Ting Lan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1672871/publications.pdf Version: 2024-02-01

TINCLAN

	ARTICLE	IF	CITATIONS
1	Extensive Functional Diversification of the <i>Populus</i> Glutathione <i>S</i> -Transferase Supergene Family Â. Plant Cell, 2010, 21, 3749-3766.	3.1	185
2	Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Scientific Reports, 2016, 6, 19467.	1.6	84
3	Genome-wide analysis of the LEA (late embryogenesis abundant) protein gene family in Populus trichocarpa. Tree Genetics and Genomes, 2013, 9, 253-264.	0.6	75
4	A Resource for Inactivation of MicroRNAs Using Short Tandem Target Mimic Technology in Model and Crop Plants. Molecular Plant, 2018, 11, 1400-1417.	3.9	52
5	Structural and Functional Evolution of Positively Selected Sites in Pine Glutathione S-Transferase Enzyme Family*. Journal of Biological Chemistry, 2013, 288, 24441-24451.	1.6	49
6	Genome-Wide Analysis of the Glutathione S-Transferase Gene Family in Capsella rubella: Identification, Expression, and Biochemical Functions. Frontiers in Plant Science, 2016, 7, 1325.	1.7	34
7	Extraribosomal Functions of Cytosolic Ribosomal Proteins in Plants. Frontiers in Plant Science, 2021, 12, 607157.	1.7	19
8	Arabidopsis RBV is a conserved WD40 repeat protein that promotes microRNA biogenesis and ARGONAUTE1 loading. Nature Communications, 2022, 13, 1217.	5.8	19
9	Genome-wide analysis of superoxide dismutase genes in Larix kaempferi. Gene, 2019, 686, 29-36.	1.0	18
10	Overexpression of PtoCYCD3;3 Promotes Growth and Causes Leaf Wrinkle and Branch Appearance in Populus. International Journal of Molecular Sciences, 2021, 22, 1288.	1.8	13
11	Plant cytoplasmic ribosomal proteins: an update on classification, nomenclature, evolution and resources. Plant Journal, 2022, 110, 292-318.	2.8	11
12	Distinct Evolutionary Profiles and Functions of microRNA156 and microRNA529 in Land Plants. International Journal of Molecular Sciences, 2021, 22, 11100.	1.8	8
13	MicroRNA Techniques: Valuable Tools for Agronomic Trait Analyses and Breeding in Rice. Frontiers in Plant Science, 2021, 12, 744357.	1.7	6
14	<i>TRANS-ACTING SIRNA3-</i> derived short interfering RNAs confer cleavage of mRNAs in rice. Plant Physiology, 2022, 188, 347-362.	2.3	6
15	High resolution RNAâ€seq profiling of genes encoding ribosomal proteins across different organs and developmental stages in Arabidopsis thaliana. Plant Direct, 2021, 5, e00320.	0.8	5
16	Mechanism for the genomic and functional evolution of the MIR2118 family in the grass lineage. New Phytologist, 2022, 233, 1915-1930.	3.5	5
17	Arabidopsis paralogous genes RPL23aA and RPL23aB encode functionally equivalent proteins. BMC Plant Biology, 2020, 20, 463.	1.6	4