of the rat after acute immobilization stress. Neuroscience Letters, 1993, 149, 149-152.	1.0	63
231	Studies on uptake of intraventricularly administered tritiated noradrenaline and 5-hydroxytryptamine with combined fluorescence histochemical and autoradiographic techniques. Histochemie Histochemie, 1968, 16, 186-194.	1.3	62
232	Dopamine in the nucleus accumbens: preferential increase of DA turnover by rat prolactin. Brain Research, 1977, 122, 177-182.	1.1	62
233	Galanin-(1–15), but not galanin-(1–29), modulates 5-HT1A receptors in the dorsal hippocampus of the rat brain: possible existence of galanin receptor subtypes. Brain Research, 1994, 634, 163-167.	1.1	62
234	Dopamine D1 and D2 receptor antagonism differentially modulates stimulation of striatal neurotransmitter levels by acid. European Journal of Pharmacology, 1994, 256, 23-30.	1.7	62

#	Article	IF	CITATIONS
235	Adenosine A1 and A2A receptor antagonists stimulate motor activity: evidence for an increased effectiveness in aged rats. Neuroscience Letters, 1998, 251, 201-204.	1.0	62
236	Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping. Frontiers in Neural Circuits, 2016, 10, 92.	1.4	62
237	Mapping the Interface of a GPCR Dimer: A Structural Model of the A2A Adenosine and D2 Dopamine Receptor Heteromer. Frontiers in Pharmacology, 2018, 9, 829.	1.6	62
238	Cellular Localization of Dopamine-β-hydroxylase and Phenylethanolamine-N-methyl Transferase as Revealed by Immunohistochemistry. Progress in Brain Research, 1971, , 127-138.	0.9	61
239	Localization of Neuropeptide Y Y1 mRNA in the Human Brain: Abundant Expression in Cerebral Cortex and Striatum. European Journal of Neuroscience, 1997, 9, 1212-1225.	1.2	61
240	Localization of catecholamine uptake in rat brain after intraventricular injection. Life Sciences, 1966, 5, 1817-1824.	2.0	60
241	A fluorescence and electron microscopic study on central monoamine nerve cells. The Anatomical Record, 1966, 155, 33-40.	2.3	60
242	Modafinil and cortical γ-aminobutyric acid outflow. Modulation by 5-hydroxytryptamine neurotoxins. European Journal of Pharmacology, 1995, 273, 63-71.	1.7	60
243	NPY Y1 receptor like immunoreactivity exists in a subpopulation of β-endorphin immunoreactive nerve cells in the arcuate nucleus: a double immunolabelling analysis in the rat. Neuroscience Letters, 1997, 225, 49-52.	1.0	60
244	Dimer-based model for heptaspanning membrane receptors. Trends in Biochemical Sciences, 2005, 30, 360-366.	3.7	60
245	A2Aâ€D2 receptor–receptor interaction modulates gliotransmitter release from striatal astrocyte processes. Journal of Neurochemistry, 2017, 140, 268-279.	2.1	60
246	Hallucinogenic phenylethylamines: Interactions with serotonin turnover and receptors. European Journal of Pharmacology, 1974, 25, 176-184.	1.7	59
247	Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130505.	1.8	59
248	Volume transmission and its different forms in the central nervous system. Chinese Journal of Integrative Medicine, 2013, 19, 323-329.	0.7	58
249	Uptake of L-dopa and noradrenaline by central catecholamine neurons. Life Sciences, 1964, 3, 1403-1406.	2.0	57
250	The Effect of Haloperidol and Chlorpromazine on the Amine Levels of Central Monoamine Neurons. Acta Physiologica Scandinavica, 1966, 68, 419-420.	2.3	57
251	Effect of ergot drugs on central 5-hydroxytryptamine neurons: Evidence for 5-hydroxytryptamine release or 5-hydroxytryptamine receptor stimulation. European Journal of Pharmacology, 1975, 30, 172-181.	1.7	57
252	Pharmacological characterization of dopamine-stimulated [35S]-Guanosine 5′-(γ-thiotriphosphate) ([35S]GTPγS) binding in rat striatal membranes. Biochemical Pharmacology, 1999, 57, 155-162.	2.0	57

#	Article	IF	CITATIONS
253	Increased density of galanin binding sites in the dorsal raphe in a genetic rat model of depression. Neuroscience Letters, 2002, 317, 101-105.	1.0	57
254	Receptor–receptor interactions: A novel concept in brain integration. Progress in Neurobiology, 2010, 90, 157-175.	2.8	57
255	On the existence and function of galanin receptor heteromers in the central nervous system. Frontiers in Endocrinology, 2012, 3, 127.	1.5	57
256	The effects of neurotensin on GABA and acetylcholine release in the dorsal striatum of the rat: an in vivo mirodialysis study. Brain Research, 1992, 573, 209-216.	1.1	56
257	Molecular mechanisms involved in the adenosine A1 and A2A receptor-induced neuronal differentiation in neuroblastoma cells and striatal primary cultures. Journal of Neurochemistry, 2005, 92, 337-348.	2.1	56
258	How receptor mosaics decode transmitter signals. Possible relevance of cooperativity. Trends in Biochemical Sciences, 2005, 30, 188-193.	3.7	56
259	Anxiolytic-like effects of the selective metabotropic glutamate receptor 5 antagonist MPEP after its intra-amygdaloid microinjection in three different non-conditioned rat models of anxiety. European Journal of Neuroscience, 2006, 23, 2749-2759.	1.2	56
260	Endogenous kynurenic acid regulates extracellular GABA levels in the rat prefrontal cortex. Neuropharmacology, 2014, 82, 11-18.	2.0	56
261	Adrenergic and Cholinergic Nerve Terminals in Skeletal Muscle Vessels ¹ . Acta Physiologica Scandinavica, 1970, 78, 52-59.	2.3	55
262	Differential enhancement of dialysate serotonin levels in distinct brain regions of the awake rat by modafinil: Possible relevance for wakefulness and depression. Journal of Neuroscience Research, 2002, 68, 107-112.	1.3	55
263	Hyperactivity to novelty induced by social isolation is not correlated with changes in D2 receptor function and binding in striatum. Psychopharmacology, 2004, 171, 148-155.	1.5	55
264	Failure of Reserpine to Deplete Noradrenaline Neurons of αâ€Methylnoradrenaline Formed from αâ€Methyl DOPA. Acta Pharmacologica Et Toxicologica, 1965, 22, 270-276.	0.0	55
265	Effect of some antiparkinsonian drugs on catecholamine neurons. Journal of Pharmacy and Pharmacology, 2011, 22, 733-737.	1.2	55
266	Moonlighting characteristics of G protein oupled receptors: Focus on receptor heteromers and relevance for neurodegeneration. IUBMB Life, 2011, 63, 463-472.	1.5	55
267	Cholecystokinin peptides in vitro modulate the characteristics of the striatal ³ Hâ€Nâ€propylnorapomorphine sites. Acta Physiologica Scandinavica, 1983, 118, 79-81.	2.3	54
268	Neurotensin Decreases the Affinity of Dopamine D2Agonist Binding by a G Protein-Independent Mechanism. Journal of Neurochemistry, 1991, 56, 178-183.	2.1	54
269	Fibroblast growth factor-2 and its receptor expression in proliferating precursor cells of the subventricular zone in the adult rat brain. Neuroscience Letters, 2008, 447, 20-25.	1.0	54
270	Kynurenic acid, by targeting α7 nicotinic acetylcholine receptors, modulates extracellular <scp>GABA</scp> levels in the rat striatum <i>in vivo</i> . European Journal of Neuroscience, 2013, 37, 1470-1477.	1.2	54

#	Article	IF	CITATIONS
271	The Role of Central Serotonin Neurons and 5-HT Heteroreceptor Complexes in the Pathophysiology of Depression: A Historical Perspective and Future Prospects. International Journal of Molecular Sciences, 2021, 22, 1927.	1.8	54
272	Studies on neurotensin catecholamine interactions in the hypothalamus and in the forebrain of the male rat. Neurochemistry International, 1984, 6, 737-750.	1.9	53
273	Opposing actions of an adenosine A2 receptor agonist and a GTP analogue on the regulation of dopamine D2 receptors in rat neostriatal membranes. European Journal of Pharmacology, 1993, 244, 311-315.	2.7	53
274	The concept of astrocyte-kinetic drug in the treatment of neurodegenerative diseases: Evidence for l-deprenyl-induced activation of reactive astrocytes. Neurochemistry International, 1994, 25, 17-22.	1.9	53
275	The Brain Renin-Angiotensin System: Molecular Mechanisms of Cell to Cell Interactions. Clinical and Experimental Hypertension, 1995, 17, 251-266.	0.5	53
276	Allosteric Modulation of Dopamine D2Receptors by Homocysteine. Journal of Proteome Research, 2006, 5, 3077-3083.	1.8	53
277	Molecular determinants of A _{2A} R–D ₂ R allosterism: role of the intracellular loop 3 of the D ₂ R. Journal of Neurochemistry, 2012, 123, 373-384.	2.1	53
278	Increased affinity of dopamine for D ₂ â€like versus D ₁ â€like receptors. Relevance for volume transmission in interpreting PET findings. Synapse, 2012, 66, 196-203.	0.6	53
279	Architectural Organization of the African Elephant Diencephalon and Brainstem. Brain, Behavior and Evolution, 2013, 82, 83-128.	0.9	53
280	Regional in vivo binding of [3H]N-propylnorapomorphine in the mouse brain. Evidence for labelling of central dopamine receptors. European Journal of Pharmacology, 1981, 72, 397-402.	1.7	52
281	Feeding and drinking responses to neuropeptide Y injections in the paraventricular hypothalamic nucleus of aged rats. Brain Research, 1992, 575, 265-271.	1.1	52
282	Long distance pathways of diffusion for dextran along fibre bundles in brain. Relevance for volume transmission. NeuroReport, 1995, 6, 1005-1009.	0.6	52
283	Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. Brain Research, 2005, 1033, 216-220.	1.1	52
284	Increase in A2A receptors in the nucleus accumbens after extended cocaine self-administration and its disappearance after cocaine withdrawal. Brain Research, 2007, 1143, 208-220.	1.1	52
285	Serotonin accumulation after monoamine oxidase inhibition. Biochemical Pharmacology, 1971, 20, 693-706.	2.0	51
286	Toluene-induced activation of certain hypothalamic and median eminence catecholamine nerve terminal systems of the male rat and its effects on anterior pituitary hormone secretion. Toxicology Letters, 1980, 5, 393-398.	0.4	51
287	Multiple D2 heteroreceptor complexes: new targets for treatment of schizophrenia. Therapeutic Advances in Psychopharmacology, 2016, 6, 77-94.	1.2	51
288	Effect of some drugs on central monoamine nerve terminals lacking nerve impulse flow. European Journal of Pharmacology, 1967, 1, 226-232.	1.7	50

#	Article	IF	CITATIONS
289	3H-kainic acid binding: Relevance for evaluating the neurotoxicity of kainic acid. Life Sciences, 1979, 24, 1471-1479.	2.0	50
290	Toluene and telencephalic dopamine: Selective reduction of amine turnover in discrete da nerve terminal systems of the anterior caudate nucleus by low concentrations of toluene. Toxicology Letters, 1982, 12, 115-123.	0.4	50
291	Antagonistic A2a/D2receptor interactions in the striatum as a basis for adenosine/dopamine interactions in the central nervous system. Drug Development Research, 1993, 28, 374-380.	1.4	50
292	5,7-DIHYDROXYTRYPTAMINE AS A TOOL TO STUDY THE FUNCTIONAL ROLE OF CENTRAL 5-HYDROXYTRYPTAMINE NEURONS. Annals of the New York Academy of Sciences, 1978, 305, 346-369.	1.8	49
293	Further evidence that methergoline is a central 5-hydroxytryptamine receptor blocking agent. Neuroscience Letters, 1978, 9, 195-200.	1.0	49
294	Compensatory bilateral changes in dopamine turnover after striatal kainate lesion. Nature, 1980, 283, 94-95.	13.7	49
295	Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the rock hyrax, Procavia capensis. Journal of Chemical Neuroanatomy, 2009, 38, 57-74.	1.0	49
296	The intercalated paracapsular islands as a module for integration of signals regulating anxiety in the amygdala. Brain Research, 2012, 1476, 211-234.	1.1	49
297	Effects of Longâ€Term Alcohol Drinking on the Dopamine D2 Receptor: Gene Expression and Heteroreceptor Complexes in the Striatum in Rats. Alcoholism: Clinical and Experimental Research, 2018, 42, 338-351.	1.4	49
298	Depletion of the Amine Stores in Brain Catecholamine Terminals on Amygdaloid Stimulation. Acta Physiologica Scandinavica, 1964, 62, 493-494.	2.3	48
299	Polyamines, Ornithine Decarboxylase, and Diamine Oxidase in the Substantia Nigra and Striatum of the Male Rat After Hemitransection. Journal of Neurochemistry, 1988, 51, 25-31.	2.1	48
300	Anxiolytic effects of intra-amygdaloid injection of the D1 antagonist SCH23390 in the rat. Neuroscience Letters, 2005, 377, 101-105.	1.0	48
301	Heteroreceptor Complexes and their Allosteric Receptor–Receptor Interactions as a Novel Biological Principle for Integration of Communication in the CNS: Targets for Drug Development. Neuropsychopharmacology, 2016, 41, 380-382.	2.8	48
302	Cocaine self-administration specifically increases A2AR-D2R and D2R-sigma1R heteroreceptor complexes in the rat nucleus accumbens shell. Relevance for cocaine use disorder. Pharmacology Biochemistry and Behavior, 2017, 155, 24-31.	1.3	48
303	Corticosterone increases FGF-2 (bFGF) immunoreactivity in the substantia nigra of the rat. NeuroReport, 1993, 4, 783-786.	0.6	47
304	Reduction of the monoamine stores in the terminals of bulbospinal neurones following stimulation in the medulla oblongata. Life Sciences, 1965, 4, 1207-1212.	2.0	46
305	Effects of Chronic Striatal Kainate Lesions on Some Dopaminergic Parameters and Enkephalin Immunoreactive Neurons in the Basal Ganglia. Journal of Neurochemistry, 1980, 34, 772-778.	2.1	46
306	New concepts on the structure of the neuronal networks: The miniaturization and hierarchical organization of the central nervous system*. Bioscience Reports, 1984, 4, 93-98.	1.1	46

#	Article	IF	CITATIONS
307	Chronic haloperidol affects striatal D2-dopamine receptor reappearance after irreversible receptor blockade. Brain Research, 1987, 435, 147-152.	1.1	46
308	On the role of glucocorticoid receptors in brain plasticity. Cellular and Molecular Neurobiology, 1996, 16, 239-258.	1.7	46
309	Phorbol ester induced changes in tight and adherens junctions in the choroid plexus epithelium and in the ependyma. Brain Research, 2000, 854, 197-206.	1.1	46
310	G-protein-coupled receptor heteromer dynamics. Journal of Cell Science, 2010, 123, 4215-4220.	1.2	46
311	Existence of Brain 5-HT1A–5-HT2A Isoreceptor Complexes with Antagonistic Allosteric Receptor–Receptor Interactions Regulating 5-HT1A Receptor Recognition. ACS Omega, 2017, 2, 4779-4789.	1.6	46
312	Failure of neuropeptide Y in vitro to increase the number of α ₂ â€adrenergic binding sites in membranes of medulla oblongata of the spontaneous hypertensive rat*. Acta Physiologica Scandinavica, 1983, 119, 309-312.	2.3	45
313	The semi-quantitative distribution and cellular localization of angiotensinogen mRNA in the rat brain. Journal of Chemical Neuroanatomy, 1992, 5, 245-262.	1.0	45
314	Photochemically induced focal cerebral ischemia in rat: time dependent and global increase in expression of basic fibroblast growth factor mRNA. Brain Research, 1993, 625, 45-56.	1.1	45
315	Indole-pyruvic acid, a tryptophan ketoanalogue, antagonizes the endocrine but not the behavioral effects of repeated stress in a model of depression. Biological Psychiatry, 1993, 33, 712-719.	0.7	45
316	The Distribution and Morphological Characteristics of Catecholaminergic Cells in the Diencephalon and Midbrain of the Bottlenose Dolphin <i>(Tursiops truncatus)</i> . Brain, Behavior and Evolution, 2004, 64, 42-60.	0.9	45
317	Determinations of catecholamine halfâ€lives and turnover rates in discrete catecholamine nerve terminal systems of the hypothalamus, the preoptic region and the forebrain by quantitative histofluorimetry. Acta Physiologica Scandinavica, 1985, 123, 411-426.	2.3	44
318	Cellular expression of angiotensin type-1 receptor mRNA in the kidney. Kidney International, 1993, 44, 331-336.	2.6	44
319	Experimental studies and theoretical aspects on A2A/D2 receptor interactions in a model of Parkinson's disease. Relevance for L-dopa induced dyskinesias. Journal of the Neurological Sciences, 2006, 248, 16-22.	0.3	44
320	Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers. Biochemical and Biophysical Research Communications, 2013, 435, 140-146.	1.0	44
321	Diversity and Bias through Receptorââ,¬â€œReceptor Interactions in GPCR Heteroreceptor Complexes. Focus on Examples from Dopamine D2 Receptor Heteromerization. Frontiers in Endocrinology, 2014, 5, 71.	1.5	44
322	Evidence for the existence of FGFR1–5-HT1A heteroreceptor complexes in the midbrain raphe 5-HT system. Biochemical and Biophysical Research Communications, 2015, 456, 489-493.	1.0	44
323	Understanding the Role of Adenosine A2AR Heteroreceptor Complexes in Neurodegeneration and Neuroinflammation. Frontiers in Neuroscience, 2018, 12, 43.	1.4	44
324	Dopamine and sexual behaviour in female rats. Effects of dopamine receptor agonists and sulpiride. Neuroscience Letters, 1977, 4, 209-213.	1.0	43

#	Article	IF	CITATIONS
325	Rat prolactin and hypothalamic catecholamine nerve terminal systems. Evidence for rapid and discrete increases in dopamine and noradrenaline turnover in the hypophysectomized male rat. European Journal of Pharmacology, 1981, 76, 261-265.	1.7	43
326	Cellular localization of angiotensin type 1 receptor and angiotensinogen mRNAs in the subfornical organ of the rat brain. Neuroscience Letters, 1993, 150, 153-158.	1.0	43
327	Differential Effects of Intrastriatal Neurotensin(1-13) and Neurotensin(8-13) on Striatal Dopamine and Pallidal GABA Release. A Dual-probe Microdialysis Study in the Awake Rat. European Journal of Neuroscience, 1997, 9, 1838-1846.	1.2	43
328	Intraventricular galanin modulates a 5-HT1A receptor-mediated behavioural response in the rat. European Journal of Neuroscience, 1998, 10, 1230-1240.	1.2	43
329	Determination of histamine in microdialysis samples from rat brain by microbore column liquid chromatography following intramolecular excimer-forming derivatization with pyrene-labeling reagent. Journal of Neuroscience Methods, 2003, 127, 11-17.	1.3	43
330	Biochemical Identification of the Dopamine D ₂ Receptor Domains Interacting With the Adenosine A _{2A} Receptor. Journal of Molecular Neuroscience, 2004, 24, 173-180.	1.1	43
331	New Methods to Evaluate Colocalization of Fluorophores in Immunocytochemical Preparations as Exemplified by a Study on A2A and D2 Receptors in Chinese Hamster Ovary Cells. Journal of Histochemistry and Cytochemistry, 2005, 53, 941-953.	1.3	43
332	Heterodimers and Receptor Mosaics of Different Types of G-Protein-Coupled Receptors. Physiology, 2008, 23, 322-332.	1.6	43
333	Fluorescence resonance energy transfer-based technologies in the study of protein–protein interactions at the cell surface. Methods, 2012, 57, 467-472.	1.9	43
334	Disruption of A2AR-D2R Heteroreceptor Complexes After A2AR Transmembrane 5 Peptide Administration Enhances Cocaine Self-Administration in Rats. Molecular Neurobiology, 2018, 55, 7038-7048.	1.9	43
335	Brain Dopamine Transmission in Health and Parkinson's Disease: Modulation of Synaptic Transmission and Plasticity Through Volume Transmission and Dopamine Heteroreceptors. Frontiers in Synaptic Neuroscience, 2018, 10, 20.	1.3	43
336	Effects of bromocriptine on 3H-spiroperidol binding sites in rat striatum. Evidence for actions of dopamine receptors not linked to adenylate cyclase. Life Sciences, 1978, 23, 465-469.	2.0	42
337	Basic fibroblast growth factor (bFGF, FGF-2) immunoreactivity exists in the noradrenaline, adrenaline and 5-HT nerve cells of the rat brain. Neuroscience Letters, 1993, 160, 171-176.	1.0	42
338	L-Deprenyl increases GFAP immunoreactivity selectively in activated astrocytes in rat brain. NeuroReport, 1993, 4, 955-958.	0.6	42
339	Intraventricular β-endorphin accumulates in DARPP-32 immunoreactive tanycytes. NeuroReport, 1993, 5, 265-268.	0.6	42
340	Evidence for volume transmission in the dopamine denervated neostriatum of the rat after a unilateral nigral 6-OHDA microinjection. Studies with systemic d-amphetamine treatment. Brain Research, 1994, 662, 11-24.	1.1	42
341	Computer-assisted mapping of basic fibroblast growth factor immunoreactive nerve cell populations in the rat brain. Journal of Chemical Neuroanatomy, 1996, 11, 13-35.	1.0	42
342	Trafficking of Adenosine A _{2A} and Dopamine D ₂ Receptors. Journal of Molecular Neuroscience, 2005, 25, 191-200.	1.1	42

#	Article	IF	CITATIONS
343	Choline acetyltransferase immunoreactive cortical interneurons do not occur in all rodents: A study of the phylogenetic occurrence of this neural characteristic. Journal of Chemical Neuroanatomy, 2006, 32, 208-216.	1.0	42
344	How Calmodulin Interacts with the Adenosine A _{2A} and the Dopamine D ₂ Receptors. Journal of Proteome Research, 2008, 7, 3428-3434.	1.8	42
345	Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. Journal of Neural Transmission, 2009, 116, 923-939.	1.4	42
346	A Role for Galanin N-Terminal Fragment (1–15) in Anxiety- and Depression-Related Behaviors in Rats. International Journal of Neuropsychopharmacology, 2015, 18, .	1.0	42
347	Functional role of striatal A2A, D2, and <scp>mG</scp> lu5 receptor interactions in regulating striatopallidal <scp>GABA</scp> neuronal transmission. Journal of Neurochemistry, 2016, 138, 254-264.	2.1	42
348	Signaling in dopamine D2 receptor-oxytocin receptor heterocomplexes and its relevance for the anxiolytic effects of dopamine and oxytocin interactions in the amygdala of the rat. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2075-2085.	1.8	42
349	Cholecystokinin-8 increases K+-evoked [3H]γ-aminobutyric acid release in slices from various brain areas. European Journal of Pharmacology, 1993, 250, 423-430.	1.7	41
350	Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brains of two species of African mole-rat. Journal of Chemical Neuroanatomy, 2008, 35, 371-387.	1.0	41
351	Galanin (1–15) enhances the antidepressant effects of the 5-HT1A receptor agonist 8-OH-DPAT: involvement of the raphe-hippocampal 5-HT neuron system. Brain Structure and Function, 2016, 221, 4491-4504.	1.2	41
352	On the role of receptor–receptor interactions and volume transmission in learning and memory. Brain Research Reviews, 2007, 55, 119-133.	9.1	40
353	Histochemical and Biochemical Observations on the Effect of Reserpine on Noradrenaline Storage in Vasoconstrictor Nerves. Acta Physiologica Scandinavica, 1964, 61, 121-129.	2.3	39
354	The effects of 5,7-dihydroxytryptamine-induced lesions of the ascending 5-hydroxytryptamine pathways on the sleep-wakefulness cycle. Brain Research, 1977, 131, 287-301.	1.1	39
355	Neurotensin increases endogenous glutamate release in the neostriatum of the awake rat. Synapse, 1995, 20, 362-364.	0.6	39
356	G-protein-coupled receptor type A heteromers as an emerging therapeutic target. Expert Opinion on Therapeutic Targets, 2015, 19, 265-283.	1.5	39
357	A2AR-D2R Heteroreceptor Complexes in Cocaine Reward and Addiction. Trends in Pharmacological Sciences, 2018, 39, 1008-1020.	4.0	39
358	Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication. Neural Regeneration Research, 2016, 11, 1220.	1.6	39
359	Benzodiazepines and barbiturates: Turnover changes in central 5-hydroxytryptamine pathways. European Journal of Pharmacology, 1974, 26, 35-40.	1.7	38
360	Dopamine receptors and ergot drugs. Evidence that an ergolene derivative is a differential agonist at subcortical limbic dopamine receptors. Brain Research, 1978, 146, 295-311.	1.1	38

#	Article	IF	CITATIONS
361	Effects of subacute treatment with toluene on central monoamine receptors in the rat. Reduced affinity in [3H]5-hydroxytryptamine binding sites and in [3H]spiperone binding sites linked to dopamine receptors. Toxicology Letters, 1983, 17, 275-281.	0.4	38
362	Rat growth hormone and hypothalamic catecholamine nerve termianl systems. Evidence for rapid and discrete reductions in dopamine and noradrenaline levels and turnover in the median eminenece of the hypophysectomized male rat. European Journal of Pharmacology, 1983, 95, 271-275.	1.7	38
363	On the regional distribution of heparan sulfate proteoglycan immunoreactivity in the rat brain. Brain Research, 1994, 636, 131-138.	1.1	38
364	Different classes of volume transmission signals exist in the central nervous system, and are affected by metabolic signals, temperature gradients, and pressure waves. NeuroReport, 1994, 6, 9-12.	0.6	38
365	Systemic oxytocin treatment modulates α2-adrenoceptors in telencephalic and diencephalic regions of the rat. Brain Research, 2000, 887, 421-425.	1.1	38
366	Modafinil enhances the increase of extracellular serotonin levels induced by the antidepressant drugs fluoxetine and imipramine: A dual probe microdialysis study in awake rat. Synapse, 2005, 55, 230-241.	0.6	38
367	Nuclear parcellation of certain immunohistochemically identifiable neuronal systems in the midbrain and pons of the Highveld molerat (Cryptomys hottentotus). Journal of Chemical Neuroanatomy, 2006, 31, 37-50.	1.0	38
368	Role of the amygdaloid cholecystokinin (CCK)/gastrinâ€2 receptors and terminal networks in the modulation of anxiety in the rat. Effects of CCKâ€4 and CCKâ€8S on anxietyâ€like behaviour and [³ H]GABA release. European Journal of Neuroscience, 2007, 26, 3614-3630.	1.2	38
369	Failure of dopamine to accumulate in central noradrenaline neurons after depletion with diethyldithiocarbamate. Journal of Pharmacy and Pharmacology, 2011, 19, 481-483.	1.2	38
370	Preferential activation by galanin 1–15 fragment of the GalR1 protomer of a GalR1–GalR2 heteroreceptor complex. Biochemical and Biophysical Research Communications, 2014, 452, 347-353.	1.0	38
371	The fast-off hypothesis revisited: A functional kinetic study of antipsychotic antagonism of the dopamine D2 receptor. European Neuropsychopharmacology, 2016, 26, 467-476.	0.3	38
372	FGFR1–5-HT1A Heteroreceptor Complexes: Implications for Understanding and Treating Major Depression. Trends in Neurosciences, 2016, 39, 5-15.	4.2	38
373	Receptor–Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment. Molecules, 2018, 23, 1341.	1.7	38
374	6-Hydroxytryptamine — a new tool in monoamine fluorescence histochemistry. Brain Research, 1969, 13, 190-195.	1.1	37
375	Morphometrical and microdensitometrical studies on peptide- and tyrosine hydroxylase-like immunoreactivities in the forebrain of rats prenatally exposed to methylazoxymethanol acetate. Developmental Brain Research, 1990, 51, 45-61.	2.1	37
376	Microinjections of subpicomolar amounts of NPY(13–36) into the nucleus tractus solitarius of the rat counteract the vasodepressor responses of NPY(1–36) and of a NPY Y1 receptor agonist. Brain Research, 1993, 621, 126-132.	1.1	37
377	Region-specific inhibition of potassium-evoked [3H]noradrenaline release from rat brain synaptosomes by neuropeptide Y-(13–36). Involvement of NPY receptors of the Y2 type. European Journal of Pharmacology, 1993, 230, 231-234.	1.7	37
378	Theory relating in vitro and in vivo microdialysis with one or two probes. Journal of Neurochemistry, 2002, 81, 108-121.	2.1	37

#	Article	IF	CITATIONS
379	Neurotensin receptors as modulators of glutamatergic transmission. Brain Research Reviews, 2008, 58, 365-373.	9.1	37
380	International Workshop at the Nobel Forum, Karolinska Institutet on G protein-coupled receptors: finding the words to describe monomers, oligomers, and their molecular mechanisms and defining their meaning. Can a consensus be reached?. Journal of Receptor and Signal Transduction Research, 2010, 30, 284-286.	1.3	37
381	Dopamine D2 heteroreceptor complexes and their receptor–receptor interactions in ventral striatum. Progress in Brain Research, 2014, 211, 113-139.	0.9	37
382	Cocaine self-administration differentially affects allosteric A2A-D2 receptor-receptor interactions in the striatum. Relevance for cocaine use disorder. Pharmacology Biochemistry and Behavior, 2016, 144, 85-91.	1.3	37
383	Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson's disease and its treatment. Journal of Neural Transmission, 2019, 126, 455-471.	1.4	37
384	Neurotensin-induced modulation of dopamine D2 receptors and their function in rat striatum: Counteraction by a NTR1-like receptor antagonist. NeuroReport, 2002, 13, 763-766.	0.6	36
385	Understanding neuronal molecular networks builds on neuronal cellular network architecture. Brain Research Reviews, 2008, 58, 379-399.	9.1	36
386	Neurotensin: A role in substance use disorder?. Journal of Psychopharmacology, 2016, 30, 112-127.	2.0	36
387	Potentiation of cannabinoid signaling in microglia by adenosine A 2A receptor antagonists. Clia, 2019, 67, 2410-2423.	2.5	36
388	Histochemical and biochemical detection of monoamine release from brain neurons. Life Sciences, 1965, 4, 809-816.	2.0	35
389	Possible mechanism of the hypotensive action of 2,6-dichlorobenzylidene aminoguanidine: Evidence for central noradrenaline receptor stimulation. European Journal of Pharmacology, 1973, 23, 175-182.	1.7	35
390	Evidence for an exclusive localization of 3H-ADTN binding sites to postsynaptic nerve cells in the striatum of the rat. European Journal of Pharmacology, 1979, 58, 515-517.	1.7	35
391	Intraventricular galanin produces a timedependent modulation of 5-HT1A receptors in the dorsal raphe of the rat. NeuroReport, 2000, 11, 3943-3948.	0.6	35
392	Quantitative dual-probe microdialysis: evaluation of [3H]mannitol diffusion in agar and rat striatum. Journal of Neurochemistry, 2002, 81, 80-93.	2.1	35
393	Computer-Assisted Image Analysis of Caveolin-1 Involvement in the Internalization Process of Adenosine A _{2A} –Dopamine D ₂ Receptor Heterodimers. Journal of Molecular Neuroscience, 2005, 26, 177-184.	1.1	35
394	Kinetic and functional properties of [3H]ZM241385, a high affinity antagonist for adenosine A2A receptors. Life Sciences, 2005, 76, 1513-1526.	2.0	35
395	Uncoupling protein-2 promotes nigrostriatal dopamine neuronal function. European Journal of Neuroscience, 2006, 24, 32-36.	1.2	35
396	Regulation of DARPP-32 phosphorylation by Δ9-tetrahydrocannabinol. Neuropharmacology, 2008, 54, 31-35.	2.0	35

#	Article	IF	CITATIONS
397	Organization and number of orexinergic neurons in the hypothalamus of two species of Cetartiodactyla: A comparison of giraffe (Giraffa camelopardalis) and harbour porpoise (Phocoena) Tj ETQq1	10.78 48 14 r	gB B \$Overloc
398	Basimglurant for treatment of major depressive disorder: a novel negative allosteric modulator of metabotropic glutamate receptor 5. Expert Opinion on Investigational Drugs, 2015, 24, 1247-1260.	1.9	35
399	Galanin and 5-HT1A Receptor Interactions as an Integrative Mechanism in 5-HT Neurotransmission in the Braina. Annals of the New York Academy of Sciences, 1996, 780, 193-212.	1.8	34
400	The nicotinic acetylcholine receptor agonist (±)-epibatidine increases FGF-2 mRNA and protein levels in the rat brain. Molecular Brain Research, 1999, 74, 98-110.	2.5	34
401	Neurotensin Enhances Endogenous Extracellular Glutamate Levels in Primary Cultures of Rat Cortical Neurons: Involvement of Neurotensin Receptor in NMDA Induced Excitotoxicity. Cerebral Cortex, 2004, 14, 466-473.	1.6	34
402	Detection of β-endorphin in the cerebrospinal fluid after intrastriatal microinjection into the rat brain. Brain Research, 2005, 1041, 167-180.	1.1	34
403	On the role of the extracellular space on the holistic behavior of the brain. Reviews in the Neurosciences, 2015, 26, 489-506.	1.4	34
404	Adrenergic Mechanisms in the Pupillary Lightâ€Reflex Path. Acta Physiologica Scandinavica, 1964, 62, 119-124.	2.3	33
405	Adrenergic Innervation of the Bronchial Muscle of the Cat. Acta Physiologica Scandinavica, 1966, 66, 507-508.	2.3	33
406	Prolonged effects of intraventricular galanin on a 5-hydroxytryptamine1A receptor mediated function in the rat. Neuroscience Letters, 2001, 299, 145-149.	1.0	33
407	Effects of cocaine selfâ€administration and extinction on D ₂ â€kike and A _{2A} receptor recognition and D ₂ â€kike/G _i protein coupling in rat striatum. Addiction Biology, 2013, 18, 455-466.	1.4	33
408	On the role of A2A and D2 receptors in control of cocaine and food-seeking behaviors in rats. Psychopharmacology, 2015, 232, 1767-1778.	1.5	33
409	On the role of adenosine (A)2A receptors in cocaine-induced reward: a pharmacological and neurochemical analysis in rats. Psychopharmacology, 2015, 232, 421-435.	1.5	33
410	Enhancement of the FGFR1 signaling in the FGFR1-5-HT1A heteroreceptor complex in midbrain raphe 5-HT neuron systems. Relevance for neuroplasticity and depression. Biochemical and Biophysical Research Communications, 2015, 463, 180-186.	1.0	33
411	Galanin (1-15) enhancement of the behavioral effects of Fluoxetine in the forced swimming test gives a new therapeutic strategy against depression. Neuropharmacology, 2017, 118, 233-241.	2.0	33
412	Vasopressor effects of substance P and C-terminal sequences after intracisternal injection to α-chloralose-anaesthetized rats: Blockade by a substance P antagonist. European Journal of Pharmacology, 1982, 77, 171-176.	1.7	32
413	Effects of acute intermittent exposure to cigarette smoke on catecholamine levels and turnover in various types of hypothalamic DA and NA nerve terminal systems as well as on the secretion of adenohypophyseal hormones and corticosterone. Acta Physiologica Scandinavica, 1985, 124, 277-285.	2.3	32
414	Studies on the relationship of tyrosine hydroxylase, dopamine and cyclic amp-regulated phosphoprotein-32 immunoreactive neuronal structures and d1 receptor antagonist binding sites in various brain regions of the male rat—mismatches indicate a role of d1 receptors in volume transmission. Neurochemistry International, 1988, 13, 179-197.	1.9	32

#	Article	IF	CITATIONS
415	Chronic haloperidol treatment leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. Psychopharmacology, 1994, 116, 279-284.	1.5	32
416	Intracisternally injected galanin-(1–15) modulates the cardiovascular responses of galanin-(1–29) and the 5-HT1A receptor agonist 8-OH-DPAT. European Journal of Pharmacology, 1994, 257, 257-265.	1.7	32
417	Cholecystokinin/dopamine/GABA interactions in the nucleus accumbens: biochemical and functional correlates. Peptides, 2001, 22, 1229-1234.	1.2	32
418	Group I mGluR antagonist AIDA protects nigral DA cells from MPTP-induced injury. NeuroReport, 2001, 12, 2615-2617.	0.6	32
419	Neuroprotective effect of L-DOPA co-administered with the adenosine A2A receptor agonist CGS 21680 in an animal model of Parkinson's disease. Brain Research Bulletin, 2004, 64, 155-164.	1.4	32
420	Distribution and morphology of catecholaminergic and serotonergic neurons in the brain of the high velocity of the	1.0	32
421	Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the Cape porcupine (Hystrix africaeaustralis): Increased brain size does not lead to increased organizational complexity. Journal of Chemical Neuroanatomy, 2008, 36, 33-52.	1.0	32
422	Nuclear organization of cholinergic, putative catecholaminergic and serotonergic nuclei in the brain of the eastern rock elephant shrew, Elephantulus myurus. Journal of Chemical Neuroanatomy, 2010, 39, 175-188.	1.0	32
423	Effects of intracerebral injections of 6-hydroxydopamine on sleep and waking in the rat. Journal of Pharmacy and Pharmacology, 2011, 25, 84-87.	1.2	32
424	In Vitro Effects of Cocaine on Tunneling Nanotube Formation and Extracellular Vesicle Release in Glioblastoma Cell Cultures. Journal of Molecular Neuroscience, 2015, 55, 42-50.	1.1	32
425	Subpicomolar amounts of NPY(13–36) injected into the nucleus tractus solitarius of the rat counteract the cardiovascular responses to l-glutamate. Neuroscience Letters, 1993, 151, 182-186.	1.0	31
426	Chronic nicotine treatment counteracts dopamine D2 receptor upregulation induced by a partial meso-diencephalic hemitransection in the rat. Brain Research, 1994, 655, 25-32.	1.1	31
427	Homocysteine Potentiates Seizures and Cell Loss Induced by Pilocarpine Treatment. NeuroMolecular Medicine, 2010, 12, 248-259.	1.8	31
428	Agonist-specific voltage sensitivity at the dopamine D2S receptor – Molecular determinants and relevance to therapeutic ligands. Neuropharmacology, 2011, 61, 937-949.	2.0	31
429	Dynamic modulation of FGFR1–5-HT1A heteroreceptor complexes. Agonist treatment enhances participation of FGFR1 and 5-HT1A homodimers and recruitment of β-arrestin2. Biochemical and Biophysical Research Communications, 2013, 441, 387-392.	1.0	31
430	Glutamate heteroreceptor complexes in the brain. Pharmacological Reports, 2018, 70, 936-950.	1.5	31
431	CHARACTERISATION, LOCALISATION AND REGULATION OF CATECHOLAMINE SYNTHESIZING ENZYMES. , 1973, , 69-78.		31
432	Receptor-receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory. Neuroscience Discovery, 2014, 2, 6.	0.6	31

#	Article	IF	CITATIONS
433	Pertussis toxin treatment counteracts intramembrane interactions between neuropeptide Y receptors and α2-adrenoceptors. European Journal of Pharmacology, 1989, 172, 435-441.	2.7	30
434	Stimulation of adenosine A1receptors attenuates dopamine D1receptor-mediated increase of NGFI-A, c-fos and jun-B mRNA levels in the dopamine-denervated striatum and dopamine D1receptor-mediated turning behaviour. European Journal of Neuroscience, 1999, 11, 3884-3892.	1.2	30
435	On the Molecular Basis of the Receptor Mosaic Hypothesis of the Engram. Cellular and Molecular Neurobiology, 2004, 24, 501-516.	1.7	30
436	One century of progress in neuroscience founded on Golgi and Cajal's outstanding experimental and theoretical contributions. Brain Research Reviews, 2007, 55, 167-189.	9.1	30
437	On the expanding terminology in the GPCR field: The meaning of receptor mosaics and receptor heteromers. Journal of Receptor and Signal Transduction Research, 2010, 30, 287-303.	1.3	30
438	An integrated view on the role of receptor mosaics at perisynaptic level: focus on adenosine A _{2A} , dopamine D ₂ , cannabinoid CB ₁ , and metabotropic glutamate mGlu ₅ receptors. Journal of Receptor and Signal Transduction Research, 2010, 30, 355-369.	1.3	30
439	Dopamine D ₄ receptor oligomerization – contribution to receptor biogenesis. FEBS Journal, 2011, 278, 1333-1344.	2.2	30
440	G protein-coupled receptor oligomerization and brain integration: Focus on adenosinergic transmission. Brain Research, 2012, 1476, 86-95.	1.1	30
441	The impact of receptor–receptor interactions in heteroreceptor complexes on brain plasticity. Expert Review of Neurotherapeutics, 2014, 14, 719-721.	1.4	30
442	Neuroglobin as a regulator of mitochondrial-dependent apoptosis: A bioinformatics analysis. International Journal of Molecular Medicine, 2014, 33, 111-116.	1.8	30
443	The zinc binding receptor GPR39 interacts with 5-HT1A and GalR1 to form dynamic heteroreceptor complexes with signaling diversity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2585-2592.	1.8	30
444	Oligomeric Receptor Complexes and Their Allosteric Receptor-Receptor Interactions in the Plasma Membrane Represent a New Biological Principle for Integration of Signals in the CNS. Frontiers in Molecular Neuroscience, 2019, 12, 230.	1.4	30
445	Depletion of noradrenaline in brainstem neurons during sham rage behaviour produced by acute brainstem transection in cat. Brain Research, 1968, 7, 448-451.	1.1	29
446	Involvement of cholinergic nicotine-like receptors as modulators of amine turnover in various types of hypothalamic dopamine and noradrenaline nerve terminal systems and of prolactin, LH, FSH and TSH secretion in the castrated male rat. Acta Physiologica Scandinavica, 1982, 116, 41-50.	2.3	29
447	Immobilization stressâ€induced changes in discrete hypothalamic catecholamine levels and turnover, their modulation by nicotine and relationship to neuroendocrine function. Acta Physiologica Scandinavica, 1983, 117, 421-426.	2.3	29
448	l-glutamate reduces the affinity of [3H]N-propylnorapomorphine binding sites in striatal membranes. European Journal of Pharmacology, 1984, 100, 127-130.	1.7	29
449	Neurotensin reduces the affinity of dopamine D2 receptors in membranes from post mortem human caudate-putamen. Neuroscience Letters, 1990, 109, 325-330.	1.0	29
450	Age-related alteration of the adenosine/dopamine balance in the rat striatum. Brain Research, 1998, 795, 297-300.	1.1	29

#	Article	IF	CITATIONS
451	Effects of the vigilance promoting drug modafinil on the synthesis of GABA and glutamate in slices of rat hypothalamus. Neuroscience Letters, 1999, 259, 181-185.	1.0	29
452	Voltageâ€dependence of the human dopamine D ₂ receptor. Synapse, 2008, 62, 476-480.	0.6	29
453	Distribution and morphology of putative catecholaminergic and serotonergic neurons in the brain of the greater canerat, Thryonomys swinderianus. Journal of Chemical Neuroanatomy, 2008, 35, 108-122.	1.0	29
454	Organization of cholinergic, putative catecholaminergic and serotonergic nuclei in the diencephalon, mibrain and pons of sub-adult male giraffes. Journal of Chemical Neuroanatomy, 2010, 39, 189-203.	1.0	29
455	Editorial (Thematic Issue: Understanding the Role of Heteroreceptor Complexes in the Central) Tj ETQq1 1 0.78	34314.rgBT 0.7	Oyerlock 10
456	Striatal adenosine–cannabinoid receptor interactions in rats overâ€expressing adenosine A _{2A} receptors. Journal of Neurochemistry, 2016, 136, 907-917.	2.1	29
457	Evidence for a selective reduction of adrenaline turnover in the dorsal midline area of the caudal medulla oblongata of young spontaneous hypertensive rats. Acta Physiologica Scandinavica, 1979, 107, 397-399.	2.3	28
458	Increase of basic fibroblast growth factor (bFGF, FGF-2) messenger RNA and protein following implantation of a microdialysis probe into rat hippocampus. Experimental Brain Research, 1994, 98, 229-37.	0.7	28
459	Modafinil prevents glutamate cytotoxicity in cultured cortical neurons. NeuroReport, 1998, 9, 4209-4213.	0.6	28
460	How Proteins Come Together in the Plasma Membrane and Function in Macromolecular Assemblies: Focus on Receptor Mosaics. Journal of Molecular Neuroscience, 2005, 26, 133-154.	1.1	28
461	Neurotensin Receptor Involvement in the Rise of Extracellular Glutamate Levels and Apoptotic Nerve Cell Death in Primary Cortical Cultures after Oxygen and Glucose Deprivation. Cerebral Cortex, 2008, 18, 1748-1757.	1.6	28
462	A Novel Mechanism of Cocaine to Enhance Dopamine D2-Like Receptor Mediated Neurochemical and Behavioral Effects. An In Vivo and In Vitro Study. Neuropsychopharmacology, 2012, 37, 1856-1866.	2.8	28
463	Understanding the Functional Plasticity in Neural Networks of the Basal Ganglia in Cocaine Use Disorder: A Role for Allosteric Receptor-Receptor Interactions in A2A-D2 Heteroreceptor Complexes. Neural Plasticity, 2016, 2016, 1-12.	1.0	28
464	In Situ Proximity Ligation Assay to Study and Understand the Distribution and Balance of GPCR Homo- and Heteroreceptor Complexes in the Brain. Neuromethods, 2016, , 109-124.	0.2	28
465	Antiparkinsonian drugs and central dopamine neurons. Life Sciences, 1970, 9, 811-824.	2.0	27
466	Effects of Chronic Exposure to Cigarette Smoke on Amine Levels and Turnover in Various Hypothalamic Catecholamine Nerve Terminal Systems and on the Secretion of Pituitary Hormones in the Male Rat. Neuroendocrinology, 1985, 41, 462-466.	1.2	27
467	Ganglioside GM1 treatment prevents the effects of subacute exposure to toluene on binding characteristics in rat striatal membranes. Neuroscience Letters, 1987, 82, 181-184.	1.0	27
468	Dopamine D1 receptors are involved in the modulation of D2 receptors induced by cholecystokinin receptor subtypes in rat neostriatal membranes. Brain Research, 1994, 650, 289-298.	1.1	27

#	Article	IF	CITATIONS
469	Antagonistic regulation of α2-adrenoceptors by neuropeptide Y receptor subtypes in the nucleus tractus solitarii. European Journal of Pharmacology, 1994, 271, 201-212.	1.7	27
470	Galanin/alpha2-receptor interactions in central cardiovascular control. Neuropharmacology, 2000, 39, 1377-1385.	2.0	27
471	Nuclear organization of cholinergic, putative catecholaminergic, serotonergic and orexinergic systems in the brain of the African pygmy mouse (Mus minutoides): Organizational complexity is preserved in small brains. Journal of Chemical Neuroanatomy, 2012, 44, 45-56.	1.0	27
472	Participation of Central Monoamine Neurons in the Regulation of Anterior Pituitary Function with Special Regard to the Neuro-Endocrine Role of Tubero-Infundibular Dopamine Neurons. , 1970, , 192-205.		27
473	Studies on the Mechanism of Action of Substituted Benzamide Drugs. Acta Psychiatrica Scandinavica, 1984, 69, 125-137.	2.2	26
474	Chronic imipramine treatment reduces (+)2-[1251]iodolysergic acid, diethylamide but not 1251-neuropeptide Y binding in layer IV of rat cerebral cortex. Neuroscience Letters, 1987, 75, 152-156.	1.0	26
475	Chronic continuous nicotine treatment causes decreased burst firing of nigral dopamine neurons in rats partially hemitransected at the meso-diencephalic junction. Brain Research, 1991, 562, 347-351.	1.1	26
476	Neurotensin and cholecystokinin octapeptide control synergistically dopamine release and dopamine D2 receptor affinity in rat neostriatum. European Journal of Pharmacology, 1993, 230, 159-166.	1.7	26
477	Kinetic evidence for isomerization of the dopamine receptor-raclopride complex. Neurochemistry International, 1996, 28, 591-595.	1.9	26
478	The nicotinic acetylcholine receptor agonist ABT-594 increases FGF-2 expression in various rat brain regions. NeuroReport, 1999, 10, 3909-3913.	0.6	26
479	Galanin-(1-16) modulates 5-HTIA receptors in the ventral limbic cortex of the rat. NeuroReport, 2000, 11, 515-519.	0.6	26
480	Nicotine-induced FGF-2 mRNA in rat brain is preserved during aging. Neurobiology of Aging, 2004, 25, 1333-1342.	1.5	26
481	Oxytocin increases the density of high affinity α2-adrenoceptors within the hypothalamus, the amygdala and the nucleus of the solitary tract in ovariectomized rats. Brain Research, 2005, 1049, 234-239.	1.1	26
482	Nicotine-induced fibroblast growth factor-2 restores the age-related decline of precursor cell proliferation in the subventricular zone of rat brain. Brain Research, 2008, 1193, 12-24.	1.1	26
483	Distribution of orexin-A immunoreactive neurons and their terminal networks in the brain of the rock hyrax, Procavia capensis. Journal of Chemical Neuroanatomy, 2011, 41, 86-96.	1.0	26
484	Extrasynaptic Neurotransmission as a Way of Modulating Neuronal Functions. Frontiers in Physiology, 2012, 3, 16.	1.3	26
485	Galanin receptor 2-neuropeptide YY1 receptor interactions in the amygdala lead to increased anxiolytic actions. Brain Structure and Function, 2015, 220, 2289-2301.	1.2	26
486	Telocytes in their context with other intercellular communication agents. Seminars in Cell and Developmental Biology, 2016, 55, 9-13.	2.3	26

#	Article	IF	CITATIONS
487	The neuropeptides Galanin and Galanin(1–15) in depression-like behaviours. Neuropeptides, 2017, 64, 39-45.	0.9	26
488	Diversity and bias through dopamine D2R heteroreceptor complexes. Current Opinion in Pharmacology, 2017, 32, 16-22.	1.7	26
489	On the Role of the Balance of GPCR Homo/ Heteroreceptor Complexes in the Brain. Journal of Advanced Neuroscience Research, 2015, 2, 36-44.	0.2	26
490	Evidence for differential localization of angiotensinâ€l converting enzyme and renin in the corpus striatum of rat. Acta Physiologica Scandinavica, 1980, 110, 321-323.	2.3	25
491	Intramembrane receptor-receptor interactions: integration of signal transduction pathways in the nervous system. Neurochemistry International, 1993, 22, 213-222.	1.9	25
492	Partners for Adenosine A ₁ Receptors. Journal of Molecular Neuroscience, 2005, 26, 221-232.	1.1	25
493	Nanomolar concentrations of cocaine enhance D2-like agonist-induced inhibition of the K+-evoked [3H]-dopamine efflux from rat striatal synaptosomes: a novel action of cocaine. Journal of Neural Transmission, 2010, 117, 593-597.	1.4	25
494	Chronic A2A antagonist treatment alleviates parkinsonian locomotor deficiency in MitoPark mice. Neurobiology of Disease, 2010, 40, 460-466.	2.1	25
495	Cocaine produces D2R-mediated conformational changes in the adenosine A2AR-dopamine D2R heteromer. Biochemical and Biophysical Research Communications, 2010, 394, 988-992.	1.0	25
496	Central Nervous System and Computation. Quarterly Review of Biology, 2011, 86, 265-285.	0.0	25
497	Muscarinic receptor family interacting proteins: Role in receptor function. Journal of Neuroscience Methods, 2011, 195, 161-169.	1.3	25
498	Classic and Modern Meridian Studies: A Review of Low Hydraulic Resistance Channels along Meridians and Their Relevance for Therapeutic Effects in Traditional Chinese Medicine. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-14.	0.5	25
499	Role of iso-receptors in receptor-receptor interactions with a focus on dopamine iso-receptor complexes. Reviews in the Neurosciences, 2016, 27, 1-25.	1.4	25
500	BEHAVIOURAL EFFECTS OF ERGOT DRUGS. , 1979, , 187-205.		25
501	Dopamine receptor agonists in brain research and as therapeutic agents. Trends in Neurosciences, 1979, 2, 1-4.	4.2	24
502	Dopamine D4 receptor activation decreases the expression of μ-opioid receptors in the rat striatum. Journal of Comparative Neurology, 2007, 502, 358-366.	0.9	24
503	Mesolimbic dopamine and cortico-accumbens glutamate afferents as major targets for the regulation of the ventral striato-pallidal GABA pathways by neurotensin peptides. Brain Research Reviews, 2007, 55, 144-154.	9.1	24
504	Nuclear organization of cholinergic, catecholaminergic, serotonergic and orexinergic systems in the brain of the Tasmanian devil (Sarcophilus harrisii). Journal of Chemical Neuroanatomy, 2014, 61-62, 94-106.	1.0	24

#	Article	IF	CITATIONS
505	Dopamine D ₄ receptor stimulation prevents nigrostriatal dopamine pathway activation by morphine: relevance for drug addiction. Addiction Biology, 2017, 22, 1232-1245.	1.4	24
506	Reduction of adrenaline turnover in cardiovascular areas of rat medulla oblongata by clonidine. Acta Physiologica Scandinavica, 1979, 107, 177-179.	2.3	23
507	Rapid and discrete changes in hypothalamic catecholamine nerve terminal systems induced by audiogenic stress, and their modulation by nicotine — Relationship to neuroendocrine function. European Journal of Pharmacology, 1983, 91, 49-56.	1.7	23
508	Colocalization of Fos- and Glucocorticoid Receptor-Like Immunoreactivities in the Rat Amygdaloid Complex After Immobilization Stress. Journal of Neuroendocrinology, 1992, 4, 547-555.	1.2	23
509	On the plasticity of the cerebellar renin-angiotensin system: localization of components and effects of mechanical perturbation. Brain Research, 1994, 668, 144-159.	1.1	23
510	Evidence for an antagonitic angiotensin II/α2-adrenoceptor interaction in the nucleus tractus solitarii. European Journal of Pharmacology, 1994, 262, 271-282.	1.7	23
511	On the relationship of 5-hydroxytryptamine neurons to 5-hydroxytryptamine 2A receptor-immunoreactive neuronal processes in the brain stem of rats. A double immunolabelling analysis. NeuroReport, 1998, 9, 2505-2511.	0.6	23
512	Quantitative dual-probe microdialysis: mathematical modelâ€`and analysis. Journal of Neurochemistry, 2002, 81, 94-107.	2.1	23
513	Voltage-sensitivity at the human dopamine D2S receptor is agonist-specific. Biochemical and Biophysical Research Communications, 2008, 377, 1216-1221.	1.0	23
514	Differential Sensitivity of A2A and Especially D2 Receptor Trafficking to Cocaine Compared with Lipid Rafts in Cotransfected CHO Cell Lines. Novel Actions of Cocaine Independent of the DA Transporter. Journal of Molecular Neuroscience, 2010, 41, 347-357.	1.1	23
515	Neurochemical Modulation of Central Cardiovascular Control: The Integrative Role of Galanin. Exs, 2010, 102, 113-131.	1.4	23
516	Distribution of orexinergic neurons and their terminal networks in the brains of two species of African mole rats. Journal of Chemical Neuroanatomy, 2011, 41, 32-42.	1.0	23
517	Neuronal correlates to consciousness. The "Hall of Mirrors―metaphor describing consciousness as an epiphenomenon of multiple dynamic mosaics of cortical functional modules. Brain Research, 2012, 1476, 3-21.	1.1	23
518	Mechanisms of noradrenaline and 5-hydroxytryptamine disappearance induced by α-methyl-dopa and α-methyl-metatyrosine. European Journal of Pharmacology, 1969, 8, 302-309.	1.7	22
519	Somatostatin-induced apnea: Interaction with hypoxia and hypercapnea in the rat. Neuroscience Letters, 1984, 50, 37-42.	1.0	22
520	Autoradiographic evidence for a bradykinin/angiotensin II receptor-receptor interaction in the rat brain. Neuroscience Letters, 1993, 163, 58-62.	1.0	22
521	Adrenalectomy alters discrete galanin mRNA levels in the hypothalamus and mesencephalon of the rat. Neuroscience Letters, 1994, 170, 77-82.	1.0	22
522	A brief appraisal on some aspects of the receptor-receptor interaction. Neurochemistry International, 1995, 27, 139-146.	1.9	22

#	Article	IF	CITATIONS
523	Presynaptic A2-adrenoceptors and neuropeptide Y Y2 receptors inhibit [3H]noradrenaline release from rat hypothalamic synaptosomes via different mechanisms. Neuroscience Letters, 1995, 188, 9-12.	1.0	22
524	Wiring and Volume Transmission in Rat Amygdala. Implications for Fear and Anxiety. Neurochemical Research, 2008, 33, 1618-1633.	1.6	22
525	G protein-coupled receptor oligomerization for what?. Journal of Receptor and Signal Transduction Research, 2010, 30, 322-330.	1.3	22
526	Agonist-induced formation of FGFR1 homodimers and signaling differ among members of the FGF family. Biochemical and Biophysical Research Communications, 2011, 409, 764-768.	1.0	22
527	Effect of acute and continuous morphine treatment on transcription factor expression in subregions of the rat caudate putamen. Marked modulation by D4 receptor activation. Brain Research, 2011, 1407, 47-61.	1.1	22
528	Information handling by the brain: proposal of a new "paradigm―involving the roamer type of volume transmission and the tunneling nanotube type of wiring transmission. Journal of Neural Transmission, 2014, 121, 1431-1449.	1.4	22
529	Attenuation of Oxytocin and Serotonin 2A Receptor Signaling through Novel Heteroreceptor Formation. ACS Chemical Neuroscience, 2019, 10, 3225-3240.	1.7	22
530	Influence of Central Catecholamines on LHRH-Containing Pathways. Clinics in Obstetrics and Gynaecology, 1978, 5, 251-269.	0.5	22
531	Neurotensin NTS1-Dopamine D2 Receptor-Receptor Interactions in Putative Receptor Heteromers: Relevance for Parkinson's Disease and Schizophrenia. Current Protein and Peptide Science, 2014, 15, 681-690.	0.7	22
532	5-Hydroxytryptamine neurons and the sleep-wakefulness cycle. Effects of methergoline and zimelidine. Neuroscience Letters, 1978, 8, 55-58.	1.0	21
533	Strongly glucocorticoid receptor immunoreactive neurons in the neonatal rat brain. NeuroReport, 1991, 2, 85-88.	0.6	21
534	6-Hydroxy-dopamine treatment counteracts the reduction of cortical GABA release produced by the vigilance promoting drug modafinil in the awake freely moving guinea-pig. Neuroscience Letters, 1994, 171, 201-204.	1.0	21
535	Neuropharmacology of the adenosine A2A receptors. Drug Development Research, 1996, 39, 450-460.	1.4	21
536	Adenosine as a volume transmission signal. A feedback detector of neuronal activation. Progress in Brain Research, 2000, 125, 353-361.	0.9	21
537	OnÂtheÂNestedÂHierarchicalÂOrganizationÂofÂCNS: Basic Characteristics of Neuronal Molecular Networks. Lecture Notes in Computer Science, 2004, , 24-54.	1.0	21
538	Motor response to amphetamine treatment, task-specific training, and limited motor experience in a postacute animal stroke model. Experimental Neurology, 2004, 190, 102-108.	2.0	21
539	Existence and Theoretical Aspects of Homomeric and Heteromeric Dopamine Receptor Complexes and Their Relevance for Neurological Diseases. NeuroMolecular Medicine, 2005, 7, 061-078.	1.8	21
540	Distribution and morphology of putative catecholaminergic and serotonergic neurons in the medulla oblongata of a sub-adult giraffe, Giraffa camelopardalis. Journal of Chemical Neuroanatomy, 2007, 34, 69-79.	1.0	21

#	Article	IF	CITATIONS
541	The M5 muscarinic acetylcholine receptor third intracellular loop regulates receptor function and oligomerization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 813-825.	1.9	21
542	FGF-2/FGFR1 neurotrophic system expression level and its basal activation do not account for the age-dependent decline of precursor cell proliferation in the subventricular zone of rat brain. Brain Research, 2010, 1358, 39-45.	1.1	21
543	Galanin receptor/Neuropeptide Y receptor interactions in the dorsal raphe nucleus of the rat. Neuropharmacology, 2011, 61, 80-86.	2.0	21
544	Possible genetic and epigenetic links between human inner speech, schizophrenia and altruism. Brain Research, 2012, 1476, 38-57.	1.1	21
545	Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the dentate gyrus are related with antidepressant-like effects. Brain Structure and Function, 2016, 221, 4129-4139.	1.2	21
546	Cocaine modulates allosteric D2-Ï f 1 receptor-receptor interactions on dopamine and glutamate nerve terminals from rat striatum. Cellular Signalling, 2017, 40, 116-124.	1.7	21
547	Somatostatin induced apnoea: prevention by central and peripheral administration of the opiate receptor blocking agent naloxone. Acta Physiologica Scandinavica, 1985, 125, 91-95.	2.3	20
548	Involvement of D1 Dopamine Receptors in the Nicotine-Induced Neuro-Endocrine Effects and Depletion of Diencephalic Catecholamine Stores in the Male Rat. Neuroendocrinology, 1988, 48, 188-200.	1.2	20
549	Strong effects of NT/NN peptides on DA D2 receptors in rat neostriatal sections. NeuroReport, 1994, 5, 1621-1624.	0.6	20
550	Regulation of dopamine D2 receptor affinity by cholecystokinin octapeptide in fibroblast cells contransfected with human CCKB and D2L receptor cDNAs. Molecular Brain Research, 1996, 36, 292-299.	2.5	20
551	Stimulation of adenosine A1 receptors prevents the EEG arousal due to dopamine D1 receptor activation in rabbits. European Journal of Pharmacology, 1996, 305, 123-126.	1.7	20
552	Codistribution of the dopamine D3 receptor and glucocorticoid receptor mRNAs during striatal prenatal development in the rat. Neuroscience Letters, 1997, 227, 119-122.	1.0	20
553	Subchronic haloperidol increases CB1 receptor binding and G protein coupling in discrete regions of the basal ganglia. Journal of Neuroscience Research, 2005, 82, 264-272.	1.3	20
554	Differential voltage-sensitivity of D2-like dopamine receptors. Biochemical and Biophysical Research Communications, 2008, 374, 496-501.	1.0	20
555	GABAA ϕreceptor mechanisms in the rat amygdala and its role in the modulation of fear and anxiety. Psychopharmacology, 2010, 212, 475-484.	1.5	20
556	Impaired M ₃ Muscarinic Acetylcholine Receptor Signal Transduction Through Blockade of Binding of Multiple Proteins to its Third Intracellular Loop. Cellular Physiology and Biochemistry, 2010, 25, 397-408.	1.1	20
557	Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms. Journal of Receptor and Signal Transduction Research, 2011, 31, 315-331.	1.3	20
558	Adenosine (A)2A receptor modulation of nicotine-induced locomotor sensitization. A pharmacological and transgenic approach. Neuropharmacology, 2014, 81, 318-326.	2.0	20

#	Article	IF	CITATIONS
559	Disturbances in the FGFR1-5-HT1A Heteroreceptor Complexes in the Raphe-Hippocampal 5-HT System Develop in a Genetic Rat Model of Depression. Frontiers in Cellular Neuroscience, 2017, 11, 309.	1.8	20
560	Existence of FGFR1-5-HT1AR heteroreceptor complexes in hippocampal astrocytes. Putative link to 5-HT and FGF2 modulation of hippocampal gamma oscillations. Neuropharmacology, 2020, 170, 108070.	2.0	20
561	Adenosine A2A-D2 Receptor-Receptor Interactions in Putative Heteromers in the Regulation of the Striato-Pallidal GABA Pathway: Possible Relevance for Parkinson's Disease and its Treatment. Current Protein and Peptide Science, 2014, 15, 673-680.	0.7	20
562	Evidence for interactions between striatal cholecystokinin and glutamate receptors. CCKâ€8 in vitro produces a marked downregulation of ³ Hâ€glutamate binding sites in striatal membranes. Acta Physiologica Scandinavica, 1983, 118, 75-77.	2.3	19
563	Evidence for a regional distribution of hyaluronic acid in the rat brain using a highly specific hyaluronic acid recognizing protein. Neuroscience Letters, 1994, 169, 25-30.	1.0	19
564	Functional coupling of dopamine D2 and muscarinic cholinergic receptors to their respective G proteins assessed by agonist-induced activation of high-affinity GTPase activity in rat striatal membranes. Biochemical Pharmacology, 1995, 50, 325-335.	2.0	19
565	Centrally infused galanin-(1–15) but not galanin-(1–29) reduces the baroreceptor reflex sensitivity in the rat. Brain Research, 1996, 741, 32-37.	1.1	19
566	Serotonergic agonists behave as partial agonists at the dopamine D2 receptor. NeuroReport, 1999, 10, 493-495.	0.6	19
567	Time-course of immediate early gene expression in hippocampal subregions of adrenalectomized rats after acute corticosterone challenge. Brain Research, 2008, 1215, 1-10.	1.1	19
568	Brain Receptor Mosaics and Their Intramembrane Receptor-Receptor Interactions: Molecular Integration in Transmission and Novel Targets for Drug Development. JAMS Journal of Acupuncture and Meridian Studies, 2009, 2, 1-25.	0.3	19
569	Muscarinic Acetylcholine Receptor-Interacting Proteins (mAChRIPs): Targeting the Receptorsome. Current Drug Targets, 2012, 13, 53-71.	1.0	19
570	Voltage sensitivities and deactivation kinetics of histamine H3 and H4 receptors. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 3081-3089.	1.4	19
571	A2A/D2 receptor heteromerization in a model of Parkinson's disease. Focus on striatal aminoacidergic signaling. Brain Research, 2012, 1476, 96-107.	1.1	19
572	Striatal NTS ₁ , dopamine D ₂ and NMDA receptor regulation of pallidal GABA and glutamate release – a dualâ€probe microdialysis study in the intranigral 6â€hydroxydopamine unilaterally lesioned rat. European Journal of Neuroscience, 2012, 35, 207-220.	1.2	19
573	Evidence for the existence of dopamine D2R and Sigma 1 allosteric receptor-receptor interaction in the rat brain: role in brain plasticity and cocaine action. SpringerPlus, 2015, 4, .	1.2	19
574	Molecular, biochemical and behavioural evidence for a novel oxytocin receptor and serotonin 2C receptor heterocomplex. Neuropharmacology, 2021, 183, 108394.	2.0	19
575	CENTRAL CATECHOLAMINE SYSTEMS AND NEUROENDOCRINE REGULATION. CONTROLLERS OF ANTERIOR PITUITARY SECRETION. , 1979, , 1187-1203.		19
576	Absence of Monoamines in Olivoâ€Cochlear Fibres in Cat. Acta Physiologica Scandinavica, 1965, 64, 259-262.	2.3	18

#	Article	IF	CITATIONS
577	Distribution of VIP Neurons in the Peripheral and Central nervous System. Endocrinologia Japonica, 1980, 27, 23-30.	0.5	18
578	Toluene induces changes in the morphology of astroglia and neurons in striatal primary cell cultures. Toxicology, 1988, 49, 155-163.	2.0	18
579	Computer-assisted image analysis techniques allow a characterization of the compartments within the basal ganglia. Focus on functional compartments produced by d-amphetamine activation of the c-fos gene and its relationship to the glucocorticoid receptor. Journal of Chemical Neuroanatomy, 1991. 4. 355-372.	1.0	18
580	Regional increases in ornithine decarboxylase mRNA levels in the rat brain after partial mesodiencephalic hemitransection as revealed by in situ hybridization histochemistry. Neurochemistry International, 1991, 18, 347-352.	1.9	18
581	Coinjections of NPY(1–36) or [Leu31,Pro34]NPY with adrenaline in the nucleus tractus solitarius of the rat counteract the vasodepressor responses to adrenaline. Neuroscience Letters, 1994, 171, 27-31.	1.0	18
582	Additivity and non-additivity between dopamine-, norepinephrine-, carbachol- and GABA-stimulated GTPase activity. European Journal of Pharmacology, 1995, 291, 245-253.	2.7	18
583	5-HT1A, GABAB, and pirenzepine-insensitive muscarinic receptors are functionally coupled to distinct pools of the same kind of G proteins in rat hippocampus. Brain Research, 1995, 689, 129-135.	1.1	18
584	Expression of cytochrome P45011B1 mRNA in the brain of normal and hypertensive transgenic rats. Brain Research, 1996, 733, 73-82.	1.1	18
585	THE RECEPTOR MOSAIC HYPOTHESIS OF THE ENGRAM: POSSIBLE RELEVANCE OF BOOLEAN NETWORK MODELING. International Journal of Neural Systems, 1996, 07, 363-368.	3.2	18
586	Oxytocin/Alpha ₂ -Adrenoceptor Interactions in Feeding Responses. Neuroendocrinology, 2000, 71, 209-218.	1.2	18
587	Fetal Ventral Mesencephalic Grafts Functionally Reduce the Dopamine D2 Receptor Supersensitivity in Partially Dopamine Reinnervated Host Striatum. Experimental Neurology, 2000, 164, 154-165.	2.0	18
588	Glutamate mGlu5-Adenosine A2A-Dopamine D2 Receptor Interactions in the Striatum. Implications for Drug Therapy in Neuro-psychiatric Disorders and Drug Abuse. Current Medicinal Chemistry - Central Nervous System Agents, 2003, 3, 1-26.	0.6	18
589	Corticosterone strongly increases the affinity of dorsal raphe 5-HT1A receptors. NeuroReport, 2004, 15, 1457-1459.	0.6	18
590	Galanin-neuropeptide Y (NPY) interactions in central cardiovascular control: involvement of the NPY Y1receptor subtype. European Journal of Neuroscience, 2006, 24, 499-508.	1.2	18
591	Differential allosteric modulation within dopamine D2R - neurotensin NTS1R and D2R - serotonin 5-HT2AR receptor complexes gives bias to intracellular calcium signalling. Scientific Reports, 2019, 9, 16312.	1.6	18
592	Adenosine A2AReceptors in Substance Use Disorders: A Focus on Cocaine. Cells, 2020, 9, 1372.	1.8	18
593	Multiple Adenosine-Dopamine (A2A-D2 Like) Heteroreceptor Complexes in the Brain and Their Role in Schizophrenia. Cells, 2020, 9, 1077.	1.8	18
594	Some observations on the site of action of Oxypertin. Naunyn-Schmiedeberg's Archives of Pharmacology, 1967, 256, 450-463.	1.4	17

#	Article	IF	CITATIONS
595	Serotonin and sexual behaviour in female rats. Effects of hallucinogenic indolealkylamines and phenylethylamines. Neuroscience Letters, 1977, 4, 215-220.	1.0	17
596	Distribution of neurophysin II immunoreactive nerve fibers within the subnuclei of the nucleus of the tractus solitarius of the rat. Brain Research, 1984, 321, 71-82.	1.1	17
597	Involvement of cholecystokinin receptors in the control of striatal dopamine autoreceptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1990, 342, 300-304.	1.4	17
598	The C-terminal neurotensin-(8–13) fragment potently modulates rat neostriatal dopamine D2 receptors. European Journal of Pharmacology, 1993, 234, 125-128.	1.7	17
599	Neurochemical alterations but not nerve cell loss in aged rat neostriatum. Journal of Chemical Neuroanatomy, 1993, 6, 131-145.	1.0	17
600	The galanin receptor antagonist M40 blocks the central cardiovascular actions of the galanin N-terminal fragment (1–15). European Journal of Pharmacology, 2000, 399, 197-203.	1.7	17
601	Theoretical Considerations on the Topological Organization of Receptor Mosaics. Current Protein and Peptide Science, 2009, 10, 559-569.	0.7	17
602	Bioinformatics and mathematical modelling in the study of receptor–receptor interactions and receptor oligomerization. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1267-1283.	1.4	17
603	The Existence of FGFR1-5-HT1A Receptor Heterocomplexes in Midbrain 5-HT Neurons of the Rat: Relevance for Neuroplasticity. Journal of Neuroscience, 2012, 32, 6295-6303.	1.7	17
604	Understanding the balance and integration of volume and synaptic transmission. Relevance for psychiatry. Neurology Psychiatry and Brain Research, 2013, 19, 141-158.	2.0	17
605	Potential of caveolae in the therapy of cardiovascular and neurological diseases. Frontiers in Physiology, 2014, 5, 370.	1.3	17
606	Interactions Between Cholinergic and Fibroblast Growth Factor Receptors in Brain Trophism and Plasticity. Current Protein and Peptide Science, 2014, 15, 691-702.	0.7	17
607	Acute sino-aortic denervation in rats produces a selective increase of adrenaline turnover in the dorsal midline area of the caudal medulla oblongata and a reduction of adrenaline levels in the anterior and posterior hypothalamus. European Journal of Pharmacology, 1981, 69, 361-365.	1.7	16
608	Intracisternal administration of cholecystokinin-8 counteracts the central cardiovascular effects of adrenaline and NPY. A study based on the coexistence of cholecystokinin, phenylethanolamine N-methyltransferase and neuropeptide Y immunoreactivity in neurons of the nucleus tractus solitarius. Neurochemistry International, 1987, 10, 481-494.	1.9	16
609	Effects of toluene treatment in vivo and in vitro on the binding characteristics of [3H]neurotensin in rat striatal membranes. Toxicology, 1988, 49, 149-154.	2.0	16
610	Neuronal A1 receptors mediate increase in extracellular kynurenic acid after local intrastriatal adenosine infusion. Journal of Neurochemistry, 2004, 90, 621-628.	2.1	16
611	Adrenalectomy counteracts the local modulation of astroglial fibroblast growth factor system without interfering with the pattern of 6-OHDA-induced dopamine degeneration in regions of the ventral midbrain. Brain Research, 2008, 1190, 23-38.	1.1	16
612	Nuclear organization and morphology of serotonergic neurons in the brain of the Nile crocodile, Crocodylus niloticus. Journal of Chemical Neuroanatomy, 2008, 35, 133-145.	1.0	16

#	Article	IF	CITATIONS
613	Neurotensin regulates cortical glutamate transmission by modulating Nâ€methylâ€Dâ€aspartate receptor functional activity: An in vivo microdialysis study. Journal of Neuroscience Research, 2011, 89, 1618-1626.	1.3	16
614	Typical and atypical antipsychotics do not differ markedly in their reversibility of antagonism of the dopamine D2 receptor. International Journal of Neuropsychopharmacology, 2014, 17, 149-155.	1.0	16
615	Galanin (1–15)-fluoxetine interaction in the novel object recognition test. Involvement of 5-HT1A receptors in the prefrontal cortex of the rats. Neuropharmacology, 2019, 155, 104-112.	2.0	16
616	Evidence for in vivo binding of apomorphine and bromocriptine to receptor sites not labelled by 3H-spiperone. European Journal of Pharmacology, 1979, 58, 339-340.	1.7	15
617	Studies of neurotensinâ€dopamine receptor interactions in striatal membranes of the male rat. The influence of 6â€hydroxydopamineâ€induced dopamine receptor supersensitivity. Acta Physiologica Scandinavica, 1986, 126, 147-149.	2.3	15
618	Counteraction of NPY-induced c-Fos expression in the nucleus tractus solitarii by $\hat{I}\pm 2$ receptor agonists. NeuroReport, 1995, 6, 384-388.	0.6	15
619	Evidence for a differential modulation of the alpha-2 adrenoceptors by angiotensin II in the nucleus tractus solitarii of the spontaneously hypertensive and the Wistar-Kyoto normotensive rats. Brain Research, 1995, 679, 168-177.	1.1	15
620	A single (â^')-nicotine injection causes change with a time delay in the affinity of striatal D2 receptors for antagonist, but not for agonist, nor in the D2 receptor mRNA levels in the rat substantia nigra. Brain Research, 1995, 679, 157-167.	1.1	15
621	Modulation of [3H]quinpirole binding to dopaminergic receptors by adenosine A2A receptors. Neuroscience Letters, 1997, 239, 61-64.	1.0	15
622	Evidence for a striatal NMDA receptor modulation of nigral glutamate release. A dual probe microdialysis study in the awake freely moving rat. European Journal of Neuroscience, 1998, 10, 1716-1722.	1.2	15
623	Does the human brain have unique genetically determined networks coding logical and ethical principles and aesthetics? From Plato to novel mirror networks. Brain Research Reviews, 2007, 55, 68-77.	9.1	15
624	Dissecting the Conserved NPxxY Motif of the M ₃ Muscarinic Acetylcholine Receptor: Critical Role of Asp-7.49 for Receptor Signaling and Multiprotein Complex Formation. Cellular Physiology and Biochemistry, 2011, 28, 1009-1022.	1.1	15
625	A new theoretical approach to the functional meaning of sleep and dreaming in humans based on the maintenance of †predictive psychic homeostasis'. Communicative and Integrative Biology, 2011, 4, 640-654.	0.6	15
626	On the G-Protein-Coupled Receptor Heteromers and Their Allosteric Receptor-Receptor Interactions in the Central Nervous System: Focus on Their Role in Pain Modulation. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-17.	0.5	15
627	Effects of withdrawal from chronic exposure to cigarette smoke on hypothalamic and preoptic catecholamine nerve terminal systems and on the secretion of pituitary hormones in the male rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 339, 387-396.	1.4	14
628	A view of renin in the brain. Journal of Molecular Medicine, 2001, 79, 71-73.	1.7	14
629	Biphasic Autoregulation of Mineralocorticoid Receptor mRNA in the Medial Septal Nucleus by Aldosterone. Neuroendocrinology, 2002, 75, 358-366.	1.2	14
630	A Window into the Heterogeneity of Human Cerebrospinal Fluid A <i>β</i> Peptides. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	14

#	Article	IF	CITATIONS
631	Dopamine D4 Receptor Counteracts Morphine-Induced Changes in µ Opioid Receptor Signaling in the Striosomes of the Rat Caudate Putamen. International Journal of Molecular Sciences, 2014, 15, 1481-1498.	1.8	14
632	Dopamine D ₂ Receptor Supersensitivity as a Spectrum of Neurotoxicity and Status in Psychiatric Disorders. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 519-526.	1.3	14
633	D1 receptor mechanisms in the median eminence and their inhibitory regulation of LHRH release. Neurochemistry International, 1988, 13, 165-178.	1.9	13
634	Changes in striatal μ and δ opioid receptors after transient forebrain ischemia: a quantitative autoradiographic study. Brain Research, 1991, 546, 171-175.	1.1	13
635	K+-evoked [3H]D-aspartate release in rat spinal cord synaptosomes: Modulation by neuropeptide Y and calcium channel antagonists. Journal of Neuroscience Research, 2000, 62, 722-729.	1.3	13
636	Differential activation of arginine-vasopressin receptor subtypes in the amygdaloid modulation of anxiety in the rat by arginine-vasopressin. Psychopharmacology, 2018, 235, 1015-1027.	1.5	13
637	Heterodimerization of Mu Opioid Receptor Protomer with Dopamine D2 Receptor Modulates Agonist-Induced Internalization of Mu Opioid Receptor. Biomolecules, 2019, 9, 368.	1.8	13
638	RECENT MORPHOLOGICAL AND FUNCTIONAL STUDIES ON HYPOTHALAMIC DOPAMINERGIC AND NORADRENERGIC MECHANISMS. , 1973, , 787-794.		13
639	The Brain Isorenin-Angiotensin System: Localization and Biological Function. Progress in Brain Research, 1977, 47, 155-159.	0.9	12
640	Corticosterone treatment counteracts lesions induced by neonatal treatment with monosodium glutamate in the mediobasal hypothalamus of the male rat. Neuroscience Letters, 1991, 132, 225-228.	1.0	12
641	Dopamine D1 receptor activity is involved in the increased anxiety levels observed in STZ-induced diabetes in rats. Behavioural Brain Research, 2016, 313, 293-301.	1.2	12
642	Neuronal adenosine A2A receptor overexpression is neuroprotective towards 3-nitropropionic acid-induced striatal toxicity: a rat model of Huntington's disease. Purinergic Signalling, 2018, 14, 235-243.	1.1	12
643	Serotonin Heteroreceptor Complexes and Their Integration of Signals in Neurons and Astroglia—Relevance for Mental Diseases. Cells, 2021, 10, 1902.	1.8	12
644	Central Glucocorticoid Receptors and Neuronal Plasticity. Methods in Neurosciences, 1994, , 372-382.	0.5	12
645	The mouse uterine surface epithelium during the estrous cycle. The Anatomical Record, 1963, 145, 541-548.	2.3	11
646	Identification of dopamine, noradrenaline and 5-hydroxytryptamine varicosities in a fraction containing nerve ending particles. Brain Research, 1967, 6, 475-480.	1.1	11
647	The effect of mepiprazole on central monoamine neurons. Evidence for increased 5-hydroxytryptamine and dopamine receptor activity. European Journal of Pharmacology, 1976, 35, 93-107.	1.7	11
648	Aging brain and dopamine receptors: Abnormal regulation by CCKâ€8 of ³ Hâ€spiperone labeled dopamine receptors in striatal membranes. Acta Physiologica Scandinavica, 1984, 120, 465-467.	2.3	11

#	Article	IF	CITATIONS
649	Survival of adenohypophyseal homologous transplants in the rat striatum associated with prolactin-like immunoreactivity in the surrounding neuropil of the striatum. Neuroscience Letters, 1988, 93, 139-145.	1.0	11
650	Neuromedin N is a potent modulator of dopamine D2 receptor agonist binding in rat neostriatal membranes. Neuroscience Letters, 1993, 155, 121-124.	1.0	11
651	A2a/D2 receptor interactions are not observed in COS-7 cells transiently transfected with dopamine D2 and adenosine A2a receptor cDNA. Biochemical Pharmacology, 1994, 48, 2043-2047.	2.0	11
652	On the role of c-fos expression in striatal transmission. The antisense oligonucleotide approach. Neurochemistry International, 1997, 31, 425-436.	1.9	11
653	D2 dopamine receptor-G protein coupling. Cross-regulation of agonist and guanosine nucleotide binding sites. Neuroscience Letters, 2001, 302, 5-8.	1.0	11
654	Adenosine/dopamine receptor-receptor interactions in the central nervous system. Drug Development Research, 2001, 52, 296-302.	1.4	11
655	Modafinil does not affect serotonin efflux from rat frontal cortex synaptosomes: comparison with known serotonergic drugs. Brain Research, 2001, 894, 307-310.	1.1	11
656	The human histamine H3 receptor couples to GIRK channels in Xenopus oocytes. European Journal of Pharmacology, 2007, 567, 206-210.	1.7	11
657	Protection of the Neostriatal Dopamine Stores against Reserpine by Local Treatment with Metatyramine. Acta Pharmacologica Et Toxicologica, 1969, 28, 39-48.	0.0	11
658	A Novel Integrative Mechanism in Anxiolytic Behavior Induced by Galanin 2/Neuropeptide Y Y1 Receptor Interactions on Medial Paracapsular Intercalated Amygdala in Rats. Frontiers in Cellular Neuroscience, 2018, 12, 119.	1.8	11
659	Role of the galanin N-terminal fragment (1-15) in anhedonia: Involvement of the dopaminergic mesolimbic system. Journal of Psychopharmacology, 2019, 33, 737-747.	2.0	11
660	Acute Cocaine Enhances Dopamine D2R Recognition and Signaling and Counteracts D2R Internalization in Sigma1R-D2R Heteroreceptor Complexes. Molecular Neurobiology, 2019, 56, 7045-7055.	1.9	11
661	Conventional and Novel Pharmacological Approaches to Treat Dopamine-Related Disorders: Focus on Parkinson's Disease and Schizophrenia. Neuroscience, 2020, 439, 301-318.	1.1	11
662	The Vigilance Promoting Drug Modafinil Modulates Serotonin Transmission in the Rat Prefrontal Cortex and Dorsal Raphe Nucleus. Possible Relevance for Its Postulated Antidepressant Activity. Mini-Reviews in Medicinal Chemistry, 2013, 13, 478-492.	1.1	11
663	On the role of neuropeptide Y receptors of the Y2 type in the control of hypothalamic catecholaminergic mechanisms and neuroendocrine function. Central effects of the NPY fragment (13–36). Neurochemistry International, 1991, 19, 261-270.	1.9	10
664	Galanin increases potassium evoked release of [3H]5-hydroxytryptamine from rat hypothalamic synaptosomal preparations. Neuroscience Letters, 1991, 122, 87-90.	1.0	10
665	Regional expression of angiotensinogen mRNA in the brain of one-week-old, adult and old male rats. Developmental Brain Research, 1993, 73, 41-45.	2.1	10
666	Human angiotensinogen is highly expressed in astrocytes in human cortical grafts. Glia, 1994, 10, 186-192.	2.5	10

#	Article	IF	CITATIONS
667	5-HT1A receptor-mediated activation of high-affinity GTPase in rat hippocampal membranes. European Journal of Pharmacology, 1995, 288, 385-388.	2.7	10
668	Neurotensin-like immunoreactivity in odontoblasts and their processes in rat maxillary molar teeth and the effect of pulpotomy. Regulatory Peptides, 1995, 58, 141-147.	1.9	10
669	The non-peptide neuropeptide Y Y1 receptor antagonist BIBP3226 blocks the [Leu31, Pro34]neuropeptide Y-induced modulation of l±2-adrenoceptors in the nucleus tractus solitarii of the rat. NeuroReport, 1996, 7, 2701-2706.	0.6	10
670	Basic fibroblast growth factor expression and tenascin C immunoreactivity after partial unilateral hemitransection of the rat brain. Brain Research, 1996, 730, 1-16.	1.1	10
671	Intracisternal galanin/angiotensin II interactions in central cardiovascular control. Regulatory Peptides, 2005, 127, 133-140.	1.9	10
672	Early modulation by the dopamine D ₄ receptor of morphineâ€induced changes in the opioid peptide systems in the rat caudate putamen. Journal of Neuroscience Research, 2013, 91, 1533-1540.	1.3	10
673	IL1R2, CCR2, and CXCR4 May Form Heteroreceptor Complexes with NMDAR and D2R: Relevance for Schizophrenia. Frontiers in Psychiatry, 2017, 8, 24.	1.3	10
674	Central administration of galanin Nâ€ŧerminal fragment 1–15 decreases the voluntary alcohol intake in rats. Addiction Biology, 2019, 24, 76-87.	1.4	10
675	G-Protein-Coupled Receptors Oligomerization: Emerging Signaling Units and New Opportunities for Drug Design. Current Protein and Peptide Science, 2014, 15, 648-658.	0.7	10
676	Acute continuous exposure to cigarette smoke produces discrete changes in cholecystokinin and substance P levels in the hypothalamus and preoptic area of the male rat. Acta Physiologica Scandinavica, 1985, 125, 437-443.	2.3	9
677	Effects of acute intermittent exposure to cigarette smoke on hypothalamic and preoptic catecholamine nerve terminal systems and on neuroendocrine function in the diestrous rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 1988, 337, 131-9.	1.4	9
678	Selective modulation of the NPY receptors of the Y2 subtype by α2 receptors in the nucleus tractus solitarii of the rat. A cardiovascular and quantitative receptor autoradiographical analysis. Brain Research, 1994, 654, 137-144.	1.1	9
679	Striatal dopamine denervation decreases the GDP binding affinity in rat striatal membranes. NeuroReport, 2000, 11, 2691-2694.	0.6	9
680	Modulation of [35S]GTPÎ ³ S binding to Chinese hamster ovary cell membranes by D2(short) dopamine receptors. Neuroscience Letters, 2000, 280, 135-138.	1.0	9
681	Propranolol blocks the tachycardia induced by galanin (1–15) but not by galanin (1–29). Regulatory Peptides, 2002, 107, 29-36.	1.9	9
682	Angiotensin II modulates the cardiovascular responses to microinjection of NPY Y1 and NPY Y2 receptor agonists into the nucleus tractus solitarii of the rat. Brain Research, 2003, 983, 193-200.	1.1	9
683	Acute isoproterenol induces anxiety-like behavior in rats and increases plasma content of extracellular vesicles. Physiology and Behavior, 2015, 142, 79-84.	1.0	9
684	Alterations in ventral and dorsal striatal allosteric A2AR-D2R receptor-receptor interactions after amphetamine challenge: Relevance for schizophrenia. Life Sciences, 2016, 167, 92-97.	2.0	9

#	Article	IF	CITATIONS
685	Brain of the tree pangolin (<i>Manis tricuspis</i>). III. The unusual locus coeruleus complex. Journal of Comparative Neurology, 2018, 526, 2570-2684.	0.9	9
686	OSU-6162, a Sigma1R Ligand in Low Doses, Can Further Increase the Effects of Cocaine Self-Administration on Accumbal D2R Heteroreceptor Complexes. Neurotoxicity Research, 2020, 37, 433-444.	1.3	9
687	Calanin and neuropeptide Y interactions elicit antidepressant activity linked to neuronal precursor cells of the dentate gyrus in the ventral hippocampus. Journal of Cellular Physiology, 2021, 236, 3565-3578.	2.0	9
688	Amplification of potential thermogenetic mechanisms in cetacean brains compared to artiodactyl brains. Scientific Reports, 2021, 11, 5486.	1.6	9
689	STUDIES ON CENTRAL 5-HYDROXYTRYPTAMINE NEURONS USING DIHYDROXYTRYPTAMINES: EVIDENCE FOR REGENERATION OF BULBOSPINAL 5-HYDROXYTRYPTAMINE AXONS AND TERMINALS. , 1974, , 169-179.		9
690	Effect of desmethylimipramine, protriptyline and (+)-amphetamine on fluorescence of central adrenergic neurons of rats pretreated with α-methyl-DOPA and tetrabenazine or reserpine. European Journal of Pharmacology, 1967, 2, 196-201.	1.7	8
691	Guanylate cyclase activity increases after kainic acid lesion of rat striatum. Brain Research, 1979, 171, 567-572.	1.1	8
692	Selective reduction of adrenaline turnover in the dorsal midline area of the caudal medulla oblongata and increase of hypothalamic adrenaline levels in the lyon strain of genetically hypertensive rats. European Journal of Pharmacology, 1982, 77, 187-191.	1.7	8
693	Intracisternal administration of avian pancreatic polypeptide lowers respiration rate and enhances the clonidine induced reduction of respiration rate in α-chloralose anesthetized rats: Possible interactions with an α2-adrenergic receptor. Acta Physiologica Scandinavica, 1982, 115, 381-384.	2.3	8
694	Increased diffusion of prolactin-like material into the brain neuropil from homologous adenohypophyseal transplants in the rat neostriatum after a 6-OH-dopamine induced degeneration of the mesostriatal dopamine neurons. Neuroscience Letters, 1989, 107, 33-38.	1.0	8
695	The novel cyclooxygenase-2 inhibitor GW637185X protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. NeuroReport, 2008, 19, 657-660.	0.6	8
696	Identification of Sympathetic Cholinergic Nerve Terminals in Arterioles of Skeletal Muscle. Acta Pharmacologica Et Toxicologica, 1967, 25, 79-79.	0.0	8
697	The Galanin N-terminal fragment (1–15) interacts with neuropeptide Y in central cardiovascular control: Involvement of the NPY Y2 receptor subtype. Regulatory Peptides, 2010, 163, 130-136.	1.9	8
698	Differential expression of muscarinic acetylcholine receptor subtypes in Jurkat cells and their signaling. Journal of Neuroimmunology, 2011, 237, 13-22.	1.1	8
699	Characterization of the interaction between the dopamine D4 receptor, KLHL12 and β-arrestins. Cellular Signalling, 2016, 28, 1001-1014.	1.7	8
700	Transcriptomic integration of D4R and MOR signaling in the rat caudate putamen. Scientific Reports, 2018, 8, 7337.	1.6	8
701	The Balance of MU-Opioid, Dopamine D2 and Adenosine A2A Heteroreceptor Complexes in the Ventral Striatal-Pallidal GABA Antireward Neurons May Have a Significant Role in Morphine and Cocaine Use Disorders. Frontiers in Pharmacology, 2021, 12, 627032.	1.6	8
702	PARTICIPATION OF CENTRAL MONOAMINERGIC NEURONS IN THE REGULATION OF ANTERIOR PITUITARY SECRETION. , 1970, , 61-83.		8

#	Article	IF	CITATIONS
703	Galanin and Neuropeptide Y Interaction Enhances Proliferation of Granule Precursor Cells and Expression of Neuroprotective Factors in the Rat Hippocampus with Consequent Augmented Spatial Memory. Biomedicines, 2022, 10, 1297.	1.4	8
704	Antiparkinsonian drugs and dopaminergic neostriatal mechanisms: Studies in rats with unilateral 6-hydroxydopamine (=6-OH-DA)-induced degeneration of the nigro-neostriatal da pathway and quantitative recording of rotational behaviour. Pharmacology & Therapeutics, 1976, 2, 41-47.	0.4	7
705	Effects of chronic sino-aortic denervation in male rats on regional catecholamine levels and turnover and on neuroendocrine function. European Journal of Pharmacology, 1983, 87, 145-149.	1.7	7
706	Involvement of D1 dopamine receptors in the nicotine-induced noradrenaline release from hypothalamic and preoptic noradrenaline nerve terminal systems. Neurochemistry International, 1988, 13, 159-163.	1.9	7
707	Ganglioside GM1 modulation of calcium/calmodulin-dependent protein kinase II activity and autophosphorylation. Neurochemistry International, 1991, 19, 271-279.	1.9	7
708	Indole-pyruvic acid treatment reduces damage in striatum but not in hippocampus after transient forebrain ischemia in the rat. Neurochemistry International, 1993, 23, 139-148.	1.9	7
709	Cholecystokinin octapeptide and the D2 antagonist raclopride induce Fos-like immunoreactivity in the shell part of the rat nucleus accumbens via different mechanisms. Brain Research, 1995, 684, 225-229.	1.1	7
710	Agonist-Induced High-Affinity GTP Hydrolysis as an Index of Receptor-Mediated G Protein Activation in Mammalian Brain Membranes. , 1997, 83, 133-142.		7
711	5-HT1A receptor activation. NeuroReport, 1997, 8, 3565-3569.	0.6	7
712	Galanin/Î \pm 2-adrenoceptor interactions in telencephalic and diencephalic regions of the rat. NeuroReport, 2001, 12, 151-155.	0.6	7
713	Hyper-Homocysteinemia Alters Amyloid Peptide-Clusterin Interactions and Neuroglial Network Morphology and Function in the Caudate After Intrastriatal Injection of Amyloid Peptides. Current Alzheimer Research, 2007, 4, 305-313.	0.7	7
714	Cannabinoid CB ₁ and Cholecystokinin CCK ₂ Receptors Modulate, in an Opposing Way, Electrically Evoked [³ H]GABA Efflux from Rat Cerebral Cortex Cell Cultures: Possible Relevance for Cortical GABA Transmission and Anxiety. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 708-717.	1.3	7
715	The Influence of Benzquinamide, Oxypertine and Prenylamine on Monoamine Levels and on Monoamine Effects in the Spinal Cord. Acta Pharmacologica Et Toxicologica, 1971, 30, 225-237.	0.0	7
716	Involvement of Astroglial Fibroblast Growth Factor-2 and Microglia in the Nigral 6-OHDA Parkinsonism and a Possible Role of Glucocorticoid Hormone on the Glial Mediated Local Trophism and Wound Repair. , 2009, , 185-202.		7
717	Bioinformatics aggregation predictors in the study of protein conformational diseases of the human nervous system. Electrophoresis, 2012, 33, 3669-3679.	1.3	7
718	On the G Protein-Coupled Receptor Neuromodulation of the Claustrum. Neurochemical Research, 2020, 45, 5-15.	1.6	7
719	Acute cocaine treatment enhances the antagonistic allosteric adenosine A2A-dopamine D2 receptor–receptor interactions in rat dorsal striatum without increasing significantly extracellular dopamine levels. Pharmacological Reports, 2020, 72, 332-339.	1.5	7
720	DOPAMINE AND HUNTINGTON'S DISEASE: ASSESSMENT USING THE KAINIC ACID MODEL. , 1979, , 115-126.		7

#	Article	IF	CITATIONS
721	ACTIONS OF ERGOT DERIVATIVES AT DOPAMINE SYNAPSES. , 1979, , 141-157.		7
722	IMMUNOCYTOCHEMICAL STUDIES ON CATECHOLAMINE CELL SYSTEMS WITH ASPECTS ON RELATIONS TO PUTATIVE PEPTIDE TRANSMITTERS. , 1979, , 1007-1019.		7
723	Intranasal Delivery of Galanin 2 and Neuropeptide Y1 Agonists Enhanced Spatial Memory Performance and Neuronal Precursor Cells Proliferation in the Dorsal Hippocampus in Rats. Frontiers in Pharmacology, 2022, 13, 820210.	1.6	7
724	Nicotine-induced increases in brain luteinizing hormone releasing hormone-like immunoreactivity and in serum luteinizing hormone levels of the male rat. Neuroscience Letters, 1986, 71, 289-292.	1.0	6
725	A trypsin inhibitor-like peptide PEC-60 reduces the affinity of dopamine D2 agonist binding sites in rat neostriatal membranes. European Journal of Pharmacology, 1991, 207, 365-366.	2.7	6
726	Codistribution of choleratoxin binding sites and tyrosine hydroxylase/ FGF-2 immunoreactive nigral nerve cells. NeuroReport, 1993, 4, 857-860.	0.6	6
727	Ontogeny of the motor inhibitory role of dopamine D3 receptor subtype in rats. European Journal of Pharmacology, 2000, 392, 35-39.	1.7	6
728	Diffusion of radiolabeled dopamine, its metabolites and mannitol in the rat striatum studied by dual-probe microdialysis. Progress in Brain Research, 2000, 125, 179-190.	0.9	6
729	A2AR Transmembrane 2 Peptide Administration Disrupts the A2AR-A2AR Homoreceptor but not the A2AR-D2R Heteroreceptor Complex: Lack of Actions on Rodent Cocaine Self-Administration. International Journal of Molecular Sciences, 2019, 20, 6100.	1.8	6
730	Evidence for the existence of A2AR-TrkB heteroreceptor complexes in the dorsal hippocampus of the rat brain: Potential implications of A2AR and TrkB interplay upon ageing. Mechanisms of Ageing and Development, 2020, 190, 111289.	2.2	6
731	The coming together of allosteric and phosphorylation mechanisms in the molecular integration of A2A heteroreceptor complexes in the dorsal and ventral striatal-pallidal GABA neurons. Pharmacological Reports, 2021, 73, 1096-1108.	1.5	6
732	Co-immunoprecipitation from Brain. Neuromethods, 2016, , 19-29.	0.2	6
733	"Neuro-Semeiotics―and "Free-Energy Minimization―Suggest a Unified Perspective for Integrative Brain Actions: Focus on Receptor Heteromers and Roamer Type of Volume Transmission. Current Protein and Peptide Science, 2014, 15, 703-718.	0.7	6
734	Galanin(1-15) Potentiates the Antidepressant-like Effects Induced by Escitalopram in a Rat Model of Depression. International Journal of Molecular Sciences, 2021, 22, 10848.	1.8	6
735	Freezing by Liquid Nitrogen, Cryostat Sectioning, and Vapor Fixation of Tissue Sections. Biotechnic & Histochemistry, 1962, 37, 377-378.	0.4	5
736	Muscarinic modulation of acetylcholine release from slices of guinea pig nucleus basalis magnocellularis. Neuroscience Letters, 1992, 140, 235-238.	1.0	5
737	Mechanism of modulation of [3H]raclopride binding to dopaminergic receptors in rat striatal membranes by sodium ions. Neurochemistry International, 1997, 30, 575-581.	1.9	5
738	The autonomic nervous system and the histochemical fluorescence method for the microscopical localization of catecholamines and serotonin. Brain Research Bulletin, 1999, 50, 365-367.	1.4	5

#	Article	IF	CITATIONS
739	The Concept of Protein Mosaics: Physiological Role and Relevance for Prion Disease. Current Proteomics, 2006, 3, 171-179.	0.1	5
740	The triplet puzzle theory indicates extensive formation of heteromers between opioid and chemokine receptor subtypes. Journal of Neural Transmission, 2015, 122, 1509-1514.	1.4	5
741	Is There Volume Transmission Along Extracellular Fluid Pathways Corresponding to the Acupuncture Meridians?. JAMS Journal of Acupuncture and Meridian Studies, 2017, 10, 5-19.	0.3	5
742	Desipramine restores the alterations in circadian entrainment induced by prenatal exposure to glucocorticoids. Translational Psychiatry, 2019, 9, 263.	2.4	5
743	Evidence for the Existence of Antagonistic Intramembrane Adenosine A2a/dopamine D2 Receptor Interactions in the Basal Ganglia: Analysis from the Network to the Molecular Level. , 1995, , 499-507.		5
744	Volume Transmission and the Russian-Doll Organization of Brain Cell Networks. , 2014, , 103-119.		5
745	A New Interpretative Paradigm for Conformational Protein Diseases. Current Protein and Peptide Science, 2013, 14, 141-160.	0.7	5
746	Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells, 2022, 11, 1826.	1.8	5
747	Studies on the cholinergic and dopaminergic innervation of the neostriatum with the help of intraneostriatal injections of drugs. Pharmacology & Therapeutics, 1976, 2, 29-36.	0.4	4
748	Interactions of a partial ergoline with dopamine receptors in vivo and in vitro. Acta Physiologica Scandinavica, 1983, 117, 303-305.	2.3	4
749	Ganglioside GM1 counteracts the enhancing effects of subacute toluene exposure on apomorphine-induced locomotor activity. Toxicology Letters, 1992, 63, 165-169.	0.4	4
750	Induction of hippocampal glial cells expressing basic fibroblast growth factor RNA by corticosterone. NeuroReport, 2001, 12, 141-145.	0.6	4
751	Introductory Remarks. Journal of Molecular Neuroscience, 2005, 26, 109-112.	1.1	4
752	Editorial. Journal of Receptor and Signal Transduction Research, 2010, 30, 271-271.	1.3	4
753	The multi-facet aspects of cell sentience and their relevance for the integrative brain actions: role of membrane protein energy landscape. Reviews in the Neurosciences, 2016, 27, 347-363.	1.4	4
754	Study of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity Ligation Assay. Neuromethods, 2021, , 117-134.	0.2	4
755	Steroidal regulation of coexisting neuronal messengers: Focus on double and triple immunolabeling procedures and on indirect evaluation of coexistence. Methods, 1992, 1, 77-86.	0.5	3
756	Coactivation of dopamine D1 and D2 receptors increases the affinity of cholecystokinin-8 receptors in membranes from post-mortem human caudate-putamen. Brain Research, 1992, 584, 157-162.	1.1	3

#	Article	IF	CITATIONS
757	Chronic Nicotine Treatment Differentially Regulates Substance P and Tyrosine Hydroxylase Immunoreactivity in Substantia Nigra Ipsilateral to a Unilateral Lesion. Experimental Neurology, 1997, 146, 575-586.	2.0	3
758	Prolonged treatment with haloperidol and clozapine in the rat: differential effects on spontaneous and theophylline-induced motor activity. Neuroscience Letters, 1997, 232, 21-24.	1.0	3
759	Existence of striatal nerve cells coexpressing CCKB and D2 receptor mRNAs. NeuroReport, 1998, 9, 2035-2038.	0.6	3
760	Restoration of dopamine transmission in graft reinnervated striatum. Evidence for regulation of dopamine D2 receptor function in regions lacking dopamine. Progress in Brain Research, 2000, 125, 309-315.	0.9	3
761	Concluding Remarks. Journal of Molecular Neuroscience, 2005, 26, 299-302.	1.1	3
762	Electrophysiology-based analysis of human histamine H4 receptor pharmacology using GIRK channel coupling in Xenopus oocytes. European Journal of Pharmacology, 2008, 591, 52-58.	1.7	3
763	Participation of protein kinases in cytotoxic and proapoptotic effects of ethylene glycol ethers and their metabolites in SH-SY5Y cells. Toxicology in Vitro, 2016, 36, 153-163.	1.1	3
764	Adenosine and Kynurenic Acid Interactions: Possible Relevance for Schizophrenia Treatment?. Frontiers in Pharmacology, 2021, 12, 654426.	1.6	3
765	Detection, Analysis, and Quantification of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity Ligation Assay. Neuromethods, 2018, , 299-315.	0.2	3
766	Small Interference RNA Knockdown Rats in Behavioral Functions: GALR1/GALR2 Heteroreceptor in Anxiety and Depression-Like Behavior. Neuromethods, 2018, , 133-148.	0.2	3
767	Increased density and antagonistic allosteric interactions in A2AR-D2R heterocomplexes in extinction from cocaine use, lost in cue induced reinstatement of cocaine seeking. Pharmacology Biochemistry and Behavior, 2022, 215, 173375.	1.3	3
768	Galanin (1-15) Enhances the Behavioral Effects of Fluoxetine in the Olfactory Bulbectomy Rat, Suggesting a New Augmentation Strategy in Depression. International Journal of Neuropsychopharmacology, 2021, , .	1.0	3
769	The mGlu5 Receptor Protomer-Mediated Dopamine D2 Receptor Trans-Inhibition Is Dependent on the Adenosine A2A Receptor Protomer: Implications for Parkinson's Disease. Molecular Neurobiology, 2022, 59, 5955-5969.	1.9	3
770	Modulation of a 5-HT1A Receptor-Mediated Behavioral Response by the Neuropeptide Galanin. Annals of the New York Academy of Sciences, 1998, 863, 442-444.	1.8	2
771	Acute intermittent nicotine treatment produces a reduction in the total number of FGF-2 immunoreactive astroglial cells in the substantia nigra of the rat: a stereological analysis. Neuroscience Letters, 2004, 355, 181-184.	1.0	2
772	Increased Ethanol Consumption and Locomotion Develop upon Ethanol Deprivation in Rats Overexpressing the Adenosine (A)2A Receptor. Neuroscience, 2019, 418, 133-148.	1.1	2
773	Understanding receptor heteromerization and its allosteric integration of signals. Neuropharmacology, 2019, 152, 1-3.	2.0	2
774	K+-evoked [3H]D-aspartate release in rat spinal cord synaptosomes: Modulation by neuropeptide Y and calcium channel antagonists. , 2000, 62, 722.		2

#	Article	IF	CITATIONS
775	On the Role of Receptor-Receptor Interactions in Central Cardiovascular Regulation: Functional Studies on the Interactions between α2-adrenergic and Neuropeptide Y Receptors in the Rat Medulla Oblongata. , 1987, , 519-530.		2
776	Heteromerization of Adenosine and Dopamine Receptor Subtypes: Relevance for Neuronal Integration in Normal and Pathological States. Advances in Behavioral Biology, 2002, , 199-204.	0.2	2
777	Electrophysiological Approach to GPCR–RTK Interaction Study in Hippocampus of Adult Rats. Neuromethods, 2018, , 71-90.	0.2	2
778	New Aspects on the Catecholamine Innervation of the Hypothalamus and the Limbic System. , 1974, , 223-228.		2
779	Neurochemical and Behavioral Studies on L-dopa Toxicity in the Model of Manganese Lesioned Nigrostriatal Pathway in the Rat: Evidence for a Protective Effect of the GM1 Lactone Siagoside. , 1994, , 381-407.		2
780	Transmitter-Receptor Mismatches in Central Dopamine, Serotonin, and Neuropeptide Systems: Further Evidence for Volume Transmission. , 0, , 083-108.		2
781	Dopamine Receptor Oligomerization. , 2010, , 255-280.		2
782	ENHANCED SENSITIVITY TO THE NORADRENALINE RECEPTOR STIMULATING AGENT, CLONIDINE, FOLLOWING DEGENERATION OF NORADRENALINE PATHWAYS: STUDIES ON ARTERIAL PRESSURE, HEART RATE, AND RESPIRATION. , 1974, , 597-602.		2
783	The MPTP Model of Parkinson's Disease in the Mouse. Modafinil—a New Potential Neuroprotective Agent. , 1994, , 409-423.		2
784	Molecular Integration in Adenosine Heteroreceptor Complexes Through Allosteric and De-Phosphorylation (STEP) Mechanisms and its Role in Brain Disease. Frontiers in Pharmacology, 2021, 12, 781381.	1.6	2
785	Characterization, localization and regulation of dopamine-β-hydroxylase and of other catecholamine synthesizing enzymes. Life Sciences, 1973, 13, liii-lv.	2.0	1
786	Cholecystokinin Receptor Subtypes Regulate Dopamine D2Receptors in Rat Neostriatal Membranes Annals of the New York Academy of Sciences, 1994, 713, 386-387.	1.8	1
787	Reversible and irreversible components of [3H]-N-propylnorapomorphine interaction with rat striatal membranes. Neuroscience Letters, 2002, 325, 111-114.	1.0	1
788	Possible Relevance of Receptor-Receptor Interactions between Viral- and Host-Coded Receptors for Viral-Induced Disease. Scientific World Journal, The, 2007, 7, 1073-1081.	0.8	1
789	Studies on Uptake Mechanisms in Central Monoamine Neurones. Acta Pharmacologica Et Toxicologica, 2009, 25, 8-8.	0.0	1
790	Heteroreceptor Complexes Implicated in Parkinson's Disease. , 2017, , 477-501.		1
791	Methods to Identify the Signature of Trimers Formed by Three G Protein-Coupled Receptors or by Two G Protein-Coupled and One Ionotropic Receptor with Special Emphasis in the Functional Role in the Central Nervous System. Neuromethods, 2018, , 187-203.	0.2	1
792	Can Allosteric Receptor-Protein Interactions in Receptor Complexes Be a Molecular Mechanism Involved in Cancer Immune Therapy?. Frontiers in Endocrinology, 2019, 10, 574.	1.5	1

#	Article	IF	CITATIONS
793	Co-immunoprecipitation (Co-IP) of G Protein-Coupled Receptor (GPCR)-Receptor Tyrosine Kinase (RTK) Complexes from the Dorsal Hippocampus of the Rat Brain. Neuromethods, 2019, , 157-164.	0.2	1
794	Immunocytochemical Studies on Glucocorticoid Receptor. Methods in Neurosciences, 1994, 22, 143-161.	0.5	1
795	The Nigro-Striatal DA Neurons and Mechanisms of Their Degeneration in Parkinson's Disease. , 2008, , 121-144.		1
796	On the Role of Receptor-Receptor Interactions in Synaptic Transmission: Biochemical and Autoradiographical Studies on the Interactions between α2-adrenergic and Neuropeptide Y Receptors in the Nucleus Tractus Solitarius. , 1987, , 222-235.		1
797	Use of Superfused Synaptosomes to Understand the Role of Receptor–Receptor Interactions as Integrative Mechanisms in Nerve Terminals from Selected Brain Region. Neuromethods, 2018, , 41-55.	0.2	1
798	The Combination of Galanin (1–15) and Escitalopram in Rats Suggests a New Strategy for Alcohol Use Disorder Comorbidity with Depression. Biomedicines, 2022, 10, 412.	1.4	1
799	Recent morphological and functional studies on hypothalamic dopaminergic and noradrenergic mechanisms. Biochemical Pharmacology, 1974, 23, 649-656.	2.0	0
800	Possible involvement of G-proteins in the regulation of striatal dopamine D2 receptor affinity by cholecystokinin octapeptide. Neuroscience Letters, 1997, 228, 171-174.	1.0	0
801	Voltage-operated Ca2+ channels involved in K+-evoked release of vasoactive intestinal polypeptide from the rat hypothalamus. Neurochemistry International, 2001, 38, 359-365.	1.9	0
802	Erratum to "Prolonged effects of intraventricular galanin on a 5-hydroxytryptamine1A receptor mediated function in the rat―[Neurosci. Lett. 299 (2001) 145–149]. Neuroscience Letters, 2001, 302, 160.	1.0	0
803	Preface. Journal of Neural Transmission, 2009, 116, 921-922.	1.4	0
804	Life without glutamate: the epigenetic effects of glutamate deletion. Frontiers in Molecular Neuroscience, 2014, 7, 14.	1.4	0
805	Role of D 2 -like Heteroreceptor Complexes in the Effects of Cocaine, Morphine, and Hallucinogens. , 2016, , 93-101.		Ο
806	Analysis and Quantification of GPCR Allosteric Receptor–Receptor Interactions Using Radioligand Binding Assays: The A2AR-D2R Heteroreceptor Complex Example. Neuromethods, 2018, , 1-14.	0.2	0
807	On Nobel Laureate Arvid Carlsson. Journal of Neural Transmission, 2019, 126, 357-357.	1.4	Ο
808	Editorial: "Purinergic Signaling 2020: The State-of-The-Art Commented by the Members of the Italian Purine Club― Frontiers in Pharmacology, 2021, 12, 768923.	1.6	0
809	Aspects on the Role of Neuropeptide Y and Atrial Peptides in Control of Vascular Resistance. , 1986, , 503-526.		0
810	On the Role of Receptor-Receptor Interactions in Central Cardiovascular Regulation: Functional Studies on the Interactions between α2-adrenergic and Neuropeptide Y Receptors in the Rat Medulla Oblongata. , 1987, , 519-530.		0

#	Article	IF	CITATIONS
811	Responses of Neostriatal Dopaminoceptive Cells to the Ischemic Insult. , 1994, , 517-533.		Ο
812	Analysis and Quantification of GPCR Heteroreceptor Complexes and Their Allosteric Receptor–Receptor Interactions Using Radioligand Binding Autoradiography. Neuromethods, 2018, , 15-23.	0.2	0
813	Searching the GPCR Heterodimer Network (GPCR-hetnet) Database for Information to Deduce the Receptor–Receptor Interface and Its Role in the Integration of Receptor Heterodimer Functions. Neuromethods, 2018, , 283-298.	0.2	0
814	On the Study of D4R-MOR Receptor–Receptor Interaction in the Rat Caudate Putamen: Relevance on Morphine Addiction. Neuromethods, 2018, , 25-39.	0.2	0
815	Detection of Fibroblast Growth Factor Receptor 1 (FGFR1) Transactivation by Muscarinic Acetylcholine Receptors (mAChRs) in Primary Neuronal Hippocampal Cultures Through Use of Biochemical and Morphological Approaches. Neuromethods, 2018, , 57-70.	0.2	0
816	Behavioral Methods to Study the Impact of Receptor–Receptor Interactions in Fear and Anxiety. Neuromethods, 2018, , 109-131.	0.2	0
817	In Vivo Microdialysis Technique Applications to Understand the Contribution of Receptor–Receptor Interactions to the Central Nervous System Signaling. Neuromethods, 2018, , 91-107.	0.2	0
818	Coimmunoprecipitation (co-IP) Analysis for Protein-Protein Interactions in the Neurons of the Cerebral Ganglia of the Land Snails of the Genus Polymita During Aestivation. Neuromethods, 2019, , 147-156.	0.2	0
819	Isolation and Detection of G Protein-Coupled Receptor (GPCR) Heteroreceptor Complexes in Rat Brain Synaptosomal Preparation Using a Combined Brain Subcellular Fractionation/Co-immunoprecipitation (Co-IP) Procedures. Neuromethods, 2019, , 123-135.	0.2	0
820	The integrative role of G protein-coupled receptor heterocomplexes in Parkinson's disease. Neural Regeneration Research, 2022, 17, 2211.	1.6	0