Andre E Punt

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/1671783/publications.pdf
Version: 2024-02-01

Examining common assumptions about recruitment: a metaấenalysis of recruitment dynamics for worldwide marine fisheries. Fish and Fisheries, 2015, 16, 633-648.
2.7

218

Evaluating methods for setting catch limits in data-limited fisheries. Fisheries Research, 2014, 153,
0.9

207

```
43 Evaluat
```

Fisheries management under climate and environmental uncertainty: control rules and performance simulation. ICES Journal of Marine Science, 2014, 71, 2208-2220.
4. Modelling the biological interaction between Cape fur seals<i>Arctocephalus pusillus

21 4. Modelling the biological interaction between Cape fur seals<i>Arctocephalus pusillus Marine Science, 1995, 16, 255-285.

22 Estimating uncertainty in fish stock assessment and forecasting. Fish and Fisheries, 2001, 2, 125-157.
Lengthâ€Based Reference Points for Dataâ€limited Situations: Applications and Restrictions. Marine and
Coastal Fisheries, 2009, 1, 169-186.
$0.6 \quad 122$

Standardization of catch and effort data in a spatially-structured shark fishery. Fisheries Research, 2000, 45, 129-145.
Experience in implementing harvest strategies in Australia's south-eastern fisheries. Fisheries
Research, 2008, 94, 373-379.

$26 \quad$| Review of integrated size-structured models for stock assessment of hard-to-age crustacean and |
| :--- |
| mollusc species. ICES Journal of Marine Science, 2013, 70, 16-33. |

Looking in the rear-view mirror: bias and retrospective patterns in integrated, age-structured stock
assessment models. ICES Journal of Marine Science, 2015, 72, 99-110.
Among-stock comparisons for improving stock assessments of data-poor stocks: the â€œRobin Hoodâ€•
approach. ICES Journal of Marine Science, 2011, 68, 972-981.
29 Model uncertainty in the ecosystem approach to fisheries. Fish and Fisheries, 2007, 8, 315-336.

2.7

98
30 Ecosystem-based fisheries management forestalls climate-driven collapse. Nature Communications,

2020, 11, 4579.
5.8

96
31 Information flow among fishing vessels modelled using a Bayesian network. Environmental Modelling
$1.9 \quad 93$ and Software, 2004, 19, 27-34.

Does MPA mean 'Major Problem for Assessments'? Considering the consequences of place-based management systems. Fish and Fisheries, 2006, 7, 284-302.
2.7

92

Beyond biological performance measures in management strategy evaluation: Bringing in economics
and the effects of trawling on the benthos. Fisheries Research, 2008, 94, 238-250.
$0.9 \quad 92$

Harvest strategy evaluation for the eastern stock of gemfish (Rexea solandri). ICES Journal of Marine
Science, 1999, 56, 860-875.
1.2

91

Management strategy evaluation for line fishing in the Great Barrier Reef: Balancing conservation and
multi-sector fishery objectives. Fisheries Research, 2008, 94, 315-329.
0.9

88

37	A comparison of fisheries biological reference points estimated from temperature-specific multi-species and single-species climate-enhanced stock assessment models. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 134, 360-378.	0.6	87
38	Integrated ecologicalâ€"economic fisheries modelsâ€"Evaluation, review and challenges for implementation. Fish and Fisheries, 2018, 19, 1-29.	2.7	87
39	The evaluation of two management strategies for the Gulf of Alaska walleye pollock fishery under climate change. ICES Journal of Marine Science, 2009, 66, 1614-1632.	1.2	85
40	THE FAO PRECAUTIONARY APPROACH AFTER ALMOST 10 YEARS: HAVE WE PROGRESSED TOWARDS IMPLEMENTING SIMULATION-TESTED FEEDBACK-CONTROL MANAGEMENT SYSTEMS FOR FISHERIES MANAGEMENT?. Natural Resource Modelling, 2006, 19, 441-464.	0.8	82
41	Stock assessment of school shark, Galeorhinus galeus, based on a spatially explicit population dynamics model. Marine and Freshwater Research, 2000, 51, 205.	0.7	81
42	Time-varying natural mortality in fisheries stock assessment models: identifying a default approach. ICES Journal of Marine Science, 2015, 72, 137-150.	1.2	81
43	Extending production models to include process error in the population dynamics. Canadian Journal of Fisheries and Aquatic Sciences, 2003, 60, 1217-1228.	0.7	79
44	Modelling marine protected areas: insights and hurdles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140278.	1.8	78
45	Communicating climate change: Climate change risk perceptions and rock lobster fishers, Tasmania. Marine Policy, 2012, 36, 753-759.	1.5	77
46	Assessing the recovery of an Antarctic predator from historical exploitation. Royal Society Open Science, 2019, 6, 190368.	1.1	74
47	Including discard data in fisheries stock assessments: Two case studies from south-eastern Australia. Fisheries Research, 2006, 79, 239-250.	0.9	72
48	Admitting ageing error when fitting growth curves: an example using the von Bertalanffy growth function with random effects. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64, 205-218.	0.7	71
49	Application of a weekly delay-difference model to commercial catch and effort data for tiger prawns in Australiaâ $\epsilon^{T M}$ s Northern Prawn Fishery. Fisheries Research, 2003, 65, 335-350.	0.9	69

50 The promises and pitfalls of including decadal-scale climate forcing of recruitment in groundfish stock assessment. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 912-926.

Best practices for assessing forage fish fisheries-seabird resource competition. Fisheries Research,
$2017,194,209-221$.

Reconciling Approaches to the Assessment and Management of Dataâ€Poor Species and Fisheries with Australia's Harvest Strategy Policy. Marine and Coastal Fisheries, 2009, 1, 244-254.

Leaner leviathans: body condition variation in a critically endangered whale population. Journal of Mammalogy, 2012, 93, 251-266.

Food for thought: pretty good multispecies yield. ICES Journal of Marine Science, 2017, 74, 475-486.
1.2

Evidence of large-scale spatial declines in recruitment patterns of southern rock lobster Jasus
edwardsii, across south-eastern Australia. Fisheries Research, 2010, 105, 163-171.

Fisheries management for regime-based ecosystems: a management strategy evaluation for the snow
crab fishery in the eastern Bering Sea. ICES Journal of Marine Science, 2013, 70, 955-967.
1.2
$0.9 \quad 62$

61 Model selection for selectivity in fisheries stock assessments. Fisheries Research, 2014, 158, 124-134.
0.9

62

62 An agent-based model for simulating trading of multi-species fisheries quota. Ecological Modelling, 2009, 220, 3404-3412.

Estimating the size-transition matrix for Tasmanian rock lobster, Jasus edwardsii. Marine and
Freshwater Research, 1997, 48, 981.

Spatial stock assessment methods: A viewpoint on current issues and assumptions. Fisheries Research,
2019, 213, 132-143.

Stock assessment and risk analysis for the school shark (Galeorhinus galeus) off southern Australia.
$65 \quad$ Marine and Freshwater Research, 1998, 49, 719.

Integrated Modeling to Evaluate Climate Change Impacts on Coupled Social-Ecological Systems in Alaska. Frontiers in Marine Science, 2020, 6, .

MULTISPECIES AND SINGLEâ€SPECIES MODELS OF FISH POPULATION DYNAMICS: COMPARING PARAMETER ESTIMATES. Natural Resource Modelling, 2009, 22, 67-104.

A review of stock assessment packages in the United States. Fisheries Research, 2016, 183, 447-460.
0.9

Shifts in fisheries management: adapting to regime shifts. Philosophical Transactions of the Royal
Society B: Biological Sciences, 2015, 370, 20130277.

The performance of a size-structured stock assessment method in the face of spatial heterogeneity in growth. Fisheries Research, 2003, 65, 391-409.

ELFSimâ€"A model for evaluating management options for spatially structured reef fish populations: An
illustration of the â€œlarval subsidyâ€•effect. Ecological Modelling, 2007, 205, 381-396.
1.2

55
73 Integrating size-structured assessment and bioeconomic management advice in Australia's northern
prawn fishery. ICES Journal of Marine Science, 2010, 67, 1785-1801.$77 \begin{aligned} & \text { A generalized linear mixed model analysis of a multi-vessel fishery resource survey. Fisheries } \\ & \text { Research, 2004, 70, 251-264 }\end{aligned}$Research, 2004, 70, 251-264.
0.9
78 Evaluating alternative estimators of fishery management reference points. Fisheries Research, 2008,

```
79 Are Coastal Protected Areas Always Effective in Achieving Population Recovery for Nesting Sea
    Turtles?. PLoS ONE, 2013, 8, e63525.
```

The effects of future consumption by the Cape fur seal on catches and catch rates of the Cape hater
Modelling the dynamics of the Cape fur sealArctocephalus pusillus pusillus. African Journal of
Marine Science, 1995, 16, 161-183.
82 Impacts of Vessel Capacity Reduction Programmes on Efficiency in Fisheries: the Case of Australia
Multispecies Northern Prawn Fishery. Journal of Agricultural Economics, 2012, 63, 425-443.

83 | Multi-model inference for incorporating trophic and climate uncertainty into stock assessments. |
| :--- |
| Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 134, 379-389. |

The impact of regime shifts on the performance of management strategies for the Gulf of Alaska 86 walleye pollock (Theragra chalcogramma) fishery. Canadian Journal of Fisheries and Aquatic Sciences,
2009, 66, 2222-2242.87 mortality, growth and recruitment? A case study based on pink ling in Australia. Fisheries Research,
Essential features of the next-generation integrated fisheries stock assessment package: A perspective.
Fisheries Research, 2020, 229, 105617 .

Predictive modelling of habitat selection by marine predators with respect to the abundance and depth distribution of pelagic prey. Journal of Animal Ecology, 2015, 84, 1575-1588. Journal of Marine Science, 2010, 67, 567-574.
100 Model performance analysis for Bayesian biomass dynamics models using bias, precision and reliability
101 Aquatic Sciences, 2015, 72, 262-280.
$0.7 \quad 43$102 Model to manage and reduce crown-of-thorns starfish outbreaks. Marine Ecology - Progress Series,

Effects of size and fragmentation of marine reserves and fisher infringement on the catch and
104 biomass of coral trout, Plectropomus leopardus, on the Great Barrier Reef, Australia. Fisheries

Moving towards ecosystem-based fisheries management: Options for parameterizing multi-species
109 biological reference points. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 134, 350-359.

110 Strategic management decision-making in a complex world: quantifying, understanding, and using trade-offs. ICES Journal of Marine Science, 2017, 74, 499-510.
1.2

111 Model performance for the determination of appropriate harvest levels in the case of data-poor
stocks. Fisheries Research, 2011, 110, 342-355.
0.9

An optimized catch-only assessment method for data poor fisheries. ICES Journal of Marine Science, 2018, 75, 964-976.
1.2

Experience with quantitative ecosystem assessment tools in the northeast Pacific. Fish and Fisheries, 2011, 12, 189-208.
2.7
1.0

A framework for incorporating sense of place into the management of marine systems. Ecology and Society, 2018, 23, .

39

$$
115 \text { Movement models provide insights into variation in the foraging effort of central place foragers. }
$$ Ecological Modelling, 2014, 286, 13-25.

1.2

38

116 Effects of variation in the abundance and distribution of prey on the foraging success of central

 place foragers. Journal of Applied Ecology, 2017, 54, 1362-1372.117 Evaluating empirical indicators and reference points for fisheries management: application to the
broadbill swordfish fishery off eastern Australia. Marine and Freshwater Research, 2001, 52, 819.

Management strategies for short lived species: The case of Australia's Northern Prawn Fishery.
118 Fisheries Research, 2006, 82, 221-234.
0.9

37

> 119 Performance of a fisheries catch-at-age model (Stock Synthesis) in data-limited situations. Marine and
> Freshwater Research, 2011, 62, 927.
$0.7 \quad 37$
$120 \quad \begin{aligned} & \text { Calculating optimal effort and catch trajectories for multiple species modelled using a mix of } \\ & \text { size-structured, delay-difference and biomass dynamics models. Fisheries Research, 2011, 109, 201-211. }\end{aligned}$
$120 \quad \begin{aligned} & \text { Calculating optimal effort and catch trajectories for multiple species modelled using a mix of } \\ & \text { size-structured, delay-difference and biomass dynamics models. Fisheries Research, 2011, 109, 201-211. }\end{aligned}$
0.9

37

How well can FMSY and BMSY be estimated using empirical measures of surplus production?. Fisheries
Research, 2012, 134-136, 113-124.

Inclusion of ecological, economic, social, and institutional considerations when setting targets and limits for multispecies fisheries. ICES Journal of Marine Science, 2017, 74, 453-463.

Ensemble Projections of Future Climate Change Impacts on the Eastern Bering Sea Food Web Using a
1.2

Multispecies Size Spectrum Model. Frontiers in Marine Science, 2020, 7, .
On an approach for applying per-recruit methods to a protogynous hermaphrodite, with an
124 illustration for the slinger<i>Chrysoblephus puniceus</i>(Pisces: Sparidae). African Journal of
0.6

Marine Science, 1993, 13, 109-119.
The effects of future consumption by the Cape fur seal on catches and catch rates of the Cape hakes.
125 2. Feeding and diet of the Cape fur sealArctocephalus pusillus pusillus. African Journal of Marine
0.6

Science, 1995, 16, 85-99.
Evolution of age and length at maturation of A laskan salmon under sizeâ€selective harvest.
Evolutionary Applications, 2014, 7, 313-322.

127	Estimating stock depletion level from patterns of catch history. Fish and Fisheries, 2017, 18, 742-751.	2.7	34
128	Environmental and spatial effects on the distribution of blue marlin (<i>Makaira nigricans<<i>) as inferred from data for longline fisheries in the Pacific Ocean. Fisheries Oceanography, 2008, 17, 432-445.	0.9	33
129	Targeting ability and output controls in Australia's multi-species Northern Prawn Fishery. European Review of Agricultural Economics, 2010, 37, 313-334.	1.5	33
130	Integrating recapture-conditioned movement estimation into spatial stock assessment: A South Australian lobster fishery application. Fisheries Research, 2010, 105, 80-90.	0.9	33
131	Can information from marine protected areas be used to inform control-rule-based management of small-scale, data-poor stocks?. ICES Journal of Marine Science, 2011, 68, 201-211.	1.2	33
132	Can autocorrelated recruitment be estimated using integrated assessment models and how does it affect population forecasts?. Fisheries Research, 2016, 183, 222-232.	0.9	33
133	Some insights into data weighting in integrated stock assessments. Fisheries Research, 2017, 192, 52-65.	0.9	33
134	Reducing retrospective patterns in stock assessment and impacts on management performance. ICES Journal of Marine Science, 2018, 75, 596-609.	1.2	33
135	Harvest Strategy Evaluation for School and Gummy Shark. Journal of Northwest Atlantic Fishery Science, 0, 35, 387-406.	1.4	33
136	Placing Odds on Sustainable Catch Using Virtual Population Analysis and Survey Data. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51, 946-958.	0.7	32
137	Climate to fish: Synthesizing field work, data and models in a 39-year retrospective analysis of seasonal processes on the eastern Bering Sea shelf and slope. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 134, 390-412.	0.6	32
138	The performance of VPA-based management. Fisheries Research, 1997, 29, 217-243.	0.9	31
139	Evaluating the impact of buffers to account for scientific uncertainty when setting TACs: application to red king crab in Bristol Bay, Alaska. ICES Journal of Marine Science, 2012, 69, 624-634.	1.2	31

Size-structured population modelling and risk assessment of the Victorian southern rock lobster,
Jasus edwardsii, fishery. Marine and Freshwater Research, 2001, 52, 1495 .
Using Length, Age and Tagging Data in a Stock Assessment of a Length Selective Fishery for Gummy Shark (Mustelus antarcticus). Journal of Northwest Atlantic Fishery Science, 2005, 35, 267-290.
1.4

The implications of spatially varying catchability on bottom trawl surveys of fish abundance: a
147 proposed solution involving underwater vehicles. Canadian Journal of Fisheries and Aquatic
0.7

Sciences, 2013, 70, 294-306.
Large-scale patterns in puerulus settlement and links to fishery recruitment in the southern rock
148 lobster (Jasus edwardsii), across south-eastern Australia. ICES Journal of Marine Science, 2014, 71,
1.2 528-536.

149 Age and growth of the red steenbrasPetrus rupestris(Pisces: Sparidae) on the south-east coast of South Africa. African Journal of Marine Science, 1991, 10, 131-139.
0.629

150 Title is missing!. Marine and Freshwater Research, 2002, 53, 615.
$0.7 \quad 29$

151 Population impacts of endangered short-tailed albatross bycatch in the Alaskan trawl fishery.
Biological Conservation, 2008, 141, 872-882.
1.929

152 Length-selective retention of walleye pollock, Theragra chalcogramma, by midwater trawls. ICES Journal of Marine Science, 2011, 68, 119-129.
Combining bottom trawl and acoustic data to model acoustic dead zone correction and bottom
153 trawl efficiency parameters for semipelagic species. Canadian Journal of Fisheries and Aquatic
Sciences, 2013, 70, 208-219.
154 Developing risk equivalent data-rich and data-limited harvest strategies. Fisheries Research, 2016, 183, 574-587.
0.9

29

Estimating growth within size-structured fishery stock assessments: What is the state of the art and

155 what does the future look like?. Fisheries Research, 2016, 180, 147-160.

Attending to spatial socialâ€"ecological sensitivities to improve tradeâ€off analysis in natural resource management. Fish and Fisheries, 2020, 21, 1-12.

157 Nearly a half century of high but sustainable exploitation in the Dungeness crab (Cancer magister)
fishery. Fisheries Research, 2020, 226, 105528.

Modelling growth of rock lobsters, Jasus edwardsii, off Victoria, Australia using models that allow for individual variation in growth parameters. Fisheries Research, 2006, 82, 119-130.
0.9

28
2.7

29
1.2

29
0.7

29
0.929
0.9

29

159 The impact of climate change on the performance of rebuilding strategies for overfished groundfish species of the U.S. west coast. Fisheries Research, 2011, 109, 320-329.
$0.9 \quad 28$

Growth acceleration at sex change in the protogynous hermaphrodite<i>Chrysoblephus
puniceus</i> (Pisces: Sparidae). African Journal of Marine Science, 1993, 13, 187-193.

161 Title is missing!. Marine and Freshwater Research, 2002, 53, 645.
0.7

163 Accounting for fish shoals in single- and multi-species survey data using mixture distribution models.
Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 1681-1693.

A heuristic model of socially learned migration behaviour exhibits distinctive spatial and reproductive dynamics. ICES Journal of Marine Science, 2019, 76, 598-608.
1.2 uncertainty buffers. Fish and Fisheries, 2022, 23, 73-92.
2.7

Mass mortality of marine birds in the Northeast Pacific caused by Akashiwo sanguinea. Marine Ecology
0.9
0.7

27

| 169 | Different responses to area closures and effort controls for sedentary and migratory harvested
 species in a multispecies coral reef linefishery. ICES Journal of Marine Science, 2009, 66, 1931-1941. | 1.2 |
| :--- | :--- | :--- | :--- | 26

181	Modelling the effects of Marine Protected Areas (MPAs) on the southern rock lobster (<i>jasus) Tj ETQq1 10.784314 rgBT /Overlock 2005, 39, 675-686.		
182	In pursuit of maximum economic yield in an ITQ managed lobster fishery. Fisheries Research, 2015, 161, 285-292.	0.9	24
183	Data conflict and weighting, likelihood functions and process error. Fisheries Research, 2017, 192, 1-4.	0.9	24
184	Estimation of population size and trends for highly mobile species with dynamic spatial distributions. Diversity and Distributions, 2018, 24, 1-12.	1.9	24
185	Chapter 15 Operational management procedures: An introduction to the use of evaluation frameworks. Developments in Aquaculture and Fisheries Science, 2006, 36, 379-407.	1.3	23
186	ECONOMIC IMPACTS OF CHANGES IN AN ALASKA CRAB FISHERY FROM OCEAN ACIDIFICATION. Climate Change Economics, 2015, 06, 1550017.	2.9	23
187	The utility of genetics in marine fisheries management: a simulation study based on Pacific cod off Alaska. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1415-1432.	0.7	23
188	Is risk consistent across tierâ€based harvest control rule management systems? A comparison of four caseâ€studies. Fish and Fisheries, 2016, 17, 731-747.	2.7	23
189	Estimation of the annual consumption of food by Cape hakeMerluccius capensisandM. paradoxusoff the South African west coast. African Journal of Marine Science, 1992, 12, 611-634.	0.6	22
190	Correcting density-dependent effects in abundance estimates from bottom-trawl surveys. ICES Journal of Marine Science, 2014, 71, 1107-1116.	1.2	22
191	When are estimates of spawning stock biomass for small pelagic fishes improved by taking spatial structure into account?. Fisheries Research, 2018, 206, 65-78.	0.9	22
192	Predicted polybrominated diphenyl ether (PBDE) and polychlorinated biphenyl (PCB) accumulation in southern resident killer whales. Marine Ecology - Progress Series, 2012, 453, 263-277.	0.9	22
193	Complementarity of No-Take Marine Reserves and Individual Transferable Catch Quotas for Managing the Line Fishery of the Great Barrier Reef. Conservation Biology, 2010, 25, no-no.	2.4	21

From data rich to data-limited harvest strategiesâ€"does more data mean better management?. ICES
Journal of Marine Science, 2017, 74, 670-686.

Considerations for management strategy evaluation for small pelagic fishes. Fish and Fisheries, 2021, 22, 1167-1186.

Modified hierarchical Bayesian biomass dynamics models for assessment of short-lived invertebrates: a comparison for tropical tiger prawns. Marine and Freshwater Research, 2009, 60, 1298.
199 Modelling the economic and ecological impacts of the transition to individual transferable quotas in
199 the multispecies US west coast groundfish trawl fleet. ICES Journal of Marine Science, 2011, 68,
1.2
20
1566-1579.
200 Building blocks of economic resilience to climate change: a south east Australian fisheries example.
Regional Environmental Change, 2013, 13, 1313-1323.
1.4
20
201 Demographic analysis of the shortfin mako shark, Isurus oxyrinchus, in the Northwest Pacific using a
1.2 two-sex stage-based matrix model. ICES Journal of Marine Science, 2014, 71, 1604-1618.
20
202 Integrating data from multiple surveys and accounting for spatio-temporal correlation to index the
1.2
abundance of juvenile Pacific halibut in Alaska. ICES Journal of Marine Science, 2018, 75, 572-584.
203 Integrating Governance and Quantitative Evaluation of Resource Management Strategies to Improve
2.2 Constructing a coherent joint prior while respecting biological realism: application to marine
1.2
209 Estimating Bycatch Mortality for Marine Mammals: Concepts and Best Practices. Frontiers in Marinealalungaus
287-310.Performance of methods for estimating size - transition matrices using tag - recapture data. MarineCan a spatially-structured stock assessment address uncertainty due to closed areas? A case study

219 Assessing cetacean populations using integrated population models: an example with Cook InletA hierarchical model for salmon run reconstruction and application to the Bristol Bay sockeye221 salmon (Oncorhynchus nerka) fishery. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63,1564-1577.Management strategy evaluation for rock lobster, <i>Jasus edwardsii</i>, off Victoria, Australia:222 Accounting for uncertainty in stock structure. New Zealand Journal of Marine and FreshwaterResearch, 2009, 43, 485-509.
223 Spatial structure induced by marine reserves shapes population responses to catastrophes in mathematical models. , 2011, 21, 1399-1409. 17
Identifying research priorities for management under uncertainty: The estimation ability of the stock 224 assessment method used for eastern Bering Sea snow crab (Chionoecetes opilio). Fisheries Research, 0.9 17 2012, 134-136, 82-94.
225 Spatial and environmental determinants of the distribution of Striped Marlin (Kajikia audax) in the western and central North Pacific Ocean. Environmental Biology of Fishes, 2014, 97, 267-276.

Comparing size-limit and quota policies to increase economic yield in a lobster fishery. Canadian

Comparing size-limit and quota policies to increase economic yield in a lobster fishery. Canadian 226 Journal of Fisheries and Aquatic Sciences, 2015, 72, 1292-1305. 226 Journal of Fisheries and Aquatic Sciences, 2015, 72, 1292-1305.
0.7
0.7 17 17
Connectivity between spawning and nursery areas for Pacific cod (Gadus macrocephalus) in the Gulf Connectivity between spawning and nursery areas for Pacific cod (Gadus macrocephalus) in
of Alaska. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 165, 113-126.$0.7 \quad 17$0.817
0.6 17$0.9 \quad 17$
When are model-based stock assessments rejected for use in management and what happens then?. 228 Fisheries Research, 2020, 224, 105465.
Understanding transboundary stocksâ $€^{T M}$ availability by combining multiple fisheries-independent surveys
229 and oceanographic conditions in spatiotemporal models. ICES Journal of Marine Science, 2022, 79, 1.2 17
1063-1074.230 Optimal vessel size and output in the Australian northern prawn fishery: a restricted profit function1.316approach*. Australian Journal of Agricultural and Resource Economics, 2011, 55, 107-125.Catch-quota balancing mechanisms in the Icelandic multi-species demersal fishery: Are all species1.516equal?. Marine Policy, 2015, 55, 1-10.

Recruitment variation disrupts the stability of alternative life histories in an exploited salmon population. Evolutionary Applications, 2019, 12, 214-229.

Evaluation of a sex-specific age-structured assessment method for the swordfish, Xiphias gladius, in the North Pacific Ocean. Fisheries Research, 2005, 73, 79-97.

0.9

15
15

236

A simulation strategy for fleet dynamics in Australiaâ $€^{T M} s$ northern prawn fishery: effort allocation at
1.2
two scales. ICES Journal of Marine Science, 2009, 66, 631-645.
15

Development and application of an agent-based model to evaluate methods for estimating relative
237 abundance indices for shoaling fish such as Pacific rockfish (Sebastes spp.). ICES Journal of Marine
1.2 Science, 2012, 69, 635-647.

Adaptive behaviour of fishers to external perturbations: simulation of the Tasmanian rock lobster
fishery. Reviews in Fish Biology and Fisheries, 2014, 24, 577-592.
$2.4 \quad 15$
15
Bayesian posterior prediction of the patchy spatial distributions of small pelagic fish in regions of

suitable habitat. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 290-303. 239 | The effect of marine closures on a feedback control management strategy used in a spatially |
| :--- |
| aggregated stock assessment: a case study based on pink ling in Australia. Canadian Journal of |
| Fisheries and Aquatic Sciences, 2017, 74, 1960-1973. |

253	Can we manage marine mammal bycatch effectively in lowâ€data environments?. Journal of Applied Ecology, 2021, 58, 596-607.	1.9	14
254	Factors influencing subcolony colonization and persistence in a colonial seabird, the common murre Uria aalge. Marine Ecology - Progress Series, 2009, 376, 283-293.	0.9	14
255	Stock Assessment of Gemfish (Rexea solandri) in Eastern Australia Using Maximum Likelihood and Bayesian Methods., 1998, , 245-286.		14
256	On an approach for comparing the implications of alternative fish stock assessments, with application to the stock of Cape hake<i>Merlucciusspp. off northern Namibia. African Journal of Marine Science, 1991, 10, 219-240.	0.6	13
257	Estimating multifleet catchability coefficients and natural mortality from fishery catch and effort data: comparison of Bayesian stateâ€"space and observation error models. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 1171-1181.	0.7	13
258	The impact of alternative rebuilding strategies to rebuild overfished stocks. ICES Journal of Marine Science, 2016, 73, 2190-2207.	1.2	13
259	Investigating the value of including depth during spatiotemporal index standardization. Fisheries Research, 2019, 216, 126-137.	0.9	13
260	The breeding strategy of female jumbo squid Dosidicus gigas: energy acquisition and allocation. Scientific Reports, 2020, 10, 9639.	1.6	13
261	Evaluating fishery management strategies using an ecosystem model as an operating model. Fisheries Research, 2021, 234, 105780.	0.9	13
262	Incorporating vertical distribution in index standardization accounts for spatiotemporal availability to acoustic and bottom trawl gear for semi-pelagic species. ICES Journal of Marine Science, 2021, 78, 1826-1839.	1.2	13
263	Best Practices for Assessing and Managing Bycatch of Marine Mammals. Frontiers in Marine Science, 2021, 8,	1.2	13
264	Assessing the management-related benefits of fixed-station fishery-independent surveys in Australiaấ $\hat{T}^{\mathrm{TM}_{S}}$ Southern Shark Fishery. Fisheries Research, 2002, 55, 281-295.	0.9	12
265	Application of the sex-specific age-structured assessment method for swordfish, Xiphias gladius, in the North Pacific Ocean. Fisheries Research, 2007, 84, 282-300.	0.9	12

The effects of applying mis-specified age- and size-structured models. Fisheries Research, 2017, 188,
$58-73$.

Inferring genetic connectivity in real populations, exemplified by coastal and oceanic Atlantic cod. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4945-4950.
3.3

Management strategy analysis for multispecies fisheries, including technical interactions and human
273 behavior in modelling management decisions and fishing. Canadian Journal of Fisheries and Aquatic
$0.7 \quad 12$
Sciences, 2018, 75, 1185-1202.

Conserving and recovering vulnerable marine species: a comprehensive evaluation of the US approach for marine mammals. ICES Journal of Marine Science, 2018, 75, 1813-1831.
1.2

Bayesian estimation of group sizes for a coastal cetacean using aerial survey data. Marine Mammal Science, 2019, 35, 1322-1346.

Identifying spawner biomass perâ€recruit reference points from lifeâ€history parameters. Fish and Fisheries, 2020, 21, 760-773.
$2.7 \quad 12$

Bottomâ€"Up Impacts of Forecasted Climate Change on the Eastern Bering Sea Food Web. Frontiers in
Marine Science, 2021, 8, .
$1.2 \quad 12$

Collating stock assessment packages to improve stock assessments. Fisheries Research, 2021, 236, 105844.

Shifting trends: Detecting changes in cetacean population dynamics in shifting habitat. PLoS ONE, 2021,
279 16, e0251522.

A management strategy evaluation of rebuilding revision rules for overfished rockfish stocks. , 2007, ,

Evidence for rebuilding in the panga stock on the Agulhas Bank, South Africa. Fisheries Research, 1998,
$\begin{array}{ll} & \\ \text { Evidence for r } \\ 34,103-121 .\end{array}$
$0.9 \quad 11$

Bayesian hierarchical modelling of maturity-at-length for rock lobsters, Jasus edwardsii, off Victoria,
282 Australia. Marine and Freshwater Research, 2006, 57, 503.
0.7

11

Evaluating population recovery for sea turtles under nesting beach protection while accounting for nesting behaviours and changes in availability. Journal of Applied Ecology, 2012, 49, 601-610.

Effects of sexual dimorphism on population parameters and exploitation ratios of blue marlin
(<i>Makaira nigricans</i>) in the northwest Pacific Ocean. Aquatic Living Resources, 2013, 26, 19-24.
0.5

11

Environmental influences on seasonal movement patterns and regional fidelity of striped marlin
Kajikia audax in the Pacific Ocean. Fisheries Research, 2015, 166, 59-66.

Using bioeconomic modeling to improve a harvest strategy for a quota-based lobster fishery. Fisheries
Research, 2016, 183, 549-558.
0.9

11

Spatio-temporal variability in trophic ecology of jumbo squid (Dosidicus gigas) in the southeastern
Pacific: Insights from isotopic signatures in beaks. Fisheries Research, 2019, 212, 56-62.
0.9

Determining spatial and temporal overlap of an endangered seabird with a large commercial trawl fishery. Endangered Species Research, 2008, 5, 103-115.Science, 2015, 72, 1257-1277.
293 Improving catch prediction for tiger prawns in the Australian northern prawn fishery. ICES Journal1.2Evaluating management strategies for marine mammal populations: an example for multiple species and294 multiple fishing sectors in Iceland. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77,1316-1331.
How much spatial structure can data for rock lobster off victoria,
Journal of Marine and Freshwater Research, 2009, 43, 373-385. 0.8 9
296 How do marine closures affect the analysis of catch and effort data?. Canadian Journal of Fisheriesand Aquatic Sciences, 2015, 72, 1177-1190.$0.7 \quad 9$
297 Examining influences of environmental, trawl gear, and fish population factors on midwater trawl performance using acoustic methods. Fisheries Research, 2015, 164, 94-101.
$0.9 \quad 9$
Implications of a climate-induced recruitment shift in the stock assessment of Patagonian grenadier (Macruronus magellanicus) in Chile. Fisheries Research, 2019, 212, 114-122. 298

Modeling time-varying selectivity in size-structured assessment models. Fisheries Research, 2021, 239, | | |
| :--- | :--- |
| | Modeling |
| 105927. | |

0.9 90.99
307 Exploring benefits of spatial cooperative harvesting in a sea urchin fishery: an agentâ€based approach.
Ecosphere, $2017,8, \mathrm{eO} 1829$.

Refining mortality estimates in shark demographic analyses: a Bayesian inverse matrix approach. Ecological Applications, 2018, 28, 1520-1533.
309 Simulation testingÂa new multi-stage process to measure the effect of increased sampling effort on effective sample size for age and length data. ICES Journal of Marine Science, 2020, 77, 1728-1737.
1.2

Estimating spatiotemporal availability of transboundary fishes to fisheryâ€independent surveys. Journal
$310 \begin{aligned} & \text { Estimating spatiotemporal availability of tr } \\ & \text { of Applied Ecology, 2021, 58, 2146-2157. }\end{aligned}$
1.9 8
An ensemble approach to understand predation mortality for groundfish in the Gulf of Alaska.
Fisheries Research, 2022, 251, 106303.

A framework for assessing harvest strategy choice when considering multiple interacting fisheries
312 and a changing environment: The example of eastern Bering Sea crab stocks. Fisheries Research, 2022, 0.9
252, 106338.
The effects of implementing a â $€^{\sim} d^{\text {dynamic BOâ }} €^{\mathrm{TM}}$ harvest control rule in Australiaâ $€^{\mathrm{TM}}$ s Southern and Eastern
Scalefish and Shark Fishery. Fisheries Research, 2022, 252, 106306.

314 Assessments of species in the Australian South East Fishery can be sensitive to the method used to convert from size-to age-composition data. Marine and Freshwater Research, 2001, 52, 683.
$0.7 \quad 7$
Balancing predation and egg harvest in a colonial seabird: A simulation model. Ecological Modelling,
$2006,195,318-326$.

From input to output controls in a short-lived species: the case of Australia's Northern Prawn
$316 \quad$ Fishery. Marine and Freshwater Research, 2012, 63, 727.
$\begin{array}{ll}0.7 & 7\end{array}$

$$
\begin{aligned}
& \text { A stepwiseâ€selected spline approximation to timeâ€varying parameters, with application to occupancy } \\
& \text { modelling. Methods in Ecology and Evolution, 2013, 4, 123-132. }
\end{aligned}
$$

Environmental influences on daily commercial catch rates of <scp>S</scp>outh
$318 \quad\langle\mathrm{scp}\rangle \mathrm{A}\langle/ \mathrm{scp}\rangle$ ustralia's southern rock lobster (<i><scp>>//scp>asus edwardsii</i>). Fisheries
0.9 Oceanography, 2014, 23, 362-374.

Assessing a multilevel tier system: The role and implications of data quality and availability. Fisheries
Research, 2016, 183,588-593.
$0.9 \quad 7$
Research, 2016, 183, 588-593.

How many of Australia's stock assessments can be conducted using stock assessment packages?.
1.5

320 Marine Policy, 2016, 74, 279-287.
$\begin{array}{ll}1.5 & 7\end{array}$

Exploring model structure uncertainty using a general stock assessment framework: The case of
321 Pacific cod in the Eastern Bering Sea. Fisheries Research, 2017, 193, 104-120.
$0.9 \quad 7$

Modeling the impacts of two ageâ€elated portfolio effects on recruitment variability with and without a marine reserve. Ecological Applications, 2017, 27, 1985-2000.

Multipleâ€model stock assessment frameworks for precautionary management and conservation on
Effects of re-specifying the Northern Prawn Fishery bioeconomic model to include banana prawns.
Fisheries Research, 2022, 247, 106190 .

Assessment and management of South African marine resources during the period of the Benguela
Ecology Programme: key lessons and future directions. African Journal of Marine Science, 1992, 12,

329 Management of fluctuating fish stocks: the case of Pacific whiting. Fisheries Research, 2005, 73,walleye pollock acoustic-trawl surveys. ICES Journal of Marine Science, 2016, 73, 2208-2226.

The effects of errors in the placement of the boundary between the West and South Coast
340 hakeMerlucciusspp. stocks on the performance of the current hake management procedure. African

343	Quantifying the benefits of spatial fisheries management â $€^{\text {" }}$ An ecological-economic optimization approach. Ecological Modelling, 2018, 385, 165-172.	1.2	5
344	A framework for assessing which sampling programmes provide the best trade-off between accuracy and cost of data in stock assessments. ICES Journal of Marine Science, 2019, 76, 2102-2113.	1.2	5
345	Macquarie Islandâ $€^{\mathrm{TM}}$ s northern giant petrels and the impacts of pest eradication on population abundance. Ecological Modelling, 2019, 393, 66-75.	1.2	5
346	Oceanographic features delineate growth zonation in Northeast Pacific sablefish. Fisheries Research, 2020, 222, 105414.	0.9	5
347	There is no best method for constructing size-transition matrices for size-structured stock assessments. ICES Journal of Marine Science, 2020, 77, 136-147.	1.2	5
348	Review of the assessment of two stocks of Antarctic minke whales (eastern Indian Ocean and western) Tj ETQqO $00.3 \mathrm{rgBT} / \mathrm{O}_{5} \mathrm{r}$ rlock 10		
349	Embracing Movement and Stock Structure for Assessment ofGaleorhinus Galeus Harvested off Southern Australia. , 0, , 369-392.		4
350	<scp>tossm</scp>: an <scp>R</scp> package for assessing performance of genetic analytical methods in a management context. Molecular Ecology Resources, 2009, 9, 1456-1459.	2.2	4
351	Inferring absolute recruitment and legal size population numbers of southern rock lobster (Jasus) Tj ETQq1 $10.784314 \mathrm{rgBT} / \mathrm{Overlod}$ Fisheries Research, 2017, 191, 164-178.		

The performance and trade-offs of alternative harvest control rules to meet management goals for
352 U.S. west coast flatfish stocks. Fisheries Research, 2017, 187, 139-149.
$0.9 \quad 4$

353	Pramod et al. methods to estimate IUU are not credible. Marine Policy, 2019, 108, 103632.	1.5

Impacts on CPUE from vessel fleet composition changes in an Australian lobster (Jasus edwardsii)
354 fishery. New Zealand Journal of Marine and Freshwater Research, 2019, 53, 292-302.
0.8

4
$0.9 \quad 4$ study for Indian Ocean blue shark. Fisheries Research, 2020, 230, 105636.

Evaluating the potential for an increased and sustainable commercial fisheries production across multiple jurisdictions and diverse fisheries. Marine Policy, 2021, 124, 104353.
1.5

4

Use of Fatty Acid Analysis to Determine Dispersal of Caspian Terns in the Columbia River Basin, U.S.A..
Conservation Biology, 2011, 25, 736-746.

Effect of data weighting on the mature male biomass estimate for Alaskan golden king crab. Fisheries Research, 2017, 192, 103-113.
0.9

Comments on the evidence for the recent claim on the state of Australian fish stocks. Aquatic
Conservation: Marine and Freshwater Ecosystems, 2019, 29, 329-330.

Can a length-based pseudo-cohort analysis (LBPA) using multiple catch length-frequencies provide insight into population status in data-poor situations?. Fisheries Research, 2021, 234, 105810.
0.9

Factors influencing size-structured modelsâ $€^{T M}$ ability to estimate natural mortality. Fisheries Research, 2022, 250, 106292.

Issues at the fore in the land of Magnuson and Stevens: A summary of the 14 th Bevan Series on Sustainable Fisheries. Marine Policy, 2015, 54, 118-121.

The impact of alternative age-length sampling schemes on the performance of stock assessment methods. Fisheries Research, 2021, 238, 105904.

Should harvest control rules for male-only fisheries include reproductive buffers? A Bering Sea Tanner crab (Chionoecetes bairdi) case study. Fisheries Research, 2021, 243, 106049.

369 The effect of reduced data on the ability to monitor rebuilding of overfished fish stocks. Fishery
Bulletin, 2018, 116, 190-206.
369 The effect of reduced data on the ability to monitor rebuilding of overfished fish stocks. Fishery
Bulletin, 2018, 116, 190-206.

Bayesian fishable biomass dynamics models incorporating fished area and relative fish density. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 1603-1614.
0.7
0.1

2

371 Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. , 2014, 15, 1.

Estimating gill-net selectivity for five species caught in the South East Fishery, Australia. Marine and Freshwater Research, 2001, 52, 691.

Performance metrics for alternative management strategies for gray seal-commercial fishery interactions in the Northwest Atlantic. Fisheries Research, 2021, 243, 106060.

Development of harvest control rules for hard-to-age crab stocks: the example of the golden king
374 crab (Lithodes aequispinus) in the eastern Aleutian Islands in Alaska. Fishery Bulletin, 2020, 118, 380-398.

375 Preface: Developing the next generation of stock assessment software. Fisheries Research, 2022, 246, 106176.
mmrefpoints: Projecting long-term marine mammal abundance with bycatch. Journal of Open Source Software, 2022, 7, 3888.

Implications of climate change on the Bering Sea and other cold water systems. Deep-Sea Research
Part II: Topical Studies in Oceanography, $2022,105110$.
0.6

0

