Francisco J Carmona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1671990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green synthesis of zirconium MOF-808 for simultaneous phosphate recovery and organophosphorus pesticide detoxification in wastewater. Journal of Materials Chemistry A, 2022, 10, 19606-19611.	10.3	23
2	Zirconium Metal–Organic Polyhedra with Dual Behavior for Organophosphate Poisoning Treatment. ACS Applied Materials & Interfaces, 2022, 14, 26501-26506.	8.0	9
3	On the amorphous layer in bone mineral and biomimetic apatite: A combined small- and wide-angle X-ray scattering analysis. Acta Biomaterialia, 2021, 120, 167-180.	8.3	20
4	Towards a more sustainable viticulture: foliar application of Nâ€doped calcium phosphate nanoparticles on Tempranillo grapes. Journal of the Science of Food and Agriculture, 2021, 101, 1307-1313.	3.5	38
5	Urea-functionalized amorphous calcium phosphate nanofertilizers: optimizing the synthetic strategy towards environmental sustainability and manufacturing costs. Scientific Reports, 2021, 11, 3419.	3.3	40
6	Urea-Doped Calcium Phosphate Nanoparticles as Sustainable Nitrogen Nanofertilizers for Viticulture: Implications on Yield and Quality of Pinot Gris Grapevines. Agronomy, 2021, 11, 1026.	3.0	26
7	Dual removal and selective recovery of phosphate and an organophosphorus pesticide from water by a Zr-based metal-organic framework. Materials Today Chemistry, 2021, 22, 100596.	3.5	9
8	Physiological and Molecular Investigation of Urea Uptake Dynamics in Cucumis sativus L. Plants Fertilized With Urea-Doped Amorphous Calcium Phosphate Nanoparticles. Frontiers in Plant Science, 2021, 12, 745581.	3.6	4
9	Porous materials as carriers of gasotransmitters towards gas biology and therapeutic applications. Chemical Communications, 2020, 56, 9750-9766.	4.1	20
10	Engineering Biomimetic Calcium Phosphate Nanoparticles: A Green Synthesis of Slow-Release Multinutrient (NPK) Nanofertilizers. ACS Applied Bio Materials, 2020, 3, 1344-1353.	4.6	89
11	The role of nanoparticle structure and morphology in the dissolution kinetics and nutrient release of nitrate-doped calcium phosphate nanofertilizers. Scientific Reports, 2020, 10, 12396.	3.3	26
12	Mixed-Metal Cerium/Zirconium MOFs with Improved Nerve Agent Detoxification Properties. Inorganic Chemistry, 2020, 59, 16160-16167.	4.0	19
13	Reducing Nitrogen Dosage in Triticum durum Plants with Urea-Doped Nanofertilizers. Nanomaterials, 2020, 10, 1043.	4.1	44
14	Coordination Modulation Method To Prepare New Metal–Organic Framework-Based CO-Releasing Materials. ACS Applied Materials & Interfaces, 2018, 10, 31158-31167.	8.0	31
15	Silk fibroin nanoparticles as biocompatible nanocarriers of a novel light-responsive CO-prodrug. Dalton Transactions, 2018, 47, 10434-10438.	3.3	5
16	Metal–organic frameworks as platforms for biosignalling molecules. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e125-e126.	0.1	0
17	One-pot preparation of a novel CO-releasing material based on a CO-releasing molecule@metal–organic framework system. Chemical Communications, 2017, 53, 6581-6584.	4.1	21
18	Aluminum Doped MCM-41 Nanoparticles as Platforms for the Dual Encapsulation of a CO-Releasing Molecule and Cisplatin. Inorganic Chemistry, 2017, 56, 10474-10480.	4.0	27

#	Article	IF	CITATIONS
19	Inorganic mesoporous silicas as vehicles of two novel anthracene-based ruthenium metalloarenes. Journal of Inorganic Biochemistry, 2017, 166, 87-93.	3.5	18
20	Cation Exchange Strategy for the Encapsulation of a Photoactive CO-Releasing Organometallic Molecule into Anionic Porous Frameworks. Inorganic Chemistry, 2016, 55, 6525-6531.	4.0	32
21	Nanoscaled Zinc Pyrazolate Metal–Organic Frameworks as Drug-Delivery Systems. Inorganic Chemistry, 2016, 55, 2650-2663.	4.0	147
22	RAPTA-C incorporation and controlled delivery from MIL-100(Fe) nanoparticles. New Journal of Chemistry, 2016, 40, 5690-5694.	2.8	23
23	Biophysical characterisation, antitumor activity and MOF encapsulation of a half-sandwich ruthenium(<scp>ii</scp>) mitoxantronato system. Journal of Materials Chemistry B, 2014, 2, 2473-2477.	5.8	36