
Rie Yanagisawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1671383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dietary Exposure to Flame Retardant Tris (2-Butoxyethyl) Phosphate Altered Neurobehavior and Neuroinflammatory Responses in a Mouse Model of Allergic Asthma. International Journal of Molecular Sciences, 2022, 23, 655.	4.1	7
2	Toxicological effects of Tris (1,3â€dichloroâ€2â€propyl) phosphate exposure in adult male rats differ depending on the history of exposure in the neonatal period. Journal of Applied Toxicology, 2022, 42, 1503-1509.	2.8	1
3	Novel toxicity of tris(1,3â€dichloroâ€2â€propyl) phosphate in adult male rats. Journal of Applied Toxicology, 2021, 41, 987-992.	2.8	3
4	Toxicokinetics of methylmercury in diabetic KKâ€Ay mice and C57BL/6 mice. Journal of Applied Toxicology, 2021, 41, 928-940.	2.8	1
5	Impact of dietary exposure to low-dose tris(1,3-dichloro-2-propyl)phosphate in allergic asthmatic mice. Immunopharmacology and Immunotoxicology, 2021, 43, 599-610.	2.4	5
6	Benzo[a]pyrene aggravates atopic dermatitis-like skin lesions in mice. Human and Experimental Toxicology, 2021, 40, S269-S277.	2.2	4
7	Dietary exposure to bisphenol A affects memory function and neuroimmune biomarkers in allergic asthmatic mice. Journal of Applied Toxicology, 2021, 41, 1527-1536.	2.8	3
8	The impact of oral exposure to lowâ€dose tris(2â€butoxyethyl) phosphate in allergic asthmatic mice. Journal of Applied Toxicology, 2020, 40, 1498-1510.	2.8	9
9	Memory Function, Neurological, and Immunological Biomarkers in Allergic Asthmatic Mice Intratracheally Exposed to Bisphenol A. International Journal of Environmental Research and Public Health, 2019, 16, 3770.	2.6	4
10	Oral exposure to low dose bisphenol A aggravates allergic airway inflammation in mice. Toxicology Reports, 2019, 6, 1253-1262.	3.3	21
11	Evaluation of neurobehavioral impairment in methylmercuryâ€treated KKâ€Ay mice by dynamic weightâ€bearing test. Journal of Applied Toxicology, 2019, 39, 221-230.	2.8	8
12	Decabromodiphenyl ether exacerbates hyperglycemia in diet-induced obese mice. Toxicology, 2019, 412, 12-18.	4.2	9
13	Hatano rats are a suitable metabolic syndrome model for studying feeding behavior, blood pressure levels, and percent body fat. Journal of Veterinary Medical Science, 2019, 81, 147-154.	0.9	1
14	Effects of lactational exposure to low-dose BaP on allergic and non-allergic immune responses in mice offspring. Journal of Immunotoxicology, 2018, 15, 31-40.	1.7	8
15	Exposure to low-dose bisphenol A during the juvenile period of development disrupts the immune system and aggravates allergic airway inflammation in mice. International Journal of Immunopathology and Pharmacology, 2018, 32, 205873841877489.	2.1	44
16	Low-dose benzo[a]pyrene aggravates allergic airway inflammation in mice. Journal of Applied Toxicology, 2016, 36, 1496-1504.	2.8	29
17	Brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, affect proinflammatory protein expression in human bronchial epithelial cells via disruption of intracellular signaling. Toxicology in Vitro, 2016, 32, 212-219.	2.4	18
18	Nano-Sized Secondary Organic Aerosol of Diesel Engine Exhaust Origin Impairs Olfactory-Based Spatial Learning Performance in Preweaning Mice. Nanomaterials, 2015, 5, 1147-1162.	4.1	10

RIE YANAGISAWA

#	Article	IF	CITATIONS
19	Impaired Lipid and Glucose Homeostasis in Hexabromocyclododecane-Exposed Mice Fed a High-Fat Diet. Environmental Health Perspectives, 2014, 122, 277-283.	6.0	64
20	Obese mice are resistant to eosinophilic airway inflammation induced by diesel exhaust particles. Journal of Applied Toxicology, 2014, 34, 688-694.	2.8	10
21	Effects of oral administration of di-(2-ethylhexyl) and diisononyl phthalates on atopic dermatitis in NC/Nga mice. Immunopharmacology and Immunotoxicology, 2014, 36, 61-69.	2.4	12
22	Toxicological effects of polycyclic aromatic hydrocarbons and their derivatives on respiratory cells. Atmospheric Environment, 2014, 97, 529-536.	4.1	27
23	Penta- and octa-bromodiphenyl ethers promote proinflammatory protein expression in human bronchial epithelial cells in vitro. Toxicology in Vitro, 2014, 28, 327-333.	2.4	24
24	Increased methylmercury toxicity related to obesity in diabetic KKâ€Ay mice. Journal of Applied Toxicology, 2014, 34, 914-923.	2.8	27
25	Brominated flame retardants stimulate mouse immune cells <i>in vitro</i> . Journal of Applied Toxicology, 2013, 33, 1451-1459.	2.8	38
26	Expression levels of neuroimmune biomarkers in hypothalamus of allergic mice after phthalate exposure. Journal of Applied Toxicology, 2013, 33, 1070-1078.	2.8	32
27	Peroxiredoxin I null mice exhibits reduced acute lung inflammation following ozone exposure. Journal of Biochemistry, 2012, 152, 595-601.	1.7	20
28	Effects of Diisononyl Phthalate on Atopic Dermatitis <i>in Vivo</i> and Immunologic Responses <i>in Vitro</i> . Environmental Health Perspectives, 2010, 118, 472-478.	6.0	59
29	Titanium Dioxide Nanoparticles Aggravate Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice. Experimental Biology and Medicine, 2009, 234, 314-322.	2.4	73
30	Di-(2-ethylhexyl) phthalate affects immune cells from atopic prone mice in vitro. Toxicology, 2009, 259, 54-60.	4.2	43
31	Peroxiredoxin I is a negative regulator of Th2-dominant allergic asthma. International Immunopharmacology, 2009, 9, 1281-1288.	3.8	24
32	Effects of Maternal Exposure to Di-(2-ethylhexyl) Phthalate during Fetal and/or Neonatal Periods on Atopic Dermatitis in Male Offspring. Environmental Health Perspectives, 2008, 116, 1136-1141.	6.0	55
33	Gene Expression Analysis of Murine Lungs Following Pulmonary Exposure to Asian Sand Dust Particles. Experimental Biology and Medicine, 2007, 232, 1109-1118.	2.4	22
34	Effects of naphthoquinone on airway responsiveness in the presence or absence of antigen in mice. Archives of Toxicology, 2007, 81, 575-581.	4.2	27
35	Pulmonary exposure to diesel exhaust particles enhances fatty change of the liver in obese diabetic mice. International Journal of Molecular Medicine, 2007, 19, 17-22.	4.0	39
36	Di-(2-ethylhexyl) Phthalate Enhances Atopic Dermatitis-Like Skin Lesionsin Mice. Environmental Health Perspectives, 2006, 114, 1266-1269.	6.0	84

RIE YANAGISAWA

#	Article	IF	CITATIONS
37	Diesel Exhaust Particles Synergistically Enhance Lung Injury and Oxidative Stress Induced by Bacterial Endotoxin. Journal of Clinical Biochemistry and Nutrition, 2006, 38, 133-137.	1.4	4
38	Effects of a single intratracheal administration of phenanthraquinone on murine lung. Journal of Applied Toxicology, 2005, 25, 47-51.	2.8	26
39	Complementary DNA Microarray Analysis in Acute Lung Injury Induced by Lipopolysaccharide and Diesel Exhaust Particles. Experimental Biology and Medicine, 2004, 229, 1081-1087.	2.4	26
40	Murine Strain Differences in Airway Inflammation Induced by Diesel Exhaust Particles and House Dust Mite Allergen. International Archives of Allergy and Immunology, 2002, 128, 220-228.	2.1	36
41	Diesel Exhaust Particles Enhance Lung Injury Related to Bacterial Endotoxin through Expression of Proinflammatory Cytokines, Chemokines, and Intercellular Adhesion Molecule-1. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 1329-1335.	5.6	156