
Beata Weber-DÄbrowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/167278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. Journal of Biomedical Science, 2022, 29, 23.	7.0	39
2	A Thorough Synthesis of Phage Therapy Unit Activity in Poland—lts History, Milestones and International Recognition. Viruses, 2022, 14, 1170.	3.3	11
3	Anti-biofilm activity of bacteriophages and lysins in chronic rhinosinusitis. Acta Virologica, 2021, 65, 127-140.	0.8	6
4	Low Immunogenicity of Intravesical Phage Therapy for Urogenitary Tract Infections. Antibiotics, 2021, 10, 627.	3.7	9
5	Isolation and Characterization of Phages Active against Paenibacillus larvae Causing American Foulbrood in Honeybees in Poland. Viruses, 2021, 13, 1217.	3.3	8
6	Potential for Phages in the Treatment of Bacterial Sexually Transmitted Infections. Antibiotics, 2021, 10, 1030.	3.7	8
7	Current Updates from the Long-Standing Phage Research Centers in Georgia, Poland, and Russia. , 2021, , 921-951.		8
8	BronisÅ,awa Fejgin (1883–1943): Forgotten Important Contributor to International Microbiology and Phage Therapy. Antibiotics, 2021, 10, 1353.	3.7	2
9	Phage therapy: Current status and perspectives. Medicinal Research Reviews, 2020, 40, 459-463.	10.5	102
10	Phage Prevalence in the Human Urinary Tract—Current Knowledge and Therapeutic Implications. Microorganisms, 2020, 8, 1802.	3.6	16
11	Phages in Therapy and Prophylaxis of American Foulbrood – Recent Implications From Practical Applications. Frontiers in Microbiology, 2020, 11, 1913.	3.5	12
12	Phages as a Cohesive Prophylactic and Therapeutic Approach in Aquaculture Systems. Antibiotics, 2020, 9, 564.	3.7	18
13	The Presence of Bacteriophages in the Human Body: Good, Bad or Neutral?. Microorganisms, 2020, 8, 2012.	3.6	18
14	Phage Therapy in Poland – a Centennial Journey to the First Ethically Approved Treatment Facility in Europe. Frontiers in Microbiology, 2020, 11, 1056.	3.5	44
15	Bacteriophages and Lysins in Biofilm Control. Virologica Sinica, 2020, 35, 125-133.	3.0	66
16	The effects of T4 and A5/80 phages on the expression of immunologically important genes in differentiated Caco-2 cells*. Postepy Higieny I Medycyny Doswiadczalnej, 2020, 74, 371-376.	0.1	5
17	Polish Contribution to the Advancement of Phage Treatment in Humans. , 2020, , .		0
18	The fall and rise of phage therapy in modern medicine. Expert Opinion on Biological Therapy, 2019, 19, 1115-1117.	3.1	19

#	Article	IF	CITATIONS
19	Factors determining phage stability/activity: challenges in practical phage application. Expert Review of Anti-Infective Therapy, 2019, 17, 583-606.	4.4	82
20	Phage penetration of eukaryotic cells: practical implications. Future Virology, 2019, 14, 745-760.	1.8	16
21	Encapsulation of bacteriophage T4 in mannitol-alginate dry macrospheres and survival in simulated gastrointestinal conditions. LWT - Food Science and Technology, 2019, 99, 238-243.	5.2	15
22	Phage Therapy in Orthopaedic Implant-Associated Infections. , 2019, , 189-211.		5
23	Humoral Immune Response to Phage-Based Therapeutics. , 2019, , 123-143.		3
24	Phage therapy in allergic disorders?. Experimental Biology and Medicine, 2018, 243, 534-537.	2.4	13
25	Bacteriophages targeting intestinal epithelial cells: a potential novel form of immunotherapy. Cellular and Molecular Life Sciences, 2018, 75, 589-595.	5.4	24
26	Use of a Regression Model to Study Host-Genomic Determinants of Phage Susceptibility in MRSA. Antibiotics, 2018, 7, 9.	3.7	5
27	"Phage Transplantation in Allotransplantation†Possible Treatment in Graft-Versus-Host Disease?. Frontiers in Immunology, 2018, 9, 941.	4.8	8
28	Phage Therapy: Beyond Antibacterial Action. Frontiers in Medicine, 2018, 5, 146.	2.6	27
29	Perspectives of Phage–Eukaryotic Cell Interactions to Control Epstein–Barr Virus Infections. Frontiers in Microbiology, 2018, 9, 630.	3.5	13
30	Phage Therapy in Prostatitis: Recent Prospects. Frontiers in Microbiology, 2018, 9, 1434.	3.5	18
31	Phage Therapy: What Have We Learned?. Viruses, 2018, 10, 288.	3.3	101
32	Perspectives of Phage Therapy in Non-bacterial Infections. Frontiers in Microbiology, 2018, 9, 3306.	3.5	49
33	Current Updates from the Long-Standing Phage Research Centers in Georgia, Poland, and Russia. , 2018, , 1-31.		13
34	Phages and immunomodulation. Future Microbiology, 2017, 12, 905-914.	2.0	117
35	Can phage therapy solve the problem of recalcitrant chronic rhinosinusitis?. Future Microbiology, 2017, 12, 1427-1442.	2.0	8
36	Antiphage activity of sera during phage therapy in relation to its outcome. Future Microbiology, 2017, 12, 109-117.	2.0	71

Beata Weber-DÄ...browska

#	Article	IF	CITATIONS
37	Bacteriophages in the gastrointestinal tract and their implications. Gut Pathogens, 2017, 9, 44.	3.4	114
38	A3R Phage and Staphylococcus aureus Lysate Do Not Induce Neutrophil Degranulation. Viruses, 2017, 9, 36.	3.3	20
39	Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics. Viruses, 2017, 9, 150.	3.3	62
40	The Potential of Phage Therapy in Sepsis. Frontiers in Immunology, 2017, 8, 1783.	4.8	35
41	Prospects of Phage Application in the Treatment of Acne Caused by Propionibacterium acnes. Frontiers in Microbiology, 2017, 8, 164.	3.5	30
42	Means to Facilitate the Overcoming of Gastric Juice Barrier by a Therapeutic Staphylococcal Bacteriophage A5/80. Frontiers in Microbiology, 2017, 08, 467.	3.5	50
43	<i>In Vivo</i> Studies on the Influence of Bacteriophage Preparations on the Autoimmune Inflammatory Process. BioMed Research International, 2017, 2017, 1-9.	1.9	39
44	Bacteriophage Procurement for Therapeutic Purposes. Frontiers in Microbiology, 2016, 7, 1177.	3.5	125
45	The Effects of T4 and A3/R Bacteriophages on Differentiation of Human Myeloid Dendritic Cells. Frontiers in Microbiology, 2016, 7, 1267.	3.5	14
46	LPS-Activated Monocytes Are Unresponsive to T4 Phage and T4-Generated Escherichia coli Lysate. Frontiers in Microbiology, 2016, 7, 1356.	3.5	8
47	Phage Therapy: Combating Infections with Potential for Evolving from Merely a Treatment for Complications to Targeting Diseases. Frontiers in Microbiology, 2016, 7, 1515.	3.5	120
48	Antibody Production in Response to Staphylococcal MS-1 Phage Cocktail in Patients Undergoing Phage Therapy. Frontiers in Microbiology, 2016, 7, 1681.	3.5	92
49	The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes. Journal of Immunology Research, 2015, 2015, 1-13.	2.2	39
50	Phages targeting infected tissues: novel approach to phage therapy. Future Microbiology, 2015, 10, 199-204.	2.0	40
51	T4 bacteriophage-mediated inhibition of adsorption and replication of human adenovirus <i>in vitro</i> . Future Microbiology, 2015, 10, 453-460.	2.0	26
52	Possible Use of Bacteriophages Active against <i>Bacillus anthracis</i> and Other <i>B. cereus</i> Group Members in the Face of a Bioterrorism Threat. BioMed Research International, 2014, 2014, 1-14.	1.9	12
53	Phage Neutralization by Sera of Patients Receiving Phage Therapy. Viral Immunology, 2014, 27, 295-304.	1.3	179
54	Influence of Bacteriophage Preparations on Intracellular Killing of Bacteria by Human Phagocytes <i>in Vitro</i> . Viral Immunology, 2013, 26, 150-162.	1.3	12

#	Article	IF	CITATIONS
55	Influence of bacteriophage preparations on migration of HL-60 leukemia cells in vitro. Anticancer Research, 2013, 33, 1569-74.	1.1	3
56	Phage as a Modulator of Immune Responses. Advances in Virus Research, 2012, 83, 41-71.	2.1	206
57	Clinical Aspects of Phage Therapy. Advances in Virus Research, 2012, 83, 73-121.	2.1	274
58	Genomics of Staphylococcal Twort-like Phages - Potential Therapeutics of the Post-Antibiotic Era. Advances in Virus Research, 2012, 83, 143-216.	2.1	99
59	Potential of Bacteriophages and Their Lysins in the Treatment of MRSA. BioDrugs, 2011, 25, 347-355.	4.6	23
60	lsolation and characterisation of KP34—a novel φKMV-like bacteriophage for Klebsiella pneumoniae. Applied Microbiology and Biotechnology, 2011, 90, 1333-1345.	3.6	62
61	Prophylactic effect of bacteriophages on mice subjected to chemotherapy-induced immunosuppression and bone marrow transplant upon infection with Staphylococcus aureus. Medical Microbiology and Immunology, 2010, 199, 71-79.	4.8	21
62	The effects of staphylococcal bacteriophage lysates on cancer cells in vitro. Clinical and Experimental Medicine, 2010, 10, 81-85.	3.6	7
63	The perspectives of the application of phage therapy in chronic bacterial prostatitis. FEMS Immunology and Medical Microbiology, 2010, 60, 99-112.	2.7	51
64	The Effects of T4 and A3/R Phage Preparations on Whole-Blood Monocyte and Neutrophil Respiratory Burst. Viral Immunology, 2010, 23, 541-544.	1.3	21
65	Effects of prophylactic administration of bacteriophages to immunosuppressed mice infected with Staphylococcus aureus. BMC Microbiology, 2009, 9, 169.	3.3	39
66	A retrospective analysis of changes in inflammatory markers in patients treated with bacterial viruses. Clinical and Experimental Medicine, 2009, 9, 303-312.	3.6	53
67	The Potential of Phage Therapy in Bacterial Infections of the Eye. Ophthalmologica, 2009, 223, 162-165.	1.9	26
68	Bacteriophage therapy for the treatment of infections. Current Opinion in Investigational Drugs, 2009, 10, 766-74.	2.3	79
69	Bacteriophages support anti-tumor response initiated by DC-based vaccine against murine transplantable colon carcinoma. Immunology Letters, 2008, 116, 24-32.	2.5	40
70	Bacteriophage preparation inhibition of reactive oxygen species generation by endotoxin-stimulated polymorphonuclear leukocytes. Virus Research, 2008, 131, 233-242.	2.2	78
71	The concerted action of lactoferrin and bacteriophages in the clearance of bacteria in sublethally infected mice. Postepy Higieny I Medycyny Doswiadczalnej, 2008, 62, 42-6.	0.1	7
72	Bacteriophage therapy in children: facts and prospects. Medical Science Monitor, 2008, 14, RA126-32.	1.1	23

Beata Weber-DÄ...browska

#	Article	IF	CITATIONS
73	Phage therapy of staphylococcal infections (including MRSA) may be less expensive than antibiotic treatment. Postepy Higieny I Medycyny Doswiadczalnej, 2007, 61, 461-5.	0.1	43
74	Bacteriophage Endolysins as a Novel Class of Antibacterial Agents. Experimental Biology and Medicine, 2006, 231, 366-377.	2.4	271
75	Effects of bacteriophages on free radical production and phagocytic functions. Medical Microbiology and Immunology, 2006, 195, 143-150.	4.8	81
76	The potential role of endogenous bacteriophages in controlling invading pathogens. Cellular and Molecular Life Sciences, 2005, 62, 511-519.	5.4	137
77	Bacterial viruses against viruses pathogenic for man?. Virus Research, 2005, 110, 1-8.	2.2	38
78	Potential possibilities of using phage typing in elimination of multidrug resistant staphylococci. Polish Journal of Microbiology, 2005, 54, 63-7.	1.7	2
79	Preparation of endotoxin-free bacteriophages. Cellular and Molecular Biology Letters, 2004, 9, 253-9.	7.0	72
80	Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models. Anticancer Research, 2004, 24, 3991-5.	1.1	34
81	New insights into the possible role of bacteriophages in host defense and disease. Medical Immunology, 2003, 2, 2.	2.1	68
82	Bacteriophages provide regulatory signals in mitogen-induced murine splenocyte proliferation. Cellular and Molecular Biology Letters, 2003, 8, 699-711.	7.0	15
83	Effect of phage therapy on the turnover and function of peripheral neutrophils. FEMS Immunology and Medical Microbiology, 2002, 34, 135-138.	2.7	37