Antti Henrik Rantamäki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1672488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immobilization of natural lipid biomembranes and their interactions with choline carboxylates. A nanoplasmonic sensing study. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183115.	2.6	2
2	Recycling of Superbase-Based Ionic Liquid Solvents for the Production of Textile-Grade Regenerated Cellulose Fibers in the Lyocell Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 14217-14227.	6.7	49
3	Vapor–Liquid Equilibrium of Ionic Liquid 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium Acetate and Its Mixtures with Water. Journal of Chemical & Engineering Data, 2020, 65, 2405-2421.	1.9	8
4	Interactions of Ionic Liquids and Spirocyclic Compounds with Liposome Model Membranes. A Steady-State Fluorescence Anisotropy Study. Scientific Reports, 2019, 9, 18349.	3.3	10
5	Correlation between Ionic Liquid Cytotoxicity and Liposome–Ionic Liquid Interactions. Chemistry - A European Journal, 2018, 24, 2669-2680.	3.3	43
6	Impact of Surface-Active Guanidinium-, Tetramethylguanidinium-, and Cholinium-Based Ionic Liquids on Vibrio Fischeri Cells and Dipalmitoylphosphatidylcholine Liposomes. Scientific Reports, 2017, 7, 46673.	3.3	38
7	Distribution of local anesthetics between aqueous and liposome phases. Journal of Chromatography A, 2017, 1479, 194-203.	3.7	14
8	Pure Glaucoma Drugs Are Toxic to Immortalized Human Corneal Epithelial Cells, but They Do Not Destabilize Lipid Membranes. Cornea, 2017, 36, 1249-1255.	1.7	15
9	Cholesterol affects the interaction between an ionic liquid and phospholipid vesicles. A study by differential scanning calorimetry and nanoplasmonic sensing. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2361-2372.	2.6	24
10	WtFâ€Nano: Oneâ€Pot Dewatering and Waterâ€Free Topochemical Modification of Nanocellulose in Ionic Liquids or γâ€Valerolactone. ChemSusChem, 2017, 10, 4879-4890.	6.8	14
11	The Effect of Phospholipids on Tear Film Lipid Layer Surface Activity. , 2017, 58, 149.		14
12	Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry. Electrophoresis, 2016, 37, 880-912.	2.4	23
13	The Effect of Ambient Ozone on Unsaturated Tear Film Wax Esters. , 2015, 56, 8054.		13
14	Surface Properties of Artificial Tear Film Lipid Layers: Effects of Wax Esters. , 2014, 55, 4448.		22
15	Lipid-Modifying Enzymes in Human Tear Fluid and Corneal Epithelial Stress Response. , 2014, 55, 16.		17
16	Antievaporative Mechanism of Wax Esters: Implications for the Function of Tear Fluid. Langmuir, 2014, 30, 5897-5902.	3.5	25
17	Melting Points—The Key to the Anti-Evaporative Effect of the Tear Film Wax Esters. , 2013, 54, 5211.		38

Do Lipids Retard the Evaporation of the Tear Fluid?. , 2012, 53, 6442.

#	Article	IF	CITATIONS
19	Human Tear Fluid Lipidome: From Composition to Function. PLoS ONE, 2011, 6, e19553.	2.5	119
20	Lessons from the biophysics of interfaces: Lung surfactant and tear fluid. Progress in Retinal and Eye Research, 2011, 30, 204-215.	15.5	46
21	Molecular Organization of the Tear Film Lipid Layer. Biophysical Journal, 2010, 98, 488a.	0.5	0
22	Molecular Organization of the Tear Fluid Lipid Layer. Biophysical Journal, 2010, 99, 2559-2567.	0.5	67